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ABSTRACT 

In this study is investigated the effect of geometrical or thermal discontinuities on the growth of water droplets 

condensing on a cooled substrate. Edges, corners, cooled/non cooled boundaries can have a strong effect on the 

vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where 

droplets have to compete to catch vapor, which results in a linear water concentration profile directed 

perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in 

faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of 

mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be 

canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.  

 

I. INTRODUCTION 

 

Everybody has observed, in a room supersaturated with water vapor, the runoff of water drops condensing on 

windows. A more careful observation shows that the drops start to flow mostly from the edges of the window. 

Drops, which are pinned by their contact line on the substrate, detach from an inclined surface when their diameter 

exceeds a critical size that depends on the inclination angle [1]. The fact that droplets detach sooner from the edge is 

thus due to their larger size when compared with the other “bulk” droplets. This phenomenon is quite interesting for 

droplet collection since the top drops can wipe out the entire surface when sliding down.  

The reasons of this difference in droplet evolution can be found in the discontinuities of the substrate which 

modify the water vapor gradient around drops, causing enhancement or reduction of their growth rate. These 

discontinuities can be either geometric (edge of the substrate, bump, cavity, etc.) or thermal (differences in substrate 

cooling properties). To our knowledge, no such effects have been reported so far, although drop detachment due to 

enhanced growth by directed coalescence under wettability gradient has already been observed [2]. It is thus the 

object of the present study to evaluate the effect of substrate discontinuities on dropwise condensation, the 

discontinuities being either of geometrical or thermal nature. 

 

II. GROWTH OF A DROPLET PATTERN  

 

A. General 

Dew, also called “Breath Figures” (BF) in the laboratory, is the condensation of water vapor on a substrate. The 

preliminary research on BFs dates back to the years from 1893 to 1922 [3-5]. Fundamental laws of nucleation and 

growth of BFs were identified later [6-7] and well-characterized regimes were evidenced. The substrate on which 

condensation takes place is assumed to be maintained at constant temperature. In this study water drops exhibit 

contact angles θ around 90° with all the investigated substrates of this study, with one exception. Unless specified, 

we will thus assume in the following that droplets are hemispherical. Four different stages of growth can be 

identified. (i) Droplets nucleate. (ii) Droplets grow with rare coalescences corresponding to low surface coverage. 
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The radius, R, of the droplet spherical cap varies with time, t, according to a power law 𝑅~𝑡!. The exponent value 

depends on the relative values of droplet inter-distance <d>, defined as the mean distance between two neighboring 

drops centers, compared to the water concentration boundary layer, ζ. The latter measures the extension of the water 

vapor concentration profile around the droplets. After nucleation, in stage (ii), drops are far apart from each other. It 

corresponds to <d> > ζ where drops grow independently in a hemispherical profile centered on each drop, resulting 

in α =1/2. Later on, drop surface coverage increases and drop inter-distance decreases until <d> < ζ. The 

concentration profiles overlap, the mean profile is directed perpendicularly to the substrate and α =1/3 (a full 

discussion is given below). (iii) Then droplets touch each other and coalesce, leading to a constant surface coverage 

and a self-similar growth behavior. The concentration profiles still overlap with the mean profile directed 

perpendicularly to the substrate and α =1/3 for each individual drop. The mean radius of the droplet pattern grows as 

< 𝑅 > ~𝑡! with γ = 3α. The surface coverage, 𝜀!, being constant at this stage, implies that < 𝑑 > scales with 

< 𝑅 > . For instance, hemispherical droplets on a square lattice show a surface coverage 𝜀! = 𝜋 !!!!
!!!!

 ≈ 0.55. Then 

at some time, < 𝑑 > > ζ  and nucleation of new droplets can occur between neighboring drops. This is stage (iv). 

The new droplets which have nucleated then follow the same growth law behavior as described earlier. Further on 

(stage v), gravity effects become important. The influence of gravity can be measured by comparing the drop radius 

to the water capillary length 𝑙! =
!
!∆!

 (≈ 2.7 mm with σ ≈ 73 mN.m-1 the water-air surface tension, g ≈ 9.81 m.s-2 

the earth acceleration constant and ∆𝜌 = ρw - ρa ≈ 1000 kg.m-3 the air-water density difference). Drops on an inclined 

substrate slide down when their weight becomes larger than their capillary pinning forces. 

Let us now consider the details of the growth of a droplet when its temperature, Ts, is maintained constant in a 

humid air at given temperature Ta and vapor pressure p∞. A sessile drop (contact angle θ) grows by incorporation of 

the diffusing water vapor molecules (monomers) around it. The concentration of monomers, c(r, t), counted in mass 

per volume, obeys the following equation (r is the distance to the drop center):  

 
!"
!"
+ ∇. 𝚥 = 0 ,      (1) 

 

where  

𝚥 = −𝐷∇𝑐 ,      (2) 

 

is the diffusive flux of monomers (mass per unit surface and unit time) with D the diffusion coefficient of the 

monomers in air.  

The problem governed by Eqs. (1–2) is a Stefan problem with a moving boundary at r = R(t). Analytical solutions 

are rare. For the present problem one assumes a growth slow enough such that the time dependence of c can be 

neglected in Eq. (1) (quasi-static approximation). Thus Eqs. (1) and (2) reduce to the Laplace equation: 

 

∆𝑐 = 0  .       (3) 
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Its solution has to fulfill the following boundary conditions: (i) c(r = R) = cs, corresponding to the water saturation 

pressure at the drop temperature, ps, and (ii) c(r → ∞) = c∞, corresponding to the water pressure at air temperature, 

p∞. Practically, c∞ (p∞), resp., represents the monomer concentration (water pressure) resp., at the border of the 

concentration boundary layer, ζ. It is then assumed that the transport of water molecules towards the droplet surface 

occurs by molecular diffusion only, i.e. the convective transport is negligible. This will be discussed in section IV-E.  

