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Abstract

Atmospheric mid-latitude circulation is dominated by a zonal, westerly flow. Such a flow is

generally symmetric, but it can be occasionally broken up by blocking anticyclones. The subsequent

asymmetric flow can persist for several days. In this paper, we apply new mathematical tools in

order to reexamine the dynamical mechanisms responsible for the transitions between zonal and

blocked flows. By analyzing several blocking indices, we discard the general claim that mid-latitude

circulation features two distinct stable equilibria or chaotic regimes, in favor of a simpler mechanism

that is well understood in dynamical systems theory: we identify the blocked flow as an unstable

fixed point (or saddle point) of a single basin chaotic attractor, dominated by the westerlies regime.

We also analyze the North Atlantic Oscillation and the Arctic Oscillation atmospheric indices,

whose behavior is often associated with the transition between the two circulation regimes, and

investigate analogies and differences with the bidimensional blocking indices. We find that the

Arctic Oscillation index, which is a proxy for a global average of the Tibaldi-Molteni blocking

index, keeps track of the presence of unstable fixed points. On the other hand, the North Atlantic

Oscillation index is representative only of local properties of the North Atlantic blocking dynamics.

∗Electronic address: davide.faranda@cea.fr
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I. INTRODUCTION

In the time range of 2 – 8 days, the mid-latitude large scale circulation is driven by

the destabilization of a westerly sheared jet, associated with a meridional temperature

gradient [1]. The destabilizing mechanism is referred to as the baroclinic instability and

it consists in the appearance of three dimensional wave structures (extra-tropical cyclones

and anticyclones) normally embedded in the mid-latitude westerlies. The minimal model

for such an instability is known as the Charney-Eady model [2]. Such a model is based

on the stability analysis of the quasi-geostrophic potential vorticity equation coupled with

a thermodynamic equation. The stability parameter is the Burger number, i.e. the ratio

between stratification (a quantity linked to the meridional temperature gradient) and

rotational effects. The Charney-Eady model explains most of the energy transfer between

the potential energy in the atmosphere’s pole-to-equator temperature difference and the

kinetic energy of cyclones.

Cyclones and anticyclones are generally embedded in the mid-latitude jet, and have average

lifetimes of a few days that depend on their size, longitudinal asymmetry and interaction

with the topography [3, 4]. However, a few times per year and with higher frequency in

the winter season, large high-pressure structures may form and persist for several days,

breaking up the westerlies circulation and forcing the jet to move towards higher latitudes

or even split up into two branches, hence breaking the longitudinal symmetry. This kind of

circulation is referred to as blocked flow and it has produced a few extreme climate events

like the December 2010 cold spell in northern and central Europe, the warm winter of

2006/2007 [5] or the persistence of Arctic low pressure (Summer 2002) with a remarkable

negative record of arctic sea ice extent [6]. It is therefore crucial to get a complete

understanding of the blocked flow and of the mechanism which regulates the transition to

the westerlies regime.

In order to understand the transition mechanism among these flow regimes, many studies of

mid-latitude dynamics have been conducted both theoretically and experimentally. Legras

and Ghil [7, 8] have shown the intricacy of such circulation by studying an intermediate

complexity model of a barotropic flow with dissipation forcing and topography. The
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authors observed two distinct equilibria which can be associated with either the westerlies

or the blocked flows. Similar conclusions appear in [9] and are supported by experimental

laboratory studies [10]. More recent works question such a theoretical framework on the

basis of observations [11–13]: blocking appears as a distinctive dynamical feature with

respect to westerlies circulation, but it consists of several multistable patterns.

In this paper we reanalyse data over the past decades to detect whether the dynamics of

blocking is compatible with the existence of an unstable fixed point of the atmospheric

mid-latitude circulation. This evidence comes from dynamical systems theory and is

supported by the common experience that, within the blocked flow, atmospheric variables

follow a highly predictable dynamics (persistence of the same weather conditions for

several days), whereas in the zonal flow they mostly have a chaotic behavior (irregular

alternation between cyclonic and anticyclonic phases). Such kind of dynamical features

are also encountered for several dynamical systems systems ranging from toy models

(Pomeau-Manneville map, Hénon map, Lorenz equations [14]) to intermediate complexity

models [15, 16]. The dynamics of all these systems is generally chaotic and takes place on

a single basin chaotic attractor, but is sometimes trapped near an unstable fixed point.

