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Abstract Atmospheric mid-latitude circulation is dominated by a zonal, westerly flow. Such a flow is8

generally symmetric, but it can be occasionally broken up by blocking anticyclones. The subsequent9

asymmetric flow can persist for several days. In this paper, we apply new mathematical tools based10

on the computation of an extremal index in order to reexamine the dynamical mechanisms responsible11

for the transitions between zonal and blocked flows. We discard the claim that mid-latitude circulation12

features two distinct stable equilibria or chaotic regimes, in favor of a simpler mechanism that is well13

understood in dynamical systems theory: we identify the blocked flow as an unstable fixed point (or saddle14

point) of a single basin chaotic attractor, dominated by the westerlies regime. We also analyze the North15

Atlantic Oscillation and the Arctic Oscillation atmospheric indices, whose behavior is often associated16

with the transition between the two circulation regimes, and investigate analogies and differences with17

the bidimensional blocking indices. We find that the Arctic Oscillation index, which can be thought as18

a proxy for a hemispheric average of the Tibaldi-Molteni blocking index, keeps track of the presence of19
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Bérengère Dubrulle
Laboratoire SPHYNX, SPEC, CEA Saclay, CNRS UMR 3680, 91191 Gif-sur-Yvette, France

Pascal Yiou
LSCE, CEA Saclay l’Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France



2 Davide Faranda et al.

unstable fixed points. On the other hand, the North Atlantic Oscillation, representative only of local20

properties of the North Atlantic blocking dynamics, does not show any trace of the presence of unstable21

fixed points of the dynamics.22

Keywords Blocking Index, Mid-latitude circulation, Extremal index23

1 Introduction24

In the time range of 2 – 8 days, the mid-latitude large-scale circulation is mainly driven by the destabi-25

lization of a westerly sheared jet, associated with a meridional temperature gradient (Holton and Hakim26

2013). The destabilizing mechanism is referred to as the baroclinic instability and it consists in the appear-27

ance of three dimensional wave structures (extra-tropical cyclones and anticyclones) normally embedded28

in the mid-latitude westerlies. The minimal model for such an instability is known as the Charney-Eady29

model (Charney 1947). Such a model is based on the stability analysis of the quasi-geostrophic potential30

vorticity equation coupled with a thermodynamic equation. The stability parameter is the Burger num-31

ber, i.e. the ratio between stratification (a quantity linked to the meridional temperature gradient) and32

rotational effects.33

34

Cyclones and anticyclones are generally embedded in the mid-latitude jet, and have average lifetimes35

of a few days that depend on their size, longitudinal asymmetry and interaction with the topography36

(Emanuel 2005; Rudeva 2008). However, a few times per year and with higher frequency in the winter37

season, large high-pressure structures may form and persist for several days, breaking up the westerlies38

circulation and forcing the jet to move towards higher latitudes or even split up into two branches, hence39

breaking the longitudinal symmetry. This kind of circulation is referred to as blocked flow (Charney and40

DeVore 1979). During blocking conditions a few extreme climate events have occurred like the December41

2010 cold spell in northern and central Europe or the summer 2003 heatwave over western Europe (Schär42

and Jendritzky 2004; Beniston 2004) or the 2010 heatwave over Russia (Dole et al 2011; Barriopedro43

et al 2011). It is therefore crucial to get a deeper understanding of the blocked flow and of the mechanism44

which regulates the transition to the westerlies regime.45

Besides the anticyclones embedded in the mid-latitude jet, there is a large fraction of subtropical anticy-46

lones such as the Azores high that are located further south and are quasi-stationary. Since it is necessary47

to discern between typical blocking highs in the mid to high latitudes and those at lower latitudes, in this48

paper, we will focus only on the blocking occurring between mid to high latitudes, deferring to another49

publication the study of lower latitudes for which other robust blocking detection algorithms have been50

devised (Barriopedro et al 2006, 2010; Lupo and Smith 1995; Scherrer et al 2006).51

52

In order to understand the transition between those flow regimes, many studies of mid-latitude dynamics53

have been conducted both theoretically and experimentally. Legras and Ghil (1985) and Ghil (1987) have54

shown the intricacy of such circulation by studying an intermediate complexity model of a barotropic flow55

with dissipation forcing and topography. They observed two distinct equilibria which can be associated56

with either the westerlies or the blocked flows. Similar conclusions appear in (Mo and Ghil 1988) and are57

supported by experimental laboratory studies (Weeks et al 2000). A vast amount of literature points to58

very different mechanisms. Some of these theories relate blocking to resonant amplification of free quasi-59

stationary Rossby waves (Tung and Lindzen 1979) whereas others have considered barotropic (Simmons60

et al 1983) or baroclinic instability (Frederiksen 1982) as the main mechanism. The development of non-61

linear theories has led some authors to regard blocking episodes as a manifestation of multiple equilibria62
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in asymmetrically forced flows (Hansen 1986) or as a result of soliton-modon structures (McWilliams et al63