The above assumption (i) implies that droplets are isothermal. This can be ensured for the smallest drops where 

heat transfer occurs on a small (µm) lengthscale. For larger drops, Marangoni thermocapillary convection provides 

fast heat transfer to make droplets isothermal [8]. Such convective flows have been observed. They provide efficient 

heat transfer from the drop surface to the condensing substrate and validate an isothermal drop. 

Once the concentration of monomers is known, the drop volume evolution can be obtained following the growth 

equation:  

 

 !"
!"
= !

!!
𝚥 𝑟 = 𝑅 . 𝑛  𝑑𝑆       = !

!!
𝐷 −∇𝑐

!
. 𝑛𝑑𝑆!!  .   (4) 

 

Here 𝚥 𝑟 = 𝑅   is the flux of monomers at the drop surface, 𝑛  is the unit vector locally normal to the drop surface, 

V=π f(θ)R3 is the drop volume with 𝑓 𝜃 = !!!!"#$!!"#$!

!!"#$!
 and S is the surface of drop/air interface.  

Depending whether one deals with a single drop or a droplet pattern, the drop evolution is different. In the 

following we address these two kinds of growths.  

 

B. Single drop growth 

For a single sessile drop on a surface kept at constant temperature, a simple way to solve the problem is to assume 

an inverse process to evaporation [9-10]. It is implicitly assumed that the probability of incorporating the monomers 

is uniform on the drop surface, which means that the latent heat of condensation is uniformly removed.  

In a 3D space and for a hemispherical drop (Fig. 1a), Eq. (3) has a hyperbolic solution: 

 

𝑐   =    𝑐!   −    𝑐!   −   𝑐!
!
!
 .      (5)  

 

The following growth law can then be derived from Eq.  4: 

 

  𝜌!𝑅!
!"
!"
=   𝑅!𝐷 !!  !  !!

!
 .     (6) 

 

The integration of this equation gives the classical evolution  

 

 𝑅 = (𝐴𝑡)
!
!  ,     (7) 
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with 𝐴 = 2 ! !!!!!
!!

 (in m2.s-1) . 

This growth law corresponds to an isolated drop or to a drop in a pattern whose water vapor profile does not 

overlap with the other drops. The latter case occurs when the inter-droplet distance <d> >> ζ. 

 

C. Individual drop growth in a pattern 

Let us consider now an array of drops separated by the mean distance < 𝑑 >  on order or lower than ζ (Fig. 1b). 

This situation corresponds to the end of stage (ii) or stage (iii) between the coalescence events. The individual water 

vapor concentration profiles merge in a profile parallel to the substrate. The drop pattern can thus be treated as a 

homogeneous film with average thickness ℎ = !!
!!
= !!

!!!!
 [6-10]. Here 𝑉!   = 𝑉! = 𝜋𝑓(𝜃) 𝑅!! is the total 

condensed volume and 𝑆!   is the surface area of the condensation substrate. Each individual drop (i) with volume Vi 

= πf(θ )𝑅!! is assumed to grow like a thin film, where the vapor concentration profile depends only on the normal to 

the substrate (z axis). Eq. 4 gives a linear variation for the water vapor profile. The boundary conditions are cs = 

c(z=h) and c∞ = c(z=h+ζ), where ζ  is the concentration boundary layer. (A discussion about its calculation and how 

its value impacts the calculation of the drop growth rate is given below in section IV-E). One thus finds: 

 

𝑐   =    𝑐! +    𝑐!   −   𝑐!
!!!
!

 .     (8) 

It follows: 

h=Bt,      (9) 

 

with 𝐵 =   ! !!!!!
!!!

  (in m.s-1). 

This implies that Vi is proportional to h , and hence, to t. Finally, Ri is proportional to tβ, with β=1/3. 

 

D. Drop pattern evolution with coalescence 

In the self-similar growth stage (iii) drops touch each other and coalesce, which leads to an acceleration of the 

drop pattern evolution. When accounting for such coalescence events, the mean radius evolution of the droplet 

pattern is rescaled from the individual drop growth Eq. (9) as 

  

 𝑅!   =   𝐵!𝑡! ,     (10) 

with [6] 

𝛾   = 𝛽 !!
!!!!!

 .       (11) 

 

Here 𝐷!   (𝐷!) are the drop (substrate) dimensionalities. For 3D droplets growing on a 2D substrate, 𝛾   = 3𝛽 = 1. 

For 3D droplets growing on a line, 𝛾   = !
!
𝛽 = 1/2 [11].  

In this growth stage where the drop surface coverage is constant, one notes the relation of proportionality between 

the mean radius of the drop pattern, <R>, and VT. Let us consider the definition of the drop surface coverage 
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𝜀! = !!
!!
= ! !!

!

!!
 .      (12) 

 

Here 𝑆!   = 𝜋 𝑅! is the surface area covered by drops. By expressing the mean drop radius in terms of third and 

second moments, < 𝑅 >= !!
!

!!
!,  one gets  

< 𝑅 >= !
!!!(!)

!!
!!
= !