When this happens, an orbit stays in the vicinity of the fixed point for an amount of time

which depends on the distance from the point and its dynamical properties. As a result,

the system experiences a local suppression of chaos.

We propose to detect the existence of unstable fixed points in the mid-latitude atmospheric

circulations by using recent results obtained for recurrences of dynamical systems [17–20].

These results have opened a new branch of research where recurrences of a certain

observation in an orbit are treated via the statistics of extreme events. The novelty of this

approach lies in the fact that classical extreme value laws can be found for such recurrences

for almost every point of chaotic attractors [17]. In [21] we have exploited this technique

to study instrumental temperature records, verifying that temperature recurrences obey

ones of the three classical extreme values, i.e. the atmosphere behaves as a chaotic system.

Via this analysis, a map can be constructed of European temperatures whose recurrence is

likely or unlikely with respect to a certain time scale of interest.
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In order to detect the possible unstable fixed points of the atmospheric dynamics, we

will analyze several blocking indices. In general, a blocking index is defined in terms

of the difference of pressure (or conjugated fields) between two different locations at

the same longitude. When the flow is zonal, this difference always has the same sign

because anticyclones are generally located at lower latitudes. Conversely, when the flow

is blocked, low pressure systems tend to move to low latitudes and anticyclones to high

latitudes, reversing the meridional gradient in pressure. A blocking event is identified as

the persistence of such conditions for several days.

We will begin our analysis with the Tibaldi-Molteni index [22], defined at each longitude

via differences of geopotential heights, and compare the results with those obtained for the

bidimensional blocking index introduced by Pelly et al [23], where differences are taken over

a potential vorticity surface closer to the tropopause and to the core of the jet stream. After

collecting evidence for the existence of unstable fixed points and their spatial distribution,

we will perform the analysis on one-dimensional indices of atmospheric circulation to see

whether they keep any trace of the existence of unstable fixed points. In particular, we

will focus on the Artic Oscillation (AO) index, which is roughly a global average of the

Tibaldi-Molteni index, and on the North Atlantic Oscillation (NAO) index, defined as the

difference between the pressure in Lisbon and Reykjavik — and therefore representative of

the North-Atlantic/European regions only.

The paper is organized as follows: in section 2, we give an overview of the method and

explain the analogy between unstable fixed points and blocked circulation via dynamical

systems toy models. In section 3, we present evidence for the existence of unstable fixed

points by using the Tibaldi-Molteni and the Pelly blocking indices. In section 4, we analyze

the role of one-dimensional indices, such as the AO and the NAO. The analysis will show

that, although the one-dimensional indices are used to highlight features of the mid-latitude

circulation, the local nature of the NAO makes it inadequate for global properties. Finally,

we discuss how to improve the modeling of the mid-latitudes circulation on the basis of the

results obtained.
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II. METHOD AND RESULTS FROM DYNAMICAL SYSTEMS

In this section we A) show how to detect unstable fixed points in dynamical systems and

time series, B) explain the inference procedures, and C) discuss the estimation of the

parameters describing the statistical properties of the unstable point.

A. Detection of unstable fixed points via dynamical systems techniques

Let us consider a discrete-time dynamical system. This is a relevant hypothesis for an

atmospheric system [24], as both models and observations are made at discrete times. The

dynamics is governed by the map T , which iterates the variables of the system x according

to

xt+1 = T (xt). (1)

We assume that, by starting from a random initial condition, the dynamics follows a chaotic

trajectory on a well-defined surface of the phase space, i.e. the attractor. We fix a point ζ

on the attractor and measure the time series of the distances between ζ and the subsequent

iterations of the orbit:

w(t; ζ) = − log(d(T (xt), ζ)),

where d is a distance function between two vectors. We are interested in the high extremes

of w(t; ζ), for all t. By construction, such extremes define the recurrences of the system. To

identify the extremes, we apply the block-maxima approach. It consists of dividing the time

series T (xt) into intervals of length m. Every m observations, the closest recurrence to the

point ζ is taken. If n intervals of length m are available in the series, one obtains n closest

recurrences. If the system is chaotic, the logarithmic weight forces the asymptotic extreme

value distribution to follow a Gumbel law. A detailed explanation for this can be found in

[21], but the reason is intuitive: the Gumbel law is of the form G(x) = exp(− exp(−x)).

