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Exact bounds of the Möbius inverse of monotone set

functions
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Abstract

We give the exact upper and lower bounds of the Möbius inverse of monotone
and normalized set functions (a.k.a. normalized capacities) on a finite set of n

elements. We find that the absolute value of the bounds tend to 4n/2√
πn/2

when

n is large. We establish also the exact bounds of the interaction transform and
Banzhaf interaction transform, as well as the exact bounds of the Möbius inverse
for the subfamilies of k-additive normalized capacities and p-symmetric normalized
capacities.
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1 Introduction

The Möbius function is a well-known tool in combinatorics and partially ordered sets
(see, e.g., [1, 7, 15]). In the field of decision theory, the Möbius inverse of a monotone
set function (called a capacity) is a fundamental concept permitting to derive simple
expressions of nonadditive integrals and to analyze the core of capacities (set of probability
measures dominating a capacity) [2]. Set functions can also be seen as pseudo-Boolean
functions, and it is well known that the Möbius inverse corresponds to the coefficients
of the polynomial representation of a pseudo-Boolean function. In particular, monotone
and normalized pseudo-Boolean functions correspond to semicoherent structure functions
in reliability theory (see, e.g., Marichal and Mathonet [9], Marichal [8]).

Consider N = {1, . . . , n} and a monotone set function µ : 2N → [0, 1] with the
property µ(∅) = 0 and µ(N) = 1 (normalized capacity). In optimization problems
involving capacities or monotone pseudo-Boolean functions (as in reliability) it is often
useful to know the bounds of the Möbius inverse to use algorithmic methods (see Crama
and Hammer [3], Chapter 13). This is the case for example when dealing with k-additive
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measures, which are best represented through their Möbius inverse (see below); then,
when solving optimization problems like model fitting, algorithms usually need to fix an
interval where the searched values lay, and the upper and lower bounds are the natural
limits of these intervals. Surprisingly, although µ takes values in [0, 1], the exact bounds

of its Möbius inverse grow rapidly with n, approximately in 4n/2√
πn/2

when n is large.

The aim of the paper is to establish this result, correcting wrong bounds obtained in a
previous paper by the authors [11], and providing a complete proof of the result. We
extend this result to the interaction transform, another useful linear invertible transform
of set functions, and we consider also specific subclasses of capacities, like k-additive and
p-symmetric capacities.

2 Preliminaries

Let N = {1, . . . , n}. A capacity on N is a set function µ : 2N → R satisfying µ(∅) = 0
and monotonicity: A ⊆ B ⊆ N implies µ(A) 6 µ(B). A capacity is normalized if in
addition µ(N) = 1. We denote respectively by C(N) and NC(N) the set of capacities
and normalized capacities on N . The set NC(N) is a convex closed polytope, whose
extreme points are all {0, 1}-valued normalized capacities (as the polytope of normalized
capacities is an order polytope, this result has been shown by Stanley [16]. For a direct
proof, see [14]). We denote by NC0,1(N) the set of all {0, 1}-valued normalized capacities.

Consider a set function ξ on N such that ξ(∅) = 0. The monotonic cover of ξ is the

smallest capacity µ such that µ > ξ. We denote it by ξ̂, and it is given by

ξ̂(A) = max
B⊆A

ξ(B) (A ⊆ N). (1)

Consider now a set function ξ : 2N → R. The linear system

ξ(A) =
∑

B⊆A

m(B) (A ∈ 2N) (2)

has always a unique solution, known as the Möbius inverse [15], and is given by

m(A) =
∑

B⊆A

(−1)|A\B|ξ(B) (A ∈ 2N). (3)

Since m is also a set function, we view now the Möbius inverse as a transform on the set
of set functions:

m : R(2N ) → R
(2N ); ξ 7→ mξ given by (3).