!!!(!)
ℎ .   (13) 

 

From Eq. (9), one obtains: 

  < 𝑅 >  = 𝑘𝑡,      (14) 

with 

 

 𝑘 = !
!!!(!)

! !!  !  !!
!!!

 .     (15) 

 

An evaluation of ζ is given below in section IV-E. It can be used to evaluate k. It is worthy to note that the quantity 
𝑐!   −   𝑐! /  𝜁 represents the mean water vapor concentration gradient on a drop according to Eq. (4). Eq. (15) can 

thus be alternatively written as (S is the drop/air interface) 

 

𝑘 = !
!!!(!)!!

!
!

−∇𝑐
!
. 𝑛𝑑𝑆! .    (16) 

 

In [12] the relation ε2 ≈ 1− θ (deg.)/200 was found between the drop surface coverage and contact angle θ . This 

relation stems from the drop coalescence process. When two drops coalesce, the new composite drop exhibits a 

contact angle, θ, lower than the receding angle, θR . It results a force ∼σ (cosθ - cosθR) that moves the contact line 

against the pinning forces. This force decreases as the contact angle diminishes. Then the contact line remains 

pinned at some places. It results an increase in drop surface coverage when compared to the case where the contact 

line moves freely. It thus follows from this relation that the mean droplet radius of the pattern grows linearly with 

time with a prefactor that depends only on the water vapor supersaturation Δ𝑐 = 𝑐!  −  𝑐!, the concentration 

boundary layer thickness 𝜁 and the vapor in air diffusion constant D. One notes that this growth law remains valid as 

long as the film approximation remains valid, that is, the individual concentration profiles of drops overlap. It is thus 

also valid for droplets growing on a 1D, linear substrate and corners.  

 

E. Effects of discontinuities 

All the above growth laws are concerned with a uniform substrate corresponding to a semi-infinite medium and 

drop interfaces maintained at constant temperature thanks to a thermal connection to a thermostat. The latter 

corresponds to a heat conductive substrate where the latent heat flux coming from condensation can be continuously 

sent to the thermostat. Growth is then not limited by the heat flux in the substrate. This is generally true when the 
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substrate is made of a conductive metal in contact with a thermostat, bare or coated with a thin sheet of low 

conductive materials (polymers). It is not the case when the heat flux limits condensation, e.g. for substrates made of 

a thick isolating materials or a thin foil not or weakly connected to the thermostat. The growth of natural dew, where 

the substrate cooling is a balance between surface radiative cooling and air heating, is a more complex case where 

mass diffusion and thermal diffusion compete. We will thus not consider here this situation. 

In this aspect, two types of boundaries can be considered: (i) geometric discontinuity without cooling heat flux 

limitation as e.g. the boundaries of the condensation substrates and (ii) thermal discontinuities as e.g. the border 

between a conductive and nonconductive support. (Discontinuities in contact angles are not considered here). Both 

geometrical and thermal discontinuities have in common a modification of the water concentration profile and thus 

of the droplet evolution near the border. One can already anticipate that thermal discontinuities and geometrical 

discontinuities at outer edges will speed up the growth because more water vapor can be collected at the border, 

whereas geometrical discontinuities at inner edges, where less water vapor is collected, will lower the droplet 

growth. 

A quantification of the effect of borders on drop evolution needs to consider several factors. One notices that 

drops near discontinuities always undergo coalescence with the neighboring drops that grow on the same plane. As 

the advancing contact angles are less than 98° (Table 1), there are no coalescences between orthogonal planes.  

Let us first consider the drops near a linear edge. Such drops can coalesce with the other drops sitting in a half-

plane. The edge drops can thus be considered as particular drops of the same plane but with a vapor concentration 

profile that is now two-dimensional. Observation (Figs. 2-3) shows that the corresponding drop pattern exhibits the 

features of scaling during growth: uniform radius, drop inter-distance on the order of the radius. Such scaling can be 

verified by the constancy of the drop surface coverage 𝜀! = ! !!!
!!

 during drop pattern evolution. The summation is 

made on the edge condensing surface, SE. The latter is not constant during evolution. Its determination can be 

performed by making use of а method based on Voronoi polygons or Dirichlet tessellation [13]. Such а polygon is 

the smallest convex polygon surrounding а drop whose sides are the bisectors of the lines between the drops and its 

neighbors. The edge surface can thus be considered as the total surface of the Voronoi polygons of the edge drops 

(Fig. 4c).  

Note that a good approximation of the ε2 calculation can be obtained from the evaluation of the line surface 

coverage of the edge drops, 𝜖! = ! !!
!

. The summation is made along the edge of length L removing the two corner 

drops. The edge surface can then be considered as a band of length L and constant width w, corresponding to the 

mean extent of the Voronoi polygons perpendicular to the edge. From the Voronoi construction, w=α<R>, with α a 

proportionality constant on order two. One thus obtains ST∼L<R> and 𝜖! = ! !!!
∝!!!!

. Making use of the evaluation 

< 𝑅 >= !!!
!!

, one readily obtains 𝜖! = !
!!

𝜖!. Results are reported in Fig. 4a for substrate P1 and Fig. 4b for 

substrate P2. Constant surface coverage is found for the edge zone with both ε2 (= 0.56 ± 0.02 for P1) and ε1 (= 0.78 

± 0.01 for P1 and 0.71 ± 0.01 for P2). From the ratio ε2/ ε1 one determines α = 2.1 ± 0.1, the expected value.  

One then notes that the mean radius can also be written as 
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 < 𝑅 >= !!!
!!!