One of the exponential functions comes from the exponential recurrence statistics, the other

from the inverse of the logarithm. Other choices for w, typically power laws, constrain the

asymptotic extreme distribution to be either a Weibull or a Fréchet.
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This theoretical framework applies to almost all the points of a chaotic attractor except

at the unstable fixed points. A fixed point of the system in Eq. (1) is one that repeats

itself under iteration, i.e. T (x) = x. An unstable or repelling fixed point is one for which

the distance between itself and any point in a surrounding neighborhood increases under

iterations [25]. A theoretical result from dynamical systems, obtained by [19], states that

when ζ is an unstable fixed point of the recurrence map T , then the distribution of w(t; ζ)

follows a modified Gumbel law:

G(x, θ) = exp(− exp(−θx)),

where θ is a parameter known as the extremal index.

The concept of the extremal index appears in classical extreme value theory, where θ gives

a measure of ‘clustering’, i.e. the tendency of random variables to exceed a threshold

consecutively. If a threshold u is applied to a series of observations x1, x2, . . . , xs, the

exceedances are those for which xi > u. Heuristically, the extremal index can then be

thought of as θ = 1/`, where ` is the mean duration of consecutive exceedances (clusters),

i.e. the average of the time intervals spent above u.

The extremal index also finds useful application in dynamical systems [19], where θ can

vary across the phase space according to the chosen ζ from which recurrences are measured.

Clustering occurs when consecutive iterates of the orbit are observed near a point of the

attractor. For almost all the nonsingular points there is no clustering. This means that, on

average, an orbit enters the neighborhood of ζ once at time, which gives θ = 1. However,

when ζ is close to an unstable fixed point, θ < 1. The smaller the θ, the larger the cluster

size, i.e. the longer the time the orbit stays in the vicinity of ζ. In the dynamical systems

context, the cluster extends in both time and space: we observe a time cluster in the

minimum distances between the unstable fixed point and the orbit. This in turn effectively

corresponds to a spatial cluster because the orbits are held within the vicinity of the

unstable fixed point.

As an example, we consider the Hénon attractor [26] shown in Fig.1–a), obtained by iterating
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the following set of equations:

xt+1 = yt + 1− 1.4x2t ,

yt+1 = 0.3xt.
(2)

In this picture, the presence of the unstable fixed point ζu is not obvious. Its existence can be

proved analytically by solving T (x, y) = (x, y), with approximate solution ζu = (0.63, 0.19),

as indicated in Fig.1-a). The dynamics around this point is different from that of a generic

point, and this can be captured by computing the recurrences. Figs.1b and .1c show distances

of iterates of the orbit measured from ζu and a generic point ζ of the attractor, respectively.

In the former case, a long cluster is clearly visible and its length can be determined via the

extremal index θ or by using the formula given in [19].
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FIG. 1: a) Hénon attractor, obtained by iterating Eq. (2). The location of the unstable fixed point

ζu is indicated. b) Series of distances from the unstable fixed point ζu. Clustering occurs when

the trajectory gets close to ζu. c) Series of distances from a generic point of the attractor ζ. No

clustering occurs.

Although the Hénon dynamics is not representative of the atmospheric circulation, it is

helpful to illustrate the general dynamical behavior around an unstable fixed point. In

chaotic dynamical systems we can only observe clustering at unstable fixed points (see [19] ,

Theorem 1), independently of the complexity of the system. If we consider the time series of
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observations as the output of a dynamical system, then we may hope to track the presence

of unstable fixed points by measuring θ < 1 for some reference values ζ.

B. Algorithm and inference of the extremal index

In order to compute the extremal index θ for time series we will use the following algorithmic

procedure:

1. Consider a time series consisting of s observations: {x(t) : t = 1, 2, ..., s} .

2. Fix ζ to be a point of the series itself.

3. Compute the series w(t; ζ) = − log(d(x(t), ζ)).

4. Take a very high quantile q of the w(t) distribution, in order to consider only the

closest recurrences (when d(x, ζ) is small, w(x, ζ) is large).