1981). A significant number of works invoke non-linear interactions, either between zonal flow and eddies64

(Charney and DeVore 1979), or between planetary waves (Egger 1978; Kung et al 1990; Christensen and65

Wiin-Nielsen 1996). Other authors have analyzed the relationship between blocking anticyclones and low-66

frequency planetary waves at the hemispheric scale (Wallace and Blackmon 1983; Dole 1986). A number67

of authors have pointed to the decisive contribution from high frequency cyclones to develop (Colucci68

and Alberta 1996; Nakamura et al 1997) and sustain (Shutts 1986) the typical low-frequency anomalies69

associated with blocking episodes. Conceptual models linking blocking anticyclones and transient eddies70

have been proposed (Shutts 1983). On the basis of observations some other works see blocking appearing71

as a distinctive dynamical feature with respect to westerlies circulation, but it consists of several multi-72

stable patterns (Vautard 1990; Masato et al 2009, 2012).73

74

In this paper we reanalyse data over the past decades to detect whether the dynamics of blocking is75

compatible with the existence of an unstable fixed point of the atmospheric mid-latitude circulation.76

This evidence comes from dynamical systems theory and is supported by the common experience that,77

within the blocked flow, atmospheric variables follow a highly predictable dynamics (persistence of the78

same weather conditions for several days), whereas in the zonal flow they mostly have a chaotic behavior79

(irregular alternation between cyclonic and anticyclonic phases). Such kind of dynamical features are also80

encountered for several dynamical systems systems ranging from toy models as the Pomeau-Manneville81

map, the Hénon map or the Lorenz equations (Benzi et al 1985) to intermediate complexity models82

(Payne and Sattinger 1975; Kaplan and Yorke 1979). The dynamics of all these systems is generally83

chaotic and takes place on a single basin chaotic attractor, but is sometimes trapped near an unstable84

fixed point. When this happens, an orbit stays in the vicinity of the fixed point for an amount of time85

that depends on the distance from the fixed point and its dynamical properties. As a result, the system86

experiences a temporary suppression of chaos.87

88

We propose to detect the existence of unstable fixed points in the mid-latitude atmospheric circulations89

by using recent results obtained for recurrences of dynamical systems (Freitas et al 2010; Lucarini et al90

2012; Freitas et al 2012; Faranda et al 2013). These results have opened a new branch of research where91

recurrences of a certain observation in an orbit are treated via the statistics of extreme events. The nov-92

elty of this approach lies in the fact that classical extreme value laws can be found for such recurrences93

for almost every point of chaotic attractors (Freitas et al 2010). In (Faranda and Vaienti 2013) we have94

exploited this technique to study instrumental temperature records, and check that temperature recur-95

rences obey one of the three classical extreme values, i.e. the atmosphere behaves as a chaotic system. Via96

this analysis, a map of European temperatures can be constructed whose recurrence is likely or unlikely97

within a certain time scale of interest.98

99

In order to detect the possible unstable fixed points of the atmospheric dynamics, we will analyze several100

blocking indices. In general, a blocking index is defined in terms of the difference of pressure (or conju-101

gated fields) between two different locations at the same longitude. When the flow is zonal, this difference102

always has the same sign because anticyclones are generally located at lower latitudes. Conversely, when103

the flow is blocked, low pressure systems tend to move to low latitudes and anticyclones to high latitudes,104

reversing the meridional gradient in pressure. A blocking event is identified as the persistence of such105

conditions for several days.106

107
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We will begin our analysis with the Tibaldi-Molteni index (Tibaldi and Molteni 1990), defined at each108

longitude by differences of geopotential heights, and compare the results with those obtained for the109

bidimensional blocking index introduced by Pelly and Hoskins (2003), where differences are taken over110

a potential vorticity surface closer to the tropopause and to the core of the jet stream. After collecting111

evidence for the existence of unstable fixed points and their spatial distribution, we will perform the112

analysis on one-dimensional indices of atmospheric circulation to see whether they keep any trace of the113

existence of unstable fixed points. In particular, we will focus on the Artic Oscillation (AO) index, which114

is roughly a hemispheric average of the Tibaldi-Molteni index, and on the North Atlantic Oscillation115

(NAO) index, representative of the North-Atlantic/European regions only (NOAA 2015; Hurrell et al116

2003).117

118

The paper is organized as follows: in section 2, we give an overview of the method and explain the analogy119

between unstable fixed points and blocked circulation via dynamical systems toy models. In section 3,120

we present evidence for the existence of unstable fixed points by using the Tibaldi-Molteni and the Pelly121

blocking indices. In section 4, we analyze the role of one-dimensional indices, such as the AO and the122

NAO. Finally, we discuss how to improve the modeling of the mid-latitudes circulation on the basis of123

the results obtained.124

2 Method and results from dynamical systems125

In this section we A) show how to detect unstable fixed points in dynamical systems and time series,126