 .       (17) 

 

The vapor concentration profiles of the edge drops overlap, then the assumption of equivalent film holds and 

𝑅!~𝑉!,!~𝑡! , with VT,E the condensed volume near the edge. One thus eventually gets the growth law <R> = kE t, 

similar to Eq. (14), however with a different prefactor kE corresponding to a different mean vapor profile on the 

drops. In the equivalent film approximation, one has two perpendicular linear profiles, one directed perpendicular to 

the condensing plane, the other perpendicular to it.  

Note that growth near a linear edge is different from 1-D growth (as e.g. drops growing on a very thin thread) 

where line coverage ε1 is constant or 𝑅 = constant. In this case Eq. (13) can be rewritten as < 𝑅 >= !!

!!
=

!!

!
!
!!

. The first term is proportional to the condensed volume VT ∼t and the second is 1/<R>, giving <R>∼t1/2. 

Let us now consider the case where the edge is a corner. This case is not so much different from the linear edge 

case, although there is only one drop growing at a corner. The corner drop can be considered as a particular drop of 

a linear edge with a vapor concentration profile that is now three-dimensional.  This drop undergoes coalescence 

with other drops from two different edges and drops from the plane (see Fig. 2), leading to constant surface coverage 

(= 0.62 ± 0.02, see Fig. 4a). Then the film approximation holds and growth still follows Eq. (14).  

The estimation of the gradient near the edge depends on the particular edge geometry and needs to solve the 

Laplace equation, Eq. (3). A theoretical estimation is out of the scope of the present study. The solution for a 2D 

arrangement will be performed numerically in the next section V. In order to highlight the vapor pressure 

dependence of the gradient, one defines a new mean boundary layer thickness, 𝜁!, such as (Eq. (4)), 
!
!

∇𝑐
!
. 𝑛𝑑𝑆! = !!  !  !!

!!
 (S is the drop-air interface). Equations (14-15) can thus still hold for a droplet pattern near 

a discontinuity, with a new factor 𝑘!: 

 

𝑘! =
!

!!!(!)
! !!  !  !!
!!!!

 .     (18) 

 

This factor is different according to the type of discontinuities.  

 

III. MATERIALS AND METHODS  

  

Condensation experiments are performed on a cooled horizontal substrate in order to get rid of the droplets 

detachment and sliding along the substrate. The study is limited to drops size lower or on the same order than the 

water capillary length . It corresponds to having negligible gravity effects on the shape of the drop.  

 

A. Condensation chambers and observation set up  

Two different test chambers and optics are used, depending on the length scale investigated.  

c
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Experiment type 1. For small droplet size (range 5-100 µm), the growth process is observed from above with a 

high resolution CCD color camera PixeLink (PL B776F) connected to a computer. This camera is equipped with a 

Pentax Megapixel lens with a 6 mm focus length to get a ×8 magnification at 5 cm from the substrate (30 px/mm). 

The latter is put on an electrolytic copper block cooled by a Peltier element. The thermal contact is ensured either by 

a small layer of water or by thermal grease (a silicone-free heat sink compound). Dew condenses from the room 

ambient air whose temperature Ta and air relative humidity RH is constant during the experiment time within ± 0.5 

°C and 3%, respectively. The temperature of the substrate is measured by a thermocouple taped on it.  

Experiment type 2. For larger droplets (typical range 0.1-5 mm), the above arrangement is enclosed in a large 

Plexiglas chamber, where air temperature and RH is maintained constant. The same optical system as for experiment 

type 1 is used, however the distance between the substrate and the lens is larger (14 cm) giving a magnification of 

42 px/mm. The substrate holder is a 2 mm thick stainless square steel plate of 173.2 x 173.2 mm size, screwed with 

thermal grease on a electrolytic copper plate of same size in contact with a Peltier element thermostat. The hot side 

of the latter is cooled by a fan directed on a water basin, which ensures large and stable air humidity ( RH >76%) 

and temperature. Air and surface temperatures together with humidity data are recorded by a data logger (Testo 454) 

coupled to a computer. 

Although the characteristics of humid air can be monitored, it is not possible to control in each experiment the 

exact conditions of air flows around the substrate. To get rid of this uncertainty, the evolution of droplet radius at the 

substrate boundaries will be rescaled by the corresponding droplet radius evolution in the central part of the 

substrate. Both evolutions are expected to be linear according to section II-E.  
The images are analyzed with an image analysis software (ImageJ) to obtain the mean surface of the droplets in a 

given image area. The radius is that of a spherical cap seen from above. The uncertainties in the drop radius 

measurements correspond to (i) optical resolution, from 0.4% for large (mm) drops to 4% for the smaller (0.1 mm) 

drops, (ii) number of drops for calculating the average, which gives smaller uncertainties for small drops than with 

large drops, (iii) irregularities of air convection. The uncertainties (i) and (ii) compensate to give an overall 

uncertainty of about 4%, whereas the uncertainty (iii) is difficult to estimate. We decided to report in the figures the 

error bars corresponding only to the uncertainty of measurements (4%). In the fitting procedure, we report the 

statistical uncertainty corresponding to two standard deviations (95% confidence). In total, 37 sets of experiments 

have been performed. The reproducibility is on order of 10% when droplet evolution at the boundaries is rescaled by 

the corresponding evolution in the center of the substrate (see section IV and Table 2).  

 

B. Condensation substrates  

Different substrates are used to evidence various types of discontinuities.  