We call m the Möbius transform of ξ. Remark that it is a linear invertible transform.
We introduce another linear invertible transform, which is useful in decision making,

called the interaction transform. To this end we introduce the derivative of a set function
ξ. Let i ∈ N and A ⊆ N \ {i}. The derivative of ξ w.r.t. i at A is defined by
∆iξ(A) = ξ(A ∪ {i})− ξ(A). Derivatives w.r.t. sets are defined recursively by

∆Kξ(A) = ∆K\{i}(∆{i}ξ(A)) (|K| > 1)
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with i ∈ K, ∆{i}ξ = ∆iξ, and ∆∅ξ = ξ. For A ⊆ N \K, we obtain

∆Kξ(A) =
∑

L⊆K

(−1)|K\L|ξ(A ∪ L).

Also, observe that
mξ(A) = ∆Aξ(∅) (A ∈ 2N). (4)

The interaction transform I : R(2N ) → R
(2N ) computes a weighted average of the deriva-

tives:

Iξ(A) =
∑

B⊆N\A

(n− b− a)!b!

(n− a+ 1)!
∆Aξ(B) (A ∈ 2N), (5)

where a = |A|, b = |B|. Its expression through the Möbius transform is much simpler:

Iξ(A) =
∑

B⊇A

1

b− a+ 1
mξ(B), (6)

while the inverse relation uses the Bernoulli numbers Bk:

mξ(A) =
∑

B⊇A

Ba−bI
ξ(B).

(see [4, 6] for details). Another related transform is the Banzhaf interaction transform

IB, which is the (unweighted) average of the derivatives:

IξB(A) =
1

2n−a

∑

B⊆N\A
∆Aξ(B) (A ∈ 2N). (7)

Lastly, we introduce two specific families of normalized capacities. A normalized
capacity µ is said to be at most k-additive (1 6 k 6 n) if mµ(A) = 0 for every set
A ∈ 2N such that |A| > k [5]. 1-additive capacities are ordinary additive capacities, i.e.,
satisfying µ(A ∪ B) = µ(A) + µ(B) for disjoint sets A,B. Note that by (6), mµ can be
replaced by Iµ in the above definition.

We denote by NC
6k(N) the set of at most k-additive capacities on N . It is a convex

closed polytope (see [10] for a study of its properties).
Another family of interest is the family of p-symmetric capacities [13]. A capacity

µ is symmetric if µ(A) = µ(B) whenever |A| = |B|. We denote by SNC(N) the set of
symmetric normalized capacities. This notion can be generalized as follows. A nonempty
subset A ⊆ N is a subset of indifference for µ if for all B1, B2 ⊂ A with |B1| = |B2|, we
have µ(C∪B1) = µ(C∪B2) for every C ⊆ N \A. The basis of the capacity is the coarsest
partition of N into subsets of indifference. It always exists and is unique [12]. Now, µ
is p-symmetric with respect to the partition {A1, . . . , Ap} if this partition is its basis.
Symmetric games are therefore 1-symmetric games (with respect to the basis {N}). We
denote by SNC

6p(A1, . . . , Ap) the set of normalized capacities such that A1, . . . , Ap are
subsets of indifference. It is a convex closed polytope (again, see [10] for a study of its
properties).

Lastly, we mention a combinatorial result on the binomial coefficients:

k∑

ℓ=0

(−1)ℓ
(
n

ℓ

)
= (−1)k

(
n− 1

k

)
(k < n), (8)

for any positive integer n.
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3 Exact bounds of the Möbius inverse

We present in this section the main result of the paper.

Theorem 1. For any normalized capacity µ, its Möbius transform satisfies for any A ⊆
N , |A| > 1:

−
(|A| − 1

l′|A|

)
6 mµ(A) 6

(|A| − 1

l|A|

)
,

with

l|A| = 2

⌊ |A|
4

⌋
, l′|A| = 2

⌊ |A| − 1

4

⌋
+ 1 (9)

and for |A| = 1 < n:
0 6 mµ(A) 6 1,

and mµ(A) = 1 if |A| = n = 1. These upper and lower bounds are attained by the
normalized capacities µ∗

A, µA∗, respectively:

µ∗
A(B) =

{
1, if |A| − l|A| 6 |B ∩ A| 6 |A|
0, otherwise

, µA∗(B) =

{
1, if |A| − l′|A| 6 |B ∩A| 6 |A|
0, otherwise

for any B ⊆ N .