5. Compute the extremal index.

While θ can be thought of as the inverse mean cluster size, a more robust estimator of the

extremal index is that constructed by Süveges [27], which, for a fixed quantile q, reads:

θ =

∑
i(1− q)Si +N +Nc −

√(∑Nc

i (1− q)Si +N +Nc

)2
− 8Nc

∑Nc

i (1− q)Si

2
∑

i(1− q)Si

,

where N is the number of w(t, ζ) above the chosen quantile, Nc the number of observations

which form a cluster of at least two consecutive recurrences, and Si the length of each cluster

i.

C. Finite-size effects

In [28] we have discussed some of the problems related to the finiteness of datasets when

studying the recurrences around a certain value in a time series. The results θ = 1 at

generic points and θ < 1 at unstable fixed points hold only in the limit q → 1. When

dealing with finite data sets, the limit q → 1 is unattainable and, depending on the

marginal distribution, some points ζ may be associated with an extremal index θ < 1
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even when they are not unstable fixed points. To illustrate this effect, we analyse a time

series generated by an auto-regressive process of order 1, x(t) = φx(t − 1) + ε(t), where

|φ| < 1 is the magnitude of the auto-regressive coefficient and ε(t) is a random variable

drawn from a normal distribution. It is theoretically known that the extremes of this

process do not cluster in the limit q → 1, so that θ = 1 for all ζ and all φ. However, for

finite datasets and fixed q, clustering will be observed among the weakly (exponentially)

correlated exceedances all the while they have not exited from a window around ζ whose

size is a function of φ and the underlying marginal density. For larger φ and ζ chosen in

the wings of the marginal density, the greater the ‘finite-size’ clustering. In our numerical

experiment, we take φ = 0.5 and synthetic datasets of lengths 30000 (of the order of the

real time series we later analyse) and 300000. In Fig. 2 we plot the empirical marginal

densities in the left panel, and the computed θ as a function of ζ in the central panel. Note

that θ < 1 in the wings of the distribution, even though the model has no inherent tendency

to cluster extremes.

Our method to deal with such finite-size effects is based on the following observations: the

extremal index obtained for some fixed q < 1 depends on i) the shape of the marginal

density, ii) the spectral properties of the process (i.e. φ in our above example), iii) the

choice of ζ, since clustering is a local property.

We have tested i) and ii) by changing both the marginal and the magnitude of the coefficient

φ, which is directly linked to the spectrum for the process[29]. We can go further by

generating surrogates of the original dataset that have identical marginal distributions and,

to within a very low tolerance, the same spectral properties. In this way we can ‘subtract’

the effects of i) and ii) in the computation of θ. To perform this in practice, we use the

Iterative Amplitude Adjusted Fourier Transform (IAAFT) of Schreiber and Schmitz [30]. In

order to compute the residual extremal indices, which we will denote by θ∗(ζ), it is sufficient

to average over several surrogate estimates of θ, such that:

θ∗(ζ) = 〈θ(ζ, xSURR)〉 − θ(ζ, x), (3)

where the 〈〉 are averages over realizations of surrogate data. This procedure has been tested

on the auto-regressive samples previously analysed. The residual θ∗ is plotted in the right
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panel of Fig. 2. As expected from theory, there is no local clustering.
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FIG. 2: Left panel: empirical density for data generated by an autoregressive process. Central

panel: extremal indices θ computed at 100 reference points ζ. Right panel: residual extremal

index θ∗ computed at the same ζ as in the central panel. Sample 1 contains 30000 data. Sample

2 contains 300000 data.

An analysis of the Hénon attractor provides a test of property iii). Here, we can check

whether we are able to recover the known location of the unstable fixed point via a com-

putation of θ∗ for the time series of x and y. Results are shown in Figure 3 for 30000

observations. The location of ζu is picked out by the two peaks of θ∗ at x = 0.63 (left panel)

and y = 0.19 (right panel). Secondary peaks are also visible in these plots, which are related

to the influence of ζu in nearby locations of the attractor.
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FIG. 3: Residual extremal index θ∗, based on 30000 iterations of the Hénon map. Left panel: x

observable. Right panel: y observable.
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III. ANALYSIS OF MULTIDIMENSIONAL BLOCKING INDICES

In the following analysis we generate 100 surrogates to compute 〈θ(ζ, xSURR)〉, and take

q = 0.995. We find that our results are robust with respect to quantile provided q & 0.99.