Experiments type1: (a) A brass rectangular parallelepiped (P1 substrate, Fig.2a) of 17.5 mm height, top surface of 

15.1 mm x 10 mm is covered by an adhesive grey foil of polyvinyl chloride (PVC) with 0.14 mm thickness. This 

sample provides a geometrical discontinuity of corner and linear edge type. (b) Two aluminum alloy (duralumin) 

massive triangles (P2 substrate, Fig. 2b), separated by a gap, forming a diamond, are covered by an adhesive brown 

foil of polypropylene (PP) with 0.02 mm thickness. In addition to geometrical discontinuities, two thermal 

discontinuities are present along the gap between the triangles where the foil cannot be cooled.  
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Experiments type 2: Geometrical discontinuities are realized in different type of materials with different wetting 
and thermal properties. (i) A square duralumin plate (G1 substrate, Fig. 3a), 2 mm thickness and 173.2 mm side 

(same size as the substrate holder) provides different kind of geometrical discontinuities: U-groove at 40 mm from 

the left edge (width: 10 mm, depth: 1 mm) and a linear scratch of about 0.1 mm depth in the center of the plate. (ii) 

A 0.1 mm thick PP foil (G2 substrate) is stuck with a thin water layer on the above duralumin substrate. Only corner 

and linear edges were concerned with this coating, not the groove. (iii) A polymethyl methacrylate plate (G3 

substrate, commercial name Plexiglas), with the same geometrical characteristics than the above G1 substrate. It is 

stuck on the substrate holder with a thin water layer.  

The roughness of the above substrates is the same on the flat and on the edge regions and has been measured by 

an optical profilometer. The results are reported in Table 1. The mean contact angles on water on the above 

substrates have been measured by two methods, looking at the shape of the drop on (i) an inclined substrate at the 

sliding onset and (ii) when pushing or pulling water on a horizontal substrate with a syringe. The results are the 

same within the uncertainties. The mean values for both methods are reported in Table 1. These values are typical of 

substrates used in the open air or an industrial environment and ensure dropwise condensation. Except for PMMA, 

the advancing contact angles are close to 90°. The hysteresis of the contact angle is correlated with the surface 

roughness, as expected.  

 

IV. OBSERVATION AND ANALYSES  

 

We comment in the following the different evolutions corresponding to the different types of discontinuities 

(corner, edge, groove, scratch, thermal). Condensation proceeds on a very long time period corresponding to the 

stage (iii) of the self-similar growth (Figs. 2 and 3). Then the short time periods of the nucleation phase (i) and the 

individual growth stage (ii) can be neglected. In the center of a 2D substrate the evolution of the drop mean radius 

can thus be fitted to a linear growth law, consistent with Eq. (14). From Eq. (15), this prefactor k is proportional to 

the supersaturation Δ𝑝 = 𝑝!   −   𝑝!  and the water vapor diffusion constant in air, D. It is inversely proportional to 

the concentration boundary layer thickness, ζ. As discussed in section II-E, the effect of discontinuity does not 

change the mean droplet growth law on the discontinuity, only the prefactor k is modified into 𝑘!. The experiments, 

which have been performed under different conditions of temperature (Ta, Ts), give different boundary layer 

thicknesses and different condensation parameters RH or Δ𝑝. For comparison and discussion, the growth rates 𝑘! at 

different locations (E) are thus rescaled by the value, kM, measured at the central, middle part (M) of the substrate, 

corresponding to the same parameters (air flow, Ta, Ts, RH, and Δ𝑝). The ratio !!
!!

= !!
!!

, with ζE, ζM the mean 

boundary layer thickness at E, M, locations can thus be compared without accounting for the different experimental 

conditions. With such a rescaling, the reproducibility of experiments remains within 10%. This ratio is listed in 

Table 2 and discussed for the different experiments in section VI.  

In the following we report the different growth laws for the substrates as described in section II. 

 

A. Corner and edges on P1 parallelepiped  
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In Fig. 2c is reported a photo of water condensation on P1 substrate. The drops on corner and linear edges exhibit 

clearly larger sizes than the drops close to but apart from the discontinuities.  

Seven sets of experiments have been performed. A typical evolution of the mean drop radius on corners, edges 

and the central region is reported in Fig. 4a. The values are averaged on the 4 edges and corners. As expected, it is 

observed that droplet growth is faster at the substrate corners than at the edges, the latter giving faster growth than in 

the central region. A fit to Eq. (14) with k as adjustable parameters give kC = (12 ± 0.4) 10-3 mm/min (average on 

four corners), kE = (8.3 ± 0.2) 10-3 mm/min (edges), kM = (3.52 ± 0.04) 10-3 mm/min (central region). The ratios to the 

central region are reported in Table 2.  

 

B. Edges and thermal borders on P2 diamond 

In Fig. 2d is reported a photo of water condensation on P2 substrate. The drops on thermal and geometrical corner 

and linear edges exhibit clearly larger sizes than the drops close to but apart from the discontinuities.  

One set of experiments has been performed in this configuration. In Fig. 4b are reported the evolution of the mean 

drop radius on edges, border of the thermally inhibited condensation (thermal) and the central region. The values are 

averaged on all 4 edges and thermal boundaries. As above with parallelepiped P1, it is observed that droplet growth 

is faster at the substrate edges than in the central region. Growth at the thermal borders is faster than in the central 

region but slower than at the edges. A fit to Eq. (14) with k as adjustable parameters give kE = (5.0 ± 0.2) 10-3 

mm/min (edges), kT = (4.1 ± 0.1) 10-3 mm/min (thermal border), kM = (1.8 ± 0.15) 10-3 mm/min (central region). The 

ratios to the central region are reported in Table 2.  