We give in Table 1 the first values of the bounds. Using the well-known Stirling’s

|A| 1 2 3 4 5 6 7 8 9 10 11 12
u.b. of mµ(A) 1 1 1 3 6 10 15 35 70 126 210 462
l.b. of mµ(A) 1(0) −1 −2 −3 −4 −10 −20 −35 −56 −126 −252 −462

Table 1: Lower and upper bounds for the Möbius transform of a normalized capacity

approximation
(
2n
n

)
≃ 4n√

πn
for n → ∞, we deduce that

− 4
n
2

√
πn
2

6 mµ(N) 6
4

n
2

√
πn
2

when n tends to infinity.

Proof. Let us prove the result for the upper bound when A = N . We consider the group
Sn of permutations on N . For any σ ∈ Sn and any capacity µ ∈ NC(N), we define the
capacity σ(µ) ∈ NC(N) by σ(µ)(B) = µ(σ−1(B)) for any B ⊆ N .

We observe that the target function mµ(N) is invariant under permutation. Indeed,

mσ(µ)(N) =
∑

B⊆N

(−1)n−|B|µ(σ−1(B))

=
∑

B′⊆N

(−1)n−|B′|µ(B′) (letting B′ = σ−1(B))

= mµ(N).
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For every set function µ on N , define its symmetric part µs = 1
n!

∑
σ∈Sn

σ(µ), which is
a symmetric function. By convexity of NC(N), if µ ∈ NC(N), then so is µs, and by
linearity of the Möbius inverse, we have

mµs

(N) =
1

n!

∑

σ∈Sn

mσ(µ)(N) =
1

n!

∑

σ∈Sn

mµ(N) = mµ(N).

It is therefore sufficient to maximize mµ(N) on the set of symmetric normalized capacities
SNC(N). But this set is also a convex polytope, whose extreme points are the following
{0, 1}-valued capacities µk defined by

µk(B) = 1 iff |B| > n− k (k = 0, . . . , n− 1).

Indeed, if µ is symmetric, it can be written as a convex combination of these capacities:

µ = µ({1})µn−1 +
n∑

k=2

(
µ({1, . . . , k})− µ({1, . . . , k − 1})

)
µn−k

It follows that the maximum of mµ(N) is attained on one of these capacities, say µk. We
compute

mµk(N) =
∑

B⊆N

(−1)|N\B|µ(B) =
n∑

i=n−k

(−1)n−i

(
n

i

)

=
k∑

i′=0

(−1)i
′

(
n

n− i′

)
= (−1)k

(
n− 1

k

)
, (10)

where the third equality is obtained by letting i′ = n− i and the last one follows from (8).
Therefore k must be even. If n− 1 is even, the maximum of

(
n−1
k

)
for k even is attained

for k = n−1
2

if this is an even number, otherwise k = n−3
2
. If n− 1 is odd, the maximum

of
(
n−1
k

)
is reached for k = ⌈n−1

2
⌉ and k − 1 = ⌊n−1

2
⌋, among which the even one must be

chosen. As it can be checked (see Table 2 below), this amounts to taking

k = 2
⌊n
4

⌋

that is, k = ln as defined in (9), and we have defined the capacity

µ∗(B) = 1 if n− ln 6 |B| 6 n,

which is µ∗
N as defined in the theorem.