The first bidimensional blocking index was introduced by Scherrer et al. [31] and it is based

on the original definition given by Tibaldi and Molteni [22, 32]. This index determines

the longitudinal asymmetry of the atmospheric flow between 40◦N and 80◦N, by comparing

meridional gradients of geopotential height at 500hPa (Z). For each longitude in the north-

ern extra-tropics, a southern gradient BS and a northern gradient BN of Z are computed as

follows:

BS =
Z(φo)− Z(φS)

φo − φs

BN =
Z(φn)− Z(φ0)

φn − φs

where φn = 80◦ + δ, φ0 = 60◦ + δ, φs = 40◦ + δ, δ = −5◦, 0◦, 5◦. A given longitude is

considered to be blocked at a given time if the following two conditions are satisfied for at

least one value of δ:

(1): BS > 0, (2): BN < −10 m/degree

Here, we analyze daily time series of BS(t) computed for the Z field of the National Centers

for Environmental Prediction (NCEP) daily reanalysis [Kalnay et al., BAMS, 1996], which

represent the strength of the Tibaldi-Molteni blocking index, under the condition that BS >

0 and BN < −10. Blocking events mainly occur around 180◦ (in the Pacific) and at 0◦ (in

the Eastern North Atlantic) longitude [33]. For our analysis, positive values of BS(t) also

satisfying condition (2) are considered. The values of θ∗ plotted in Figure 4 are computed

using the technique described in the previous section, with 100 reference points of ζ = BS.

Some areas attain remarkably negative values of θ∗ and, over all, the average extremal

index is negative at all longitudes (lower panel of Figure 4). Therefore, for these areas

the dynamics of blocking is compatible with the existence of unstable fixed points. It is

quite surprising to observe that at 0◦ longitude θ∗ is close to zero, implying no clustering.

Although the European region is affected by strong blocking events, the clustering of B
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a)

b)

FIG. 4: a): Extremal indices θ∗ (color scale) as a function of longitude and the Tibaldi-Molteni

blocking index BS(t). b): extremal index averaged over all BS vs longitude. Negative values

indicate the presence of unstable fixed points.

does not appear to be a robust feature. Although this simple analysis shows that unstable

fixed points may be present in the blocked circulation, it does not reveal whether they can

be found for the zonal flow as well, contrary to our initial hypothesis. We will investigate

in a further study whether such specificity is associated with a lack of predictability of the

blocking dynamics for this region.

In order to have a detailed geographical description of the local clustering features, we will

consider the local blocking index introduced by Pelly et al. in [23] and [34]. This blocking

index B is a macroscopic measure of the strength of the meridional gradient of potential

temperature on the isopotential vorticity surface with value 2 PVU (also called the PV2

surface; 1 PVU [ 1 × 10−6 K m2 kg−1 s−1]. This surface corresponds approximately to the

tropopause, as described in [35]. B is computed every 5◦ of longitude as the difference of

the average of potential temperature for regions 15◦ of latitude. Whenever B takes positive

values, it is referred to as local instantaneous blocking. Negative values of B correspond

instead to the westerlies mid-latitude circulation associated with the zonal flow. The more
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negative B, the stronger such a circulation.

We computed θ∗ at each grid point for 100 values of ζ, uniformly spaced between min(B)

and max(B). We then averaged θ∗ for two B intervals corresponding respectively to blocked

regimes B > 0 and zonal flows B < 0, as shown in the left and right panels of Figure 5.

Note also that only grid points with sufficient statistics to obtain reliable values of θ∗ have

been considered. We first investigate the difference between positive and negative B. For

B < 0 (blocked flows), θ∗ 6= 0 appears almost everywhere. Strong geographical differences

appear in the distribution of θ∗: negative θ∗ are concentrated at higher latitudes, especially

at polar latitudes over Canada where θ∗ ' −0.15. Interestingly, the dynamics over this

region has been recognized also by [11] as a driver of the development of blocking structures.