 

C. Corner, edge, groove and scratch on G1 and G2  

In Fig. 3b is reported a photo of water condensation on the G1 substrate (duralumin). The drops on outer linear 

edges exhibit clearly larger sizes than the drops close to, but apart from the discontinuities. The drops near the 

groove, in the upper region, also show larger drops. In contrast, drops near the groove edge in the inner region show 

smaller drops. The drops in the inner central region of the groove and on the scratch have similar size than in the 

central region of the substrate. The scratch gives somewhat aligned droplets.  

Numerous experiments (24) have been performed on G1. Evolutions of the droplet radius are reported in Fig. 5a 

for a typical experiment. The radius is averaged on the two upper plate corners, the upper plate edge and the central 

region. Also reported are the drop radius evolution on the upper edge of the groove, in two locations 1 and 2 (edge 

groove+ (1) and edge groove+ (2)), the lower part of the groove edges (edge groove-) and the central part of the 

groove (central groove). The scratch gives somewhat aligned droplets (see Fig. 3b) but their evolution is similar to 

the central part of the plate. As reported in (6), a scratch induces a 1D growth only in the early stages of growth 

when the drop diameter is less than the scratch thickness. For larger drop sizes, growth is the same as on a 2D 

surface. 

As above for P1 and P2 droplets grow faster at the substrate corners than at the edges (plate and groove edge), the 

latter giving faster growth than in the central region. The central part of the groove exhibits a slighter slower growth 

than the central part of the plate. The lower groove edge gives the slower growth. A fit to Eq. (14) with k as 
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adjustable parameters give kC = (28 ± 2) 10-3 mm/min (average on two corners), kE = (16.1 ± 0.4) 10-3 mm/min 

(edges), kG+ = (9.8 ± 0.4) 10-3 mm/min (groove edges), kM = (6.2 ± 0.4) 10-3 mm/min (central region), kGM = (5.3 ± 

0.2) 10-3 mm/min (groove central region), kG- = (3.2 ± 0.2) 10-3 mm/min (groove lower edge). The ratios to the plate 

central region are reported in Table 2. Note that a step-like evolution is visible on the corner drops. These discrete 

steps are much larger than the experimental error, and reproducible. Each step corresponds to a coalescence event 

with a neighboring drop. It is a characteristic feature of the corners, where the evolution of a single drop is observed, 

whereas for the other locations the coalescence events are averaged on a line (edges) or on a surface (middle) ; they 

remain only barely visible on edges. 

The G2 substrate (same as G1 but coated with polypropylene foil), shows the same kind of behavior as on the G1 

substrate, although water drops exhibit a larger contact angle (Table 1). Three sets of experiments have been 

performed. A fit to Eq. (14) with k as adjustable parameters give kC = (80 ± 2.5) 10-3 mm/min (average on two 

corners), kE = (46 ± 1) 10-3 mm/min (edges), kM = (15.3 ± 0.2) 10-3 mm/min (central region). The growth rates ratios 

corresponding to the corners and the edges region are reported in Table 2.  

 

D. G3 low conductive plate 

Two sets of experiments have been carried out with the G3 plate. They do not give any of the above observed 

edge effects as can be seen in Fig. 3c. The drop diameters show the same increase on corners, edges and central part. 

However, growth is accelerated inside the groove. This striking observation can be understood when considering the 

quite different values [14] of thermal conductivity, λ, for metallic substrates (duralumin: 160 Wm-1K-1; brass: 120 

Wm-1K-1) and PMMA (0.19 Wm-1K-1) [15]. The cooling heat flux P per unit surface corresponds to maintain a 

constant temperature at the substrate surface by compensating for air heating (heat flux Pa) and condensation latent 

heat (Pc) : 𝑃 + 𝑃! + 𝑃! = 0 .  

 

One can express the different flux per unit surface as !!
!!
= 𝜆!

!!!!!
!!

 and 

 

    𝑃𝑐
𝑆𝑇
=

𝐿

𝑆𝑇

𝑑𝑚

𝑑𝑡
= 𝐿𝜚𝑤

𝑑ℎ

𝑑𝑡
.      (19) 

 

Here ρw (= 1×103 kg.m-3) is the density of liquid water, L (= 2400 kJ.kg-1) the latent heat of condensation and λa (= 

0.026 Wm-1K-1) the air thermal conductivity [14].  The thermal boundary layer in air, δΤ , corresponds to the 

thickness where the transport of heat by conduction becomes more efficient than by convection or a Peclet number 

PeT=UδΤ/DT <1 (U is air velocity, DT = 2.2×10−5 m2.s−1 [14] is air thermal diffusivity). Although the thermal 

boundary layer is of different nature than the diffusive boundary layer, which corresponds to the diffusion of water 

molecules in air, characterized by the diffusion coefficient D, it happens that the value D = 2.4×10-5 m.s-1 [14] is 

close to DT. It results that δΤ ≈ ζ (≈ 1.8 mm for natural convection, as discussed in details in next section IV-E).  
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 Making use of Eq. (9), one obtains !!
!!
= 𝐿 !∆!

!
. The flux P can be expressed as the conduction through the 

substrate of thickness e in contact with the Peltier element at temperature T0,  

 

 !
!!
= 𝜆 !!!!!