B) explain the inference procedures, and C) discuss the estimation of the parameters describing the127

statistical properties of the unstable point.128

129

2.1 Detection of unstable fixed points with dynamical systems techniques130

Let us consider a discrete-time dynamical system. This is a relevant hypothesis for an atmospheric131

system (Lucarini et al 2013), as both models and observations are made at discrete times. The dynamics132

is governed by the map T , which iterates the variables of the system x according to133

xt+1 = T (xt). (1)

We assume that, by starting from a random initial condition, the dynamics follows a chaotic trajectory134

on a well-defined surface of the phase space, i.e. the attractor. We fix a point ζ on the attractor and135

measure the time series of the distances between ζ and the subsequent iterations of the orbit:136

w(t; ζ) = − log(d(T (xt), ζ)),

where d is a distance function between two vectors. We are interested in the high extremes of w(t; ζ), for137

all t. By construction, such extremes define the recurrences of the system. To identify the extremes, we138

apply the block-maxima approach. It consists of dividing the time series T (xt) into intervals of length139

m. Every m observations, the closest recurrence to the point ζ is taken. If n intervals of length m are140

available in the series, one obtains n closest recurrences. If the system is chaotic, the logarithmic weight141

forces the asymptotic extreme value distribution to follow a Gumbel law. A detailed explanation for this142

can be found in Faranda and Vaienti (2013), but the reason is intuitive: the Gumbel law is of the form143
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G(x) = exp(− exp(−x)). One of the exponential functions comes from the exponential recurrence statis-144

tics, the other from the inverse of the logarithm. Other choices for w, typically power laws, constrain the145

asymptotic extreme distribution to be either a Weibull or a Fréchet distribution.146

147

This theoretical framework applies to almost all the points of a chaotic attractor except at the unstable
fixed points. A fixed point of the system in Eq. (1) is one that repeats itself under iteration, i.e. T (x) = x.
An unstable or repelling fixed point is one for which the distance between itself and any point in a
surrounding neighborhood increases under iterations (Katok and Hasselblatt 1997). A theoretical result
from dynamical systems, obtained by Freitas et al (2012), states that when ζ is an unstable fixed point
of the recurrence map T , then the distribution of w(t; ζ) follows a modified Gumbel law:

G(x, θ) = exp(− exp(−θx)),

where θ is a parameter known as the extremal index.148

The concept of the extremal index originally appears in extreme value theory (Leadbetter et al 1983),149

where θ gives a measure of ‘clustering’, i.e. the tendency of a random process to exceed a threshold at150

consecutive times. If a threshold u is applied to a series of observations x1, x2, . . . , xs, the exceedances151

are those for which xi > u. Heuristically, the extremal index can then be thought of as θ = 1/`, where152

` is the mean duration of consecutive exceedances (clusters), i.e. the average of the time intervals spent153

above u.154

155

In the dynamical systems context, θ can vary across the phase space depending on the ζ from which156

recurrences are measured (Freitas et al 2012). Clustering occurs when consecutive iterates of the orbit157

are observed near a point of the attractor. For almost all the nonsingular points there is no clustering.158

This means that, on average, an orbit enters the neighborhood of ζ once at time, which gives θ = 1.159

However, when ζ is close to an unstable fixed point, θ < 1. The smaller the θ, the larger the cluster size,160

i.e. the longer the time the orbit stays in the vicinity of ζ. In dynamical systems, the cluster extends in161

both time and space: we observe a time cluster in the minimum distances between the unstable fixed162

point and the orbit. This in turn effectively corresponds to a spatial cluster because the orbits are held163

within the vicinity of the unstable fixed point.164

165

As an example, we consider the Hénon system (Hénon 1976) whose attractor is shown in Fig.1a, obtained166

by iterating the following set of equations:167

xt+1 = yt + 1− 1.4x2t ,
yt+1 = 0.3xt.

(2)

In this picture, the presence of the unstable fixed point ζu is not obvious. Its existence can be proved168

analytically by solving T (x, y) = (x, y), with approximate solution ζu = (0.63, 0.19), as indicated in169

Fig.1a. The dynamics around this point is different from that of a generic point, and this can be captured170

by computing the recurrences. Fig.1b and Fig.1c show distances of iterates of the orbit measured from171

ζu and a generic point ζ of the attractor. In the former case, a long cluster is visible and its length can172

be determined via the extremal index θ, whose estimation we describe in the next section (for the Hénon173

map θ can also be computed analytically Freitas et al (2012)).174

Although the Hénon dynamics is not representative of the atmospheric circulation, it is helpful to illus-175

trate the general dynamical behavior around an unstable fixed point. In chaotic dynamical systems we176

can only observe clustering at unstable fixed points (see Freitas et al (2012) , Theorem 1), independently177
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Fig. 1 a: Hénon attractor, obtained by iterating Eq. (2). The location of the unstable fixed point ζu is indicated. b: Series
of distances from the unstable fixed point ζu. Clustering occurs when the trajectory gets close to ζu. c: Series of distances
from a generic point of the attractor ζ. No clustering occurs.