For establishing the upper bound of mµ(A) for any A ⊂ N , remark that the value of
mµ(A) depends only on the subsets of A. It follows that applying the above result to the
sublattice 2A, the set function ξ∗A defined on 2N by

ξ∗A(B) = 1 if B ⊆ A and |A| − l|A| 6 |B| 6 |A|, and 0 otherwise,

yields an optimal value for mµ(A). It remains to turn this set function into a capacity
on N , without destroying optimality. This can be done since ξ∗A is monotone on 2A, so
that taking the monotonic cover of ξ∗A by (1) yields an optimal capacity, given by

ξ̂∗A(B) = max
C⊆B

ξ∗A(C) = 1 if |A| − l|A| 6 |B ∩A| 6 |A|, and 0 otherwise,
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which is exactly µ∗
A as desired. Note however that this is not the only optimal solution

in general, since values of the capacty on the sublattice 2N\A are irrelevant.
One can proceed in a similar way for the lower bound. In this case however, as it can

be checked, the capacity must be equal to 1 on the l′n+1 first lines of the lattice 2N , with
l′n = 2

⌊
n−1
4

⌋
+ 1 (see Table 2).

n/k 0 1 2 3 4 5 6 7 8 9 10 11
n = 1 1
n = 2 1 −1
n = 3 1 −2 1
n = 4 1 −3 3 −1
n = 5 1 −4 6 −4 1
n = 6 1 −5 10 −10 5 −1
n = 7 1 −6 15 −20 15 −6 1
n = 8 1 −7 21 −35 35 −21 7 −1
n = 9 1 −8 28 −56 70 −56 28 −8 1
n = 10 1 −9 36 −84 126 −126 84 −36 9 −1
n = 11 1 −10 45 −120 210 −252 210 −120 45 −10 1
n = 12 1 −11 55 −105 330 −462 462 −330 165 −55 11 −1

Table 2: Computation of the upper (red) and lower (blue) bounds. The value of the
capacity µ is 1 for the k+1 first lines of the lattice 2N . Each entry (n, k) equals mµ(N),
as given by (10).

4 Exact bounds of the interaction transforms

We begin by establishing a technical lemma which will permit to get the results easily
from Theorem 1.

Lemma 1. Let A,B ⊂ N , A 6= ∅, be disjoint sets. Then

max
µ∈NC(N)

∑

C⊆A

(−1)a−cµ(B ∪ C) = max
µ∈NC(N)

mµ(A), (11)

and the maximum is attained for µ = µ∗
A.

Proof. The function we have to maximize is simply the derivative ∆Aµ(B). As this is
a linear function in µ and NC(N) is a polytope, its maximum is attained on a vertex,
i.e. a {0, 1}-valued capacity. If µ(B ∪ A) = µ(B), then by monotonicity of µ we get
∆Aµ(B) = 0. Since this is clearly not the maximum of the derivative, we can discard
such capacities µ from the analysis. Assuming then µ(B∪A) > µ(B), we define a capacity
µB ∈ C(A) by

µB(C) = µ(B ∪ C)− µ(B) (C ⊆ A). (12)

Observe that if µ is {0, 1}-valued, then necessarily µ(B∪A) = 1 and µ(B) = 0, hence (12)
collapses to µB(C) = µ(B ∪ C), for any C ⊆ A, and µB is {0, 1}-valued and normalized
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too. Moreover, any {0, 1}-valued normalized capacity on A can be obtained from a {0, 1}-
valued normalized capacity on N by the latter equality. On the other hand, remark that
for any µ ∈ NC(N)

mµB(A) =
∑

C⊆A

(−1)a−cµB(C) =
∑

C⊆A

(−1)a−cµ(B ∪ C)

since
∑

C⊆A(−1)a−c = 0. In summary, we have

max
µ∈NC(N)

∆Aµ(B) = max
µ∈NC0,1(N)

∆Aµ(B) = max
µ∈NC0,1(A)

mµ(A) = max
µ∈NC(A)

mµ(A) = max
µ∈NC(N)

mµ(A),

the last equality coming from Theorem 1. Hence (11) is established, the value of the
maximum is given by Theorem 1, as well as the capacity attaining the maximum.

A similar result can be established for the lower bound.

Corollary 1. Consider A ⊆ N. The upper and lower bounds for the interaction transform
I(A) are the same as for m(A), and they are obtained for the capacities µ∗

A and µA∗ of
Theorem 1.