!
.      (20) 

 

In the present experiment where Ta = 25°C, RH = 62%, Ts = 16°C, T0 = 13°C (Δp = 0.20 kPa) corresponding to Δc 

= 1.6×10-3 kg.m-3, the ratio air conduction over condensation !!
!!
= !!(!!!!!)

!"∆!
 ≈ 2.5. Thus nearly most of the heat flux 

P/ST (≈ 300 W.m-2) is used for cooling the substrate. From Eqs. (19-20) one can estimate the limiting growth rate 

dh/dt ≈ P/(  𝐿𝜚!3.5ST) ≈ 2×10-3 mm/min This is a rough estimation as it is obtained by subtracting two large heat 

fluxes. However, the growth rate is on the same order as the rate found in the central part of G3: kM = (4.5 ± 0.2)10-3 

mm/min. Drops are seen to grow faster in the groove than on the surface because the conductive cooling heat flux is 

here more important. With a growth rate in the groove kGM = (7.5 ± 0.6) 10-3 mm/min, the growth rate enhancement 

is kGM / kM = 1.7 ± 0.2 (Table 2). This value compares well with the factor 2 that is expected from the cooling heat 

flux from Eq. (20), assessing that the droplet growth is indeed limited by the low thermal conductivity of PMMA. 

 

E. Boundary layer thickness and growth rate 

The concentration boundary layer thickness ζ corresponds to the extent of the region near the substrate, where the 

transport of water molecules by diffusion becomes more efficient than by convection. In other words, it corresponds 

to a Peclet number PeC=Uζ/D <1 (U is air velocity).  

One can have a rough estimation of ζ  by a scaling analysis of the natural convection above a horizontal cooled 

plate [16]. Due to buoyancy effects, air flow will be confined in a hydrodynamic boundary layer of thickness δ. The 

latter is a function of the Grashof number Gr = !"∆!!!

!!
 as δ ∼L Gr-1/5. Here L (≈ 20mm) is the plate characteristic 

length, ΔT = Ta-Ts, β = 2/(Ts+Ta) = 3.4×10-3 K-1 is the air volumetric thermal expansion coefficient (air considered 

as ideal gas) and ν  = 1.6 10-5 m2/s is the air kinematic viscosity [14]. These values give Gr ≈ 13000 and δ  ≈ 3 mm 

with ΔT ≈ 10 K. As δ ∼ ΔT0.2, its value is only weakly sensitive to temperature. The maximal velocity in the 

hydrodynamic layer is given by Um ~ (δ  β g ΔT)1/2 ≈ 3 cm/s [16]. With D = 2.4×10-5 m.s-1 [14] the diffusion constant 

of water in air, PeC ≈  3 for U=Um. Assuming that the air velocity decreases near the plate following a parabolic 

flow, the boundary layer thickness ζ  can be deduced from PeC (z) =  
𝑈(𝑧)𝑧  
!

= !!!
!

!
!/!

!
= 1: 

 

𝜁~ !!!/!

! !"Δ! !/!

!/!
 .    (21) 

 

 The ζ  value is only weakly temperature dependent. For ΔT ≈ 10K, one finds ζ ≈ 1.1 mm. It results that for 

droplets of radius lower than 1.1 mm, growth remains limited by diffusion. When the drop diameter becomes larger, 
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a thorough description of the process would need a fine description of the convective flow in the exact experimental 

configuration.  

The above expression of ζ , Eq. (21), can be inserted in Eq. (15) to calculate the growth rate k, whose value can be 

then compared to the experimental value of km in the central part of the substrate. In the dependence of the surface 

coverage with the contact angle, 𝜀! =1-(θ (deg.) /200) [12], one has to consider the advancing contact angle as 

drops are growing. The values are listed in Table 2. One notes that the kM experimental values are in general 

significantly larger than the calculated values and show significant variations, even for similar substrates under same 

conditions (G1, G2 and P1, P2). In addition to the fact that the calculated values originate from scaling (approximate 

estimation, Eq. (21)), variations do exist because of uncontrolled air flows around the substrate. Indeed the 

experiments were not designed to control air flows (it is a quite difficult task). Hydrodynamics is then not simply 

natural convection and can vary in an uncontrolled way from experiment to experiment.  

 

F. Condensation on an inclined substrate 

 

In all above-mentioned experiments the substrate was horizontal in order to focus on the edge effects only. In this 

section we present an example of a condensation experiment on an inclined substrate, in order to show qualitatively 

the combined action of edge effects and gravity. Figure 6 shows the condensation pattern on a silicon wafer inclined 

at 30° from horizontal. The droplets situated near the upper horizontal edge have grown faster than their neighboring 

droplets. As a consequence, they reach sooner the critical size necessary for detachment, and,  acting as wipers, 

collect the other drops as they slide down. The condensing surface is thus continuously renewed, and the 

condensation process is sustained.  

This "self-cleaning" effect should have practical implications on the water collection efficiency of inclined 

surfaces. It remains, however, to be precisely quantified. As a matter of fact, it has been reported that dew collectors 

of origami form with many edges can collect up to 400% more water than simple planar surfaces for small dew 

events [17]. The question arises about spines or sharp needles that are encountered in some plants to favor natural 

dew condensation and collection. In order to improve water harvest efficiency one could also combine the edge 

effects of the condensation substrate with the wettability and geometry properties as studied in [18]. A coating with 

small contact angle hysteresis placed on the upper borders of a condenser should promote the early detachment of 

small drops, thus enhancing the wiper effect. 