of the complexity of the system. If we consider the time series of observations as the output of a dynam-178

ical system, then we may hope to track the presence of unstable fixed points by measuring θ < 1 for179

some reference values ζ.180

2.2 Algorithm and inference of the extremal index181

In order to compute the extremal index θ for time series we use the following algorithm:182

1. Consider a time series consisting of s observations: {xt : t = 1, 2, ..., s} .183

2. Fix ζ to be a point of the series itself.184

3. Compute the series wt(ζ) = − log(d(xt, ζ)).185

4. Take a very high quantile q of the wt distribution, in order to consider only the closest recurrences186

(when d(x, ζ) is small, w(x, ζ) is large).187

5. Compute the extremal index.188

A number of estimators exist for θ. The simplest of these, the so-called “runs” or “blocks” methods,189

approximate θ by dividing the number of recurrent clusters by the total number of recurrences (Embrechts190

et al 1997). The cluster could be defined as a consecutive sequence of recurrent observations, terminating191

when an observation is no longer recurrent (by falling outside the small interval that defines recurrences).192

Depending on the context, different definitions of clusters may be appropriate. Another estimator, (Ferro193

and Segers 2003), is constructed out of the second moment of times between recurrences. For the analysis194

presented in this paper, we adopt another estimator by Süveges (2007), and we have checked that our195

results are robust across extremal index estimators. For fixed quantile q, Süveges’ estimator reads:196
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θ =

∑Nc

i (1− q)Si +N +Nc −
√(∑Nc

i (1− q)Si +N +Nc

)2
− 8Nc

∑Nc

i (1− q)Si

2
∑Nc

i (1− q)Si

,

where N is the number of w(t, ζ) above the chosen quantile (i.e. recurrences), Nc the number of obser-197

vations which form a cluster of at least two consecutive recurrences, and Si the length of each cluster i.198

For details of the derivation of this estimator, see Süveges (2007).199

2.3 Finite-size effects200

Faranda et al (2011) discussed some of the problems related to the finiteness of datasets when studying201

the recurrences around a certain value in a time series. The results θ = 1 at generic points and θ < 1202

at unstable fixed points hold only in the limit q → 1, i.e. for the closest recurrences. When dealing with203

finite data sets, the limit q → 1 is unattainable and, depending on the marginal distribution, some points204

ζ may be associated with an extremal index θ < 1 even when they are not unstable fixed points.205

To illustrate this effect, we analyse a time series generated by an auto-regressive process of order 1206

(AR(1)), xt = φxt−1 + σεt, where |φ| < 1 is the magnitude of the auto-regressive coefficient and εt207

is a random variable drawn from a normal distribution, σ = 0.1 is a constant. It is known that the208

extremes of this process do not cluster in the limit q → 1, so that θ = 1 for all ζ and all φ. However,209

for finite datasets and fixed q, clustering will be observed among the weakly (exponentially) correlated210

exceedances all the while they have not exited an interval around ζ whose size is a function of φ and the211

underlying marginal density: for larger φ and ζ chosen in the wings of the marginal density, there is a212

greater ‘finite-size’ clustering.213

In our numerical experiment, we take φ = 0.5 and synthetic datasets of lengths 30000 (similar to the214

real time series we later analyse) and 300000. We plot the empirical marginal densities in Fig. 2a , and215

the computed θ as a function of ζ in Fig. 2b. Note that θ < 1 in the wings of the distribution, even216

though the model has no inherent tendency to cluster extremes. Increasing the length of the datasets217

sharpens the estimate of the theoretical quantile of the marginal density. But it does not change the size218

of the interval that defines recurrences. For a fixed quantile (i.e. not increasing with sample size), the219

extremal index is therefore relatively insensitive to the sample size. For the AR(1) process it is possible220

to estimate θ analytically by calculating the mean sojourn time inside the recurrence interval. This time221

represents the length of a cluster — after which observables leave the interval, thereby terminating it.222

The inverse of the mean sojourn time thus provides an estimate of θ. The analytical curve obtained is223

shown in Fig. 2b.224

Our method to deal with such finite-size effects is based on the following observations: the extremal index225

obtained for some fixed q < 1 depends on i) the shape of the marginal density, ii) the spectral properties226

of the process (i.e. φ in our above example), iii) the choice of ζ, since clustering is a local property.227

228

We have tested i) and ii) by changing both the marginal and the magnitude of the coefficient φ, which229

is directly linked to the spectrum for the process (Brockwell and Davis 2002). We can go further by230

generating surrogates of the original dataset that have identical marginal distributions and, to within a231

very low tolerance, the same spectral properties. In this way we can ‘subtract’ the effects of i) and ii)232

in the computation of θ. To perform this in practice, we use the Iterative Amplitude Adjusted Fourier233

Transform (IAAFT) of Schreiber and Schmitz (1996). In order to compute the residual extremal indices,234
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which we will denote by θ∗(ζ), it is sufficient to average over several surrogate estimates of θ, such that:235

θ∗(ζ) = 〈θ(ζ, xSURR)〉 − θ(ζ, x), (3)

where the 〈〉 are averages over realizations of surrogate data. This procedure has been tested on the236

auto-regressive samples previously analysed. The residual θ∗ is plotted in Fig. 2c and shows no local237

clustering.238
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Fig. 2 a Empirical density for data generated by an autoregressive process. b: extremal indices θ computed at 100 reference
points ζ, together with its analytical estimate (dashed line). c: residual extremal index θ∗ computed at the same ζ as in
the central panel. Sample 1 contains 30000 data. Sample 2 contains 300000 data.