In the same paper, it has been argued that the precursor of transitions to the blocked

circulation can be found by considering the weather evolution over this region. Other

areas show instead positive values of θ∗. Such regions include the southern Mediterranean

area, Japan and the mid-latitude Pacific Ocean. In these regions the tendency is rather to

disrupt blocking structures.

We can compare the longitudinal averages of B reported in Figure 6 with the Tibaldi-Molteni

index (Figure 4). We can also analyse the negative values of the Tibaldi-Molteni index B

associated with the zonal circulation, which show no or weak clustering. B attains maxima

around 50◦ W and 100◦ E. The magnitude is different due to the longitudinal averaging

performed on B. Overall, the two blocking indices are consistent. This indicates that our

results are robust. Moreover, as illustrated by the behavior of low-dimensional dynamical

systems, the presence of unstable fixed points is associated with the blocked regime only.

The dominant zonal regime seems to correspond to the generic points of a chaotic attractor,

for which no special clustering structure occurs.

IV. ANALYSIS OF NAO AND AO ATMOSPHERIC INDICES

Although local indices provide comprehensive geographical information about the atmo-

spheric circulation, one-dimensional indicators have been extensively used to characterize

and forecast specific phenomena (see [36] and references therein).

14



 18
0
o W

 
 1

20
o W

 

  60 o
W

 

   0o  

  6
0

o E 

 120
oE

 

  3
0

o N 
  4

0
o N 

  5
0

o N 
  6

0
o N 

  7
0

o N 

 

 

−0.1 −0.05 0 0.05 0.1

 18
0
o W

 

 1
20

o W
 

  60 o
W

 

   0o  

  6
0

o E 

 120
oE

 

  3
0

o N 
  4

0
o N 

  5
0

o N 
  6

0
o N 

  7
0

o N 

 

 

−0.1 −0.05 0 0.05 0.1
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flow regimes. Right panel: θ∗ averaged over B < 0 values corresponding to the zonal flow regime.

See text for descriptions.

Over Europe, the transition between zonal and blocked atmospheric dynamics has been

historically associated to the so-called North Atlantic Oscillation (NAO) index, defined as

the difference in pressure between Lisbon and Reykjavik [37]. The positive phase of the NAO

reflects below-normal heights and pressure across the high latitudes of the North Atlantic

and above-normal heights and pressure over the central North Atlantic, the eastern United

States and western Europe. The negative phase reflects an opposite pattern of height and

pressure anomalies over these regions [38].

The Arctic Oscillation index (AO) is more representative of the blocking dynamics over the

entire northern hemisphere: it is constructed by projecting the daily (00Z) 1000mb height

anomalies pole-ward of 20◦N onto the leading mode of the Empirical Orthogonal Function

(EOF) analysis of monthly mean 1000mb height during the years 1979-2000 [39]. Hence,

the AO index behaves like a zonal average of the Tibaldi-Molteni index. In the negative
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phase, the polar low pressure system (also known as the polar vortex) over the Arctic is

weaker, which results in weaker zonal flow. When the AO is positive the polar circulation is

stronger and forces cold air and storms to remain farther north. The NAO and AO indices

exhibit considerable inter-seasonal and inter-annual variability, and prolonged periods of

both positive and negative phases of the pattern are not rare [39]. The daily NAO and AO

data used in this paper are maintained by the US Climate Prediction Center [40].

With the analysis of a one-dimensional index, we can explore the link between complex

atmospheric dynamics and simple one-dimensional observables. A priori, there is no reason

why the two indices should provide the same information. The AO is a global average, the

NAO a local observable. While they are both one-dimensional time series, we will keep in

mind their substantially different origin.

We start by analysing the time series and the histograms shown in Fig. 7. The distributions

of both NAO and AO are unimodal and peaked around zero, roughly similar to a Gaussian.

the indices seem to spend most of their time around zero values with noisy fluctuations

superimposed. A thirty-day moving average filter (green curves) reproduces a unimodal

histogram, and there is no evidence that the time series oscillates between two states. It is
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therefore hard to recognize in the data any trace of bistability or multistability.
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FIG. 7: NAO and AO daily time series (left panels) and their empirical density functions (right

panels). Blue: original dataset, green: moving average filter over a 30 day window.