Proof. We will obtain the upper bound, the proof for the lower bound being similar.
From Lemma 1, we see that the maximum of ∆Aµ(B) does not depend on B. Thus, from
(5), letting m∗(A) = maxµ∈NC(N)m

µ(A) we obtain

max
µ∈NC(N)

Iµ(A) =
∑

B⊆N\A

(n− a− b)!b!

(n− a+ 1)!
m∗(A) = m∗(A)

n−a∑

b=0

(n− a− b)!b!

(n− a+ 1)!

(
n− a

b

)
= m∗(A).

Similarly, we obtain the exact bounds for the Banzhaf interaction index.

Corollary 2. Consider A ⊆ N. The upper and lower bounds for IB(A) are the same as
for m(A). These upper and lower bounds are obtained for the capacities µ∗

A and µA∗ of
Theorem 1.

Proof. Proceeding as for Corollary 1, the result follows from the identity
∑n−a

b=0

(
n−a
b

)
=

2n−a.

5 Exact bounds for k-additive and p-symmetric ca-

pacities

We show in this section that the results established for the bounds of the Möbius and
interaction transforms on the set of normalized capacities are still valid when one restricts
to k-additive capacities and p-symmetric capacities.
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Proposition 1. For any nonempty A ⊆ N , the normalized capacities µ∗
A, µA∗ given in

Theorem 1 are at most k-additive for any |A| 6 k 6 n. Therefore, the upper and lower
bounds for the Möbius transform, the interaction transform and the Banzhaf interaction
transform, are valid:

max
µ∈NC(N)

mµ(A) = max
µ∈NC

6k(N)
mµ(A), min

µ∈NC(N)
mµ(A) = min

µ∈NC
6k(N)

mµ(A),

for |A| 6 k 6 n,∅ 6= A ⊆ N , and similarly for Iµ(A), IµB(A).

Proof. Given a nonempty A ⊆ N , it suffices to show that µ∗
A, µA∗ are at most k-additive

for k = |A|. Take B ⊆ N such that k < |B| 6 n. Then, B \ A 6= ∅. On the other hand,
observe that for any i 6∈ A,

∆iµ
∗
A(K) = µ∗

A(K ∪ i)− µ∗
A(K) = 0

for any K 6∋ i. It follows that ∆Bµ
∗
A(K) = 0 for any K as soon as B \ A 6= ∅. Taking

K = ∅, by (4), we conclude that mµ∗

A(B) = 0 if k < |B| 6 n, as desired.

Remark 1. Proposition 1 tells us what is the maximum achieved by mµ(A) for the set of
k-additive capacities when |A| 6 k 6 n, but says nothing when k < |A|. The question
appears to be very complex, because in general µ∗

A will not be k-additive, and the vertices
of the polytope of k-additive capacities are not known, except for k = 1 and 2. In
particular, it is known that many vertices are not {0, 1}-valued as soon as k > 2 (see
[10]).

Proposition 2. For any 1 6 p 6 n and any partition {A1, . . . , Ap} of N ,

max
µ∈NC(N)

mµ(A) = max
µ∈SNC

6p(A1,...,Ap)
mµ(A), (∅ 6= A ⊆ N),

min
µ∈NC(N)

mµ(A) = min
µ∈SNC

6p(A1,...,Ap)
mµ(A), (∅ 6= A ⊆ N),

and similarly for Iµ(A), IµB(A).

Proof. Consider the capacities defined by

µ∗∗
A (B) :=

{
1 if |B| ≥ l|A| + 1
0 otherwise

, µA∗∗(B) :=

{
1 if |B| ≥ l|A|
0 otherwise

Observe that µ∗∗
A (C) = µ∗

A(C), µA∗∗(C) = µA∗(C) for any C ⊆ A.
Therefore mµ∗∗

A (A) = mµ∗

A(A), mµA∗∗(A) = mµA∗(A). On the other hand, µ∗∗
A and µA∗∗

are symmetric capacities, whence they are p-symmetric for any p and any partition of
indifference.
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