An analysis of the Hénon attractor provides a test of property iii). Here, we can check whether we are239

able to recover the known location of the unstable fixed point via a computation of θ∗ for the time series240

of x and y. Results are shown in Fig. 3 for 30000 observations. The location of ζu is picked out by the241

two peaks of θ∗ at x = 0.63 (Fig. 3a) and y = 0.19 (Fig. 3b). Secondary peaks are also visible in these242

plots, which are related to the influence of ζu in nearby locations of the attractor.243
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Fig. 3 Residual extremal index θ∗, based on 30000 iterations of the Hénon map. a: x observable. b: y observable.

3 Analysis of Multidimensional blocking indices244

The first bidimensional blocking index was introduced by Scherrer et al (2006) and it is based on the245

original definition given by Tibaldi and Molteni (1990); Tibaldi et al (1994). This index determines246
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the longitudinal asymmetry of the atmospheric flow between 40◦N and 80◦N, by comparing meridional247

gradients of geopotential height at 500hPa (Z). For each longitude in the northern extra-tropics, a248

southern gradient BS and a northern gradient BN of Z are computed as follows:249

BS =
Z(φo)− Z(φS)

φo − φs

BN =
Z(φn)− Z(φ0)

φn − φs
where φn = 80◦ + δ, φ0 = 60◦ + δ, φs = 40◦ + δ, δ = −5◦, 0◦, 5◦. A given longitude is considered to be250

blocked at a given time if the following two conditions are satisfied for at least one value of δ:251

(1): BS > 0, (2): BN < −10 m/degree

Here, we analyze daily time series of BS(t) computed for the Z field of the National Centers for Envi-252

ronmental Prediction (NCEP) daily reanalysis (Kalnay et al 1996), which represent the strength of the253

Tibaldi-Molteni blocking index, under the condition that BS > 0 and BN < −10. Blocking events mainly254

occur around 180◦ (in the Pacific) and at 0◦ (in the Eastern North Atlantic) longitude (d’Andrea et al255

1998). For our analysis, positive values of BS(t) also satisfying condition (2) are considered. The values256

of θ∗ plotted in Fig. 4 are computed using the technique described in the previous section, with 100 ref-257

erence points of ζ = BS . In the following analysis we generate 100 surrogates to compute 〈θ(ζ, xSURR)〉,258

and take q = 0.995. We find that our results are robust with respect to quantile provided q ≥ 0.99.259
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Fig. 4 a: Extremal indices θ∗ (color scale) as a function of longitude Lon and the Tibaldi-Molteni blocking index BS(t).
b: extremal index averaged over all BS vs longitude. Negative values indicate the presence of unstable fixed points. All the
values are significant at a 95% level.
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Some areas attain negative values of θ∗ and, over all, the average extremal index is negative at all260

longitudes (Fig. 4b). Therefore, for these areas the dynamics of blocking is compatible with the existence261

of unstable fixed points. It is quite surprising to observe that at 0◦ longitude θ∗ is close to zero (although262

the values of θ∗ are significant also for this area, implying only moderate clustering. Although the263

European region is affected by strong blocking events, these area is not the one attaining the strongest264

clustering of BS) .265

In order to have a detailed geographical description of the local clustering features, we will consider the266

local blocking index introduced by Pelly and Hoskins (2003) and Tyrlis and Hoskins (2008). This blocking267

index B is a macroscopic measure of the strength of the meridional gradient of potential temperature on268

the isopotential vorticity surface with value 2 PVU (also called the PV2 surface; 1 PVU [ 1 × 10−6 K269

m2 kg−1 s−1]. This surface corresponds approximately to the tropopause, as described by Hoskins et al270

(1983). B is computed every 5◦ of longitude as the difference of the average of potential temperature271

for regions 15◦ of latitude. Whenever B takes positive values, it is referred to as local instantaneous272

blocking. Negative values of B correspond instead to the westerlies mid-latitude circulation associated273

with the zonal flow. The more negative B, the stronger such a circulation.274

275

We computed θ∗ at each grid point for 100 values of ζ, uniformly spaced between min(B) and max(B).276

We then averaged θ∗ for three B intervals corresponding respectively to blocked regimes B > 0 (Fig.277