Even if we look at single episodes, a dynamical structure compatible with the existence of

an unstable fixed point remains unclear: let us consider two typical examples of negative

NAO and AO phases (upper and central panel of Fig. 8) and one positive phase (lower

panels of Fig. 8) recorded respectively for September 2002, December 2010 and January

1988. As pointed out in the introduction, summer 2002 was characterised by a remarkable

negative record of Arctic sea ice extent. For this event, the negative phases of NAO and

AO seem to be comparable with the dynamics of the Hénon attractor around the fixed

point ζu (Fig. 1b)), but the duration and intensity of the negative phases are different. In

December 2010, Europe experienced a severe cold spell with extensive transport disruptions

for several days. Although the NAO and the AO indices settle to negative values, the NAO

oscillates over several values resembling that of a chaotic variable, whereas the AO seems to

cluster for consecutive days around values of −4 and −2. For January 1988, the behavior

of the indices look much more chaotic with oscillations associated with the mean lifetime

of baroclinic structures (a few days). This latter regime can be compared to Fig.1c), i.e.

with a typical point of the Hénon attractor. The contradicting results obtained for single

episodes imply that the existence of an unstable fixed point must be assessed statistically
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via the computation of θ∗.
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FIG. 8: NAO (left) and AO (right) daily time series for some specific events. Upper panels:

September 2002. Central panels: December 2010. Lower panels: January 1988

After applying the procedure described in Section 2-B, we obtain, for each value of the

NAO and AO, the residual extreme value index θ∗, as shown in Fig. 9. We recall that for

NAO and AO values around zero there is no additional clustering, i.e. no unstable fixed

points can be detected. The behavior of the two indices is indeed different. θ∗ is negative

for negative AO, following the core hypothesis of this paper that blocked circulation can be

associated with the existence of unstable fixed points. In contrast, θ∗ is positive for positive

NAO.

There is no reason why the two indices should follow the same behavior. Features of the
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NAO are compatible with that observed for the Tibaldi-Molteni and the Pelly index around

0◦ longitude, where the blocked flow was not associated with negative θ∗. The disruption

of clusters for positive NAO corresponding to zonal flow is compatible with the presence of

complex geography, which tends to destroy the typical time scales of baroclinic instability

(1.5 to 3 days). It is encouraging that one can find the trace of the existence of unstable

fixed points for the AO index, i.e., that the global average does not erase the clustering

properties found for B and BS. This analysis indeed suggests that the AO is more sensitive

to blocking phenomena than the NAO. We thus can account for the empirical observation

of [41].
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FIG. 9: Residual extremal index θ∗ for the NAO index (left) and the AO index (right). Error bars

represent a standard deviation of the mean taken over the ensemble of 100 surrogates.

V. CONCLUSION AND DISCUSSION

In this paper, we have adapted the concept of the extremal index, as applied in dynamical

systems, to the analysis of atmospheric indices which describe the switching between

zonal flow to blocked flow in the atmospheric mid-latitude circulation. We have presented

evidence that the switching between atmospheric and blocked circulation can be associated

with the existence of an unstable (saddle) fixed point of the atmospheric dynamics. The

novelty of this approach lies in the use of observations, rather than intermediate complexity

models or GCM. Our results appear to be robust across blocking indices, and are consistent

with mid-latitude circulation mechanisms and local geography.
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Another remarkable result is that such information is preserved in the AO time series, which

is a global average of the Tibaldi-Molteni index. On the other hand, it warns against the

use of local indices, such as the NAO time series, outside areas where they have been defined.

This paper has illustrated a novel approach to statistical and dynamical modeling: in [12] the

properties of blocking indices have been widely investigated and compared to the statistics of

stationary red noise process. The authors argued that the statistical model was not sufficient

to describe the characteristics of blocking and claimed that the persistence beyond that

given by a red noise model is due to the self-sustaining nature of the blocking phenomenon.

Here, we have shed light on this self-sustaining nature: When the circulation settles in

a blocked regime, the presence of unstable fixed points gives rise to the persistence (the

self-sustaining nature) of quasi-stationary conditions. In order to improve the statistical

modeling of blocking phenomena, one has to account for local clustering effects in statistical

models, which is a non-trivial challenge.
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