5a) moderate zonal flows −10 < B < 0 (Fig. 5b), and strong zonal flow B < −10 (Fig. 5c). Only grid278

points with sufficient statistics to obtain reliable values of θ∗ have been considered. For B > 0 (blocked279

flows), θ∗ 6= 0 appears almost everywhere. Strong geographical differences appear in the distribution of280

θ∗: negative values are concentrated at higher latitudes, especially over Canada and central Asia where281

θ∗ ' −0.15. For the North-Atlantic sector, the dynamics over the Canadian region has been recognized282

by Vautard (1990) as a driver of the development of blocking structures. In the same paper, it has283

been argued that the precursor of transitions to the blocked circulation can be found by considering284

the weather evolution over this region. It is worth noticing that the unstable fixed points tend to be285

located in proximity or just downstream of the two major mountain chains (i.e. the Rocky Mountains286

and the Tibetan Plateau). Not surprisingly, these are a necessary ingredient to foster stationary waves287

(Brayshaw et al 2008). In low dimensional dynamical systems only the neighborhood of unstable fixed288

points is affected by clustering. this is not necessarily the case for spatially extended systems: the effect289

of the unstable fixed points can be transported in space by the dynamics. Unstable fixed points found290

with our analysis may be the preferred breaking points for the amplification of Rossby waves, or for291

the development of non-linear interactions. At a mathematical level, there are indeed evidence of the292

relation between unstable fixed points and the destabilization of systems governed by partial differential293

equations (see for example the work by Memory (1991) Example 2 for the delayed logistic equation294

with diffusion and reference therein). Evidences that this behavior is consistent with the atmospheric295

dynamics and the blocking phenomena can be found in (Christensen and Wiin-Nielsen 1996).296

297

For the North Atlantic, the location of unstable fixed points is consistent with the one obtained by298

(Buehler et al 2011) -Fig 1a), where the blocking frequency is computed with a dynamical technique299

called the Lagrangian method which consists in incorporating in the blocking definition the contribution300

of cyclonic activity to reduce artificial maxima. The use of the surrogate acts similarly to this additional301

condition by removing the mean dynamical component, this might explains why the longitudinal profiles302

are different with respect to the ones obtained by Tibaldi and Molteni (1990) and other authors.303

Fig. 5-b and c show the values of θ∗ respectively when −10 < B < 0 and B < −10. The more zonal the304

flow, the more negative B and the less negative values of θ∗ are observed. This is compatible with the305
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idea that unstable fixed points are associated to the blocked flow, as it will be confirmed by the analysis306

of the AO index is the next section.307

308

The meridional averages of the B > 0 are reported in Fig. 6. As for the Tibaldi-Molteni index we observe309

a complex dependence on both the longitude and the values of B. Almost everywhere the averages are310

negative and significant at a 95% level. It is important to compare the θ∗ for B with the ones obtained311

for the Tibaldi-Molteni index. We observe that the scaling is different: although significant, the values312

of θ∗ for B are almost 4 times smaller in magnitude than the value obtained for BS . We conjecture that313

the Pelly index has smaller θ∗ because it is computed by averaging over 15 degrees of latitude whereas314

the Tibaldi Molteni over 50 degrees of latitude (35N to 85N). If we plot together the results for the315

two indexes by rescaling them with the factor 10/3 (equivalent to the latitude ratio), we obtain good316

agreement as shown in Fig. 7. Tests performed on low dimensional lattice systems indicate that the317

averaging window have an impact on the magnitude of θ∗ but this will need to be further investigated to318

get a complete understanding of the results. For the moment, we just note that by doing such a rescaling,319

results are consistent over a wide range of longitudes except the Asian area.320

 1
20

o W
 

  60 o
W

   6
0

o E 

 120 oE
 

  4
2
o N 

  7
2
o N 

 

    (a)  

−0.1 −0.05 0

 1
20

o W
 

  60 o
W

 

   (b)  

  6
0

o E 

 120 oE
 

  4
2
o N 

  7
2
o N 

 

 

−0.1 −0.05 0

 1
20

o W
 

  60 o
W

 

   (c)  

  6
0

o E 

 120 oE
 

  4
2
o N 

  7
2
o N 

 

 

−0.1 −0.05 0

Fig. 5 Residual extremal index θ∗ for three different ranges of the bidimensional blocking index B defined by Pelly et al.
Pelly and Hoskins (2003). a: θ∗ averaged over B > 0 values corresponding to blocked flow regimes. b: θ∗ averaged over
−10 < B < 0 values corresponding to weak zonal flow regime. c: θ∗ averaged over B < −10 values corresponding to strong
zonal flow regime. See text for descriptions.



12 Davide Faranda et al.

−150 −100 −50 0 50 100 150
0

5

10

15

Lon

B

 

 

−0.05 −0.04 −0.03 −0.02 −0.01 0

−150 −100 −50 0 50 100 150

−0.04

−0.02

0

Lon

θ
∗

(a)

(b)

Fig. 6 a: Residual Extremal indices θ∗ versus longitude for the blocking index B . Negative values indicate the presence
of unstable fixed points. b: Meridional average of θ∗ between 35N and 70N. The blue errorbars show the significant results
at the 95% level and represent the standard deviation of the mean over different latitudes.

4 Analysis of NAO and AO Atmospheric indices321

Although local indices provide comprehensive geographical information about the atmospheric circula-322

tion, one-dimensional indicators have been extensively used to characterize and forecast specific phenom-323

ena (see Hurrell and Deser (2010) and references therein).324

Over Europe, the transition between zonal and blocked atmospheric dynamics has been historically325

associated to the North Atlantic Oscillation (NAO) index, originally defined as the difference in pressure326

between Lisbon and Reykjavik (Hurrell 1995). Here we use the NOAA version of such index available via327

(NOAA 2015) computed by using the Rotated Principal Component Analysis (RPCA) used by Barnston328

and Livezey (1987). The positive phase of the NAO reflects below-normal heights and pressure across329

the high latitudes of the North Atlantic and above-normal heights and pressure over the central North330

Atlantic, the eastern United States and western Europe. The negative phase reflects an opposite pattern331

of height and pressure anomalies over these regions (Hurrell et al 2003).332

The Arctic Oscillation index (AO) is more representative of the blocking dynamics over the entire north-333

ern hemisphere: it is constructed by projecting the daily 0 UTC 1000mb height anomalies pole-ward334

of 20◦N onto the leading mode of the Empirical Orthogonal Function (EOF) analysis of monthly mean335

1000mb height during the years 1950-2014 (Thompson and Wallace 1998). Hence, the AO index behaves336

like a zonal average of the Tibaldi-Molteni index. In the negative phase, the polar low pressure system337

(also known as the polar vortex) over the Arctic is weaker, which results in weaker zonal flow. When the338

AO is positive the polar circulation is stronger and forces cold air and storms to remain farther north.339

The NAO and AO indices exhibit considerable inter-seasonal and inter-annual variability, and prolonged340
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Fig. 7 Comparison between θ∗ obtained for the Tibaldi-Molteni index (red errorbars) and 10
3
θ∗ for the B index (blue

errorbars for significant values at 95% and grey non significant values). The errobars for the B index have been multiplied

by a factor
√

10/3. The factor 10/3 is the ratio between the area considered to compute the Tibaldi Molteni index with
respect to the B index.

periods of both positive and negative phases of the pattern are not rare (Thompson and Wallace 1998).341

The daily NAO and AO data used in this paper are maintained by the US Climate Prediction Center342

an can be downloaded via the NOAA webiste (NOAA 2015).343

With the analysis of a one-dimensional index, we can explore the link between complex atmospheric dy-344

namics and simple one-dimensional observables. A priori, there is no reason why the two indices should345

provide the same information. The AO is a hemispheric average, the NAO a regional index. Even though346

they are both one-dimensional time series, we will keep in mind their different origin.347

348

We start by analysing the time series and the histograms shown in Fig. 8. The distributions of both349

NAO and AO are unimodal and peaked around zero, roughly similar to a Gaussian. The indices seem to350

spend most of their time around zero values with noisy fluctuations superimposed. A thirty-day moving351

average filter (green curves) reproduces a unimodal histogram, and there is no evidence that the time352

series oscillates between two states. It is therefore hard to recognize in the data any trace of bistability353

or multistability.354

355

Even if we look at single episodes, a dynamical structure compatible with the existence of an unstable356

fixed point remains unclear: let us consider two examples of negative NAO and AO phases (Fig. 9a-d)357

and one positive phase (Fig. 9e and Fig. 9f) recorded respectively for September 2002, December 2010358

and January 1988. For the 2002, the negative phases of NAO and AO seem to be comparable with the359

dynamics of the Hénon attractor around the fixed point ζu (Fig. 1b)), but the duration and intensity of360

the negative phases are different. In December 2010, Europe experienced a severe cold spell. Although the361

NAO and the AO indices settle to negative values, the NAO oscillates over several values resembling that362

of a chaotic variable, whereas the AO seems to cluster for consecutive days around values of −4 and −2.363

For January 1988, the behavior of the indices look much more chaotic with oscillations associated with364

the mean lifetime of baroclinic structures (a few days). This latter regime can be compared to Fig.1c),365
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Fig. 8 NAO (a) and AO (c) daily time series and their empirical density functions (b and d respectively ). Blue: original
dataset, green: moving average filter over a 30 day window.

i.e. with a typical point of the Hénon attractor. The contradicting results obtained for single episodes366

imply that the existence of an unstable fixed point must be assessed statistically via the computation of367

θ∗.368

After applying the procedure described in Section 2-B, we obtain, for each value of the NAO and AO,369

the residual extreme value index θ∗, as shown in Fig. 10. We recall that for NAO and AO values around370

zero there is no additional clustering, i.e. no unstable fixed points can be detected. The behavior of the371

two indices is indeed different. θ∗ is negative for negative AO, following the core hypothesis of this paper372

that blocked circulation can be associated with the existence of unstable fixed points. In contrast,θ∗ is373

positive for positive NAO.374

The relation between negative θ∗ and blocking for the AO can be explained if we look at the average375

sea level pressure fields for the days such that AO< −4, i.e. θ∗ ' −0.15. This average is shown in Fig.376

11a is compared against the average over the remaining days represented in Fig. 11b. They reproduce377

respectively the blocked flow with an high over Iceland and a low pressure systems over the Azore Islands,378

and the usual zonal flow with the Azore anticyclone and a low pressure located between Greenland and379

Iceland.380
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Fig. 9 NAO (a-c-e) and AO (b-c-d) daily time series for some specific events. a-b: September 2002. c-d: December 2010.
e-f : January 1988

A priori, there is no reason why the two indices should follow the same behavior. Features of the NAO381

are compatible with that observed for the Tibaldi-Molteni and the Pelly index around 0◦ longitude,382

where the blocked flow was not associated with negative θ∗. The disruption of clusters for positive NAO383

corresponding to zonal flow is compatible with the presence of complex geography, which tends to destroy384

the typical time scales of baroclinic instability (1.5 to 3 days). It is encouraging to find the trace of the385

existence of unstable fixed points for the AO index, i.e., that the hemispheric average does not erase the386

clustering properties found for B and BS . This analysis indeed suggests that the AO is more sensitive387

to blocking phenomena than the NAO. We thus can account for the empirical observation of (Ambaum388

et al 2001).389

5 Conclusion and Discussion390

In this paper, we have adapted the concept of the extremal index, as applied in dynamical systems, to391

the analysis of atmospheric indices which describe the switching between zonal flow to blocked flow in392

the atmospheric mid-latitude circulation. We have presented evidence that the switching between atmo-393

spheric and blocked circulation can be associated with the existence of an unstable (saddle) fixed point394
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Fig. 10 Residual extremal index θ∗ for the NAO index (a) and the AO index (b). Error bars represent a standard deviation
of the mean taken over the ensemble of 100 surrogates. Blue: significant values at 95% level. Grey: non significant values
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Fig. 11 a: Sea level pressure field averaged over all the days corresponding to the presence of unstable fixed point
(AO< −4). b: sea level pressure field averaged over all remaining days.

of the atmospheric dynamics. The novelty of this approach lies in the use of observations, rather than395

intermediate complexity models or GCM. Our results appear to be robust across blocking indices, and396

are consistent with mid-latitude circulation mechanisms and local geography.397

398

Such information is preserved in the AO time series, which is a sort of hemispheric average of the Tibaldi-399

Molteni index. On the other hand, it shows that the NAO index does not keep track of the presence400

of unstable fixed point. This result seems to contradict the fact that blocking events can be often be401

tracked by a negative phase of the NAO index (Hurrell et al 2003). However, we remark that the operative402

definition of blocking used in forecasts centers such as the NOAA strongly differs from the dynamical one403

employed for the computation of unstable fixed points: the first definition requires both large negative404

values of the NAO and the persistence for 5 days, the dynamical one requires the persistence of the same405

negative values for several days, independently on its magnitude. Moreover, as detailed in (Memory406

1991), when partial differential equations govern the dynamics of a system, the presence of an unstable407

fixed point may trigger instabilities which propagate in space, thus creating long range interactions (tele-408

connections) between the initial location of unstable fixed point and the region affected. Our analysis409

seems to point to one of the mechanisms invoking non-linear interactions, either between zonal flow and410

eddies or between planetary waves (Charney and DeVore 1979; Egger 1978; Kung et al 1990; Christensen411
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and Wiin-Nielsen 1996) as the driving mechanisms for the blocking phenomena. The complex spatial412

distribution of unstable fixed points let us discard the possibility that simple bi-stability mechanisms413

could explain the transitions between blocking and zonal flow, as proposed in (Tung and Lindzen 1979;414

Shutts 1983, 1986).415

This paper also suggests a novel approach to statistical and dynamical modeling: in Masato et al (2009)416

the properties of blocking indices have been widely investigated and compared to the statistics of sta-417

tionary red noise process. The authors argued that the statistical model was not sufficient to describe the418

characteristics of blocking and claimed that the persistence beyond that given by a red noise model is due419

to the self-sustaining nature of the blocking phenomenon. Here, we have shed light on this self-sustaining420

nature: When the circulation settles in a blocked regime, the presence of unstable fixed points gives rise421

to the persistence (the self-sustaining nature) of quasi-stationary conditions. In order to improve the422

statistical modeling of blocking phenomena, one has to account for local clustering effects in statistical423

models, which is a non-trivial challenge.424
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Barriopedro D, Garćıa-Herrera R, Lupo AR, Hernández E (2006) A climatology of northern hemisphere blocking. Journal434

of Climate 19(6):1042–1063435
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