 

V. SIMULATIONS  

 

In the simulation the condensing plate is supposed either perfectly conductive (isothermal) or adiabatic such as 

only mass diffusion in humid air above the plate matters. We consider a “snapshot” where the droplet configuration 

is fixed, the size of the droplet are set and droplets are not growing. They are placed in various configurations with 

different concentration boundary layer geometries. It is also assumed that inside the concentration boundary layer, 

the transport of the molecules by natural convection is negligible compared to their transport by diffusion (PeC <1). 
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The validity of this assumption has been assessed above in section IV-E by performing a scaling analysis of the 

natural convection above a horizontal cooled plate.  

This situation thus corresponds to solve only the diffusion equation in a stationary state. As a result of the 

calculation, the drops are receiving a mass flux that characterizes their rate of growth during the snapshot small time 

interval in this fixed configuration.  

 

A. Model geometry and boundary conditions 

The comparison of the growth rates of drops at different geometrical and thermal boundaries is inferred from the 

value of the mean water vapor concentration gradient at the drop perimeter, Eq. (4). To calculate this value, we 

solve the steady state diffusion equation Eq. (3) in two dimensions (2D) for water vapor concentration c : Δc = 0, 

using a finite element method implemented in Matlab (pdetool). A 2D simplification is consistent with the fact that 

the droplets close to edges are aligned (see Figs. 2-3). It is not, however, the case for the droplets at the corners and 

is a simplification for the central part. 

The geometry of the domain is depicted in Figs. 7ab. The boundaries of the domain are (i) the solid surfaces of 

the substrate where drops are growing and (ii) the surface boundaries where water vapor concentration is kept 

constant. These surfaces correspond to the position of the concentration boundary layer as estimated previously in 

section IV.E. The values that are used in the simulation ( 1 and 2 mm) are typical of the boundary layer thickness. 

We address two substrate geometries, an edge (Fig. 7a) and a groove (Fig. 7b), to mimic the geometry of the AL 

plate (Fig. 3). On the substrate, hemispherical drops of same diameter 2R = 200µm are distributed with a distance 

between the edges of two neighboring drops equal to 50µm). It means that each drop is at the center of a box of 

width d = 250 µm, corresponding to a mean interdrop distance <d> = d. This configuration correspond to a drop 

surface coverage ε2 = 0.50, as observed during the coalescence – driven, self-similar coalescence stage (iii). The 

drops are situated within a distance of 50 µm from the boundary. 

For the edge case, the thickness of the substrate is set to 2 mm. On the substrate walls between the droplets, we 

impose a zero transversal flux, i.e. a zero concentration gradient. Symmetry dictates that on the boundaries X = 3 

mm and Y = 0 mm, the transversal flux is zero. On the boundaries Y = 3mm and X = 0, a uniform concentration c∞ = 

2 (in arbitrary units) is imposed. These surfaces are situated at a distance of 1 mm from the substrate, corresponding 

to the case ζ >> <d>. On the drops surfaces, a saturated concentration cs =1 is assumed. This yields a ratio 𝑐!/cs 

typical of the ratio (p∞ /ps) used in the experiments. In Figs. 7ab, the local diffusive flux vector is depicted as arrows, 

the colors represent the intensity of the local concentration gradient. The maximal concentration gradient intensity is 

found at the surface of the droplets situated close to the edge E, and a decreasing concentration gradient is observed 

with increasing drop distance from the edge.  

The groove (Fig. 7b) is 1mm in depth and 4 mm in width. For symmetry reasons, we simulated only half of the 

groove. As for the edge, the concentration is set to c∞ = 2 at Y = 1mm from the substrate. The concentration is set to 

cs = 1 on the surface of the drops. In agreement with the preceding cases, the concentration gradient amplitude is 

maximized on the drop G+ situated at the edge of the groove. In contrast, it is the smaller for the drops inside the 

groove, with decreasing values from the inner groove edge G- towards the inner groove middle GM.  
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A thermal border is shown in Fig. 7c where the boundary (Y = 0, X<1mm) corresponds to an adiabatic substrate 

where drops cannot grow. As for the edge and the groove, the concentration is set to c∞ = 2 on the surface at Y = 

2mm, situated at 1mm from the top of the substrate. The concentration is set to cs=1 on the surface of the drops. The 

transversal concentration gradient is set to zero on the symmetry axis X = 0, on the solid surfaces of the substrate, 

and on the boundary (Y = 0, X<1mm). 

It can be seen on Fig. 7c that similarly to the preceding cases, the concentration gradient is maximized on the 

drops situated at the edge of the (thermal) boundary T. It decreases towards the middle M of the drop pattern.  

 

B. Comparison with experiments 

Following Eqs. (2, 4) for the monomer flux and drop volume evolution dV/dt, we thus compute the following 

integral : 

 

 𝐼 = !
!

∇𝑐
!
. 𝑛𝑑𝑆!  ,      (22) 

 

of the concentration gradient on the different individual drop surfaces to determine a quantity which is proportional 

to the mean drop volume growth rate dV/dt (Eq. (4)) and thus to d<R>/dt = k from Eq. (16).  

In order to compare with the experiments, the integral of the concentration gradient is computed on drops marked 

on Fig. 7, M (central part of the substrate), E (edge), G+ (outer edge of the groove) G- (inner edge of the groove), 

GM (central part of the groove), T (thermal discontinuity).  

The ratio of each integrals I to the integral IM
 corresponding to the substrate central is independent of the value of 

the vapor diffusion coefficient D and of supersaturation, see Eqs. (15 -18). It is listed in Table 2 where it can be 

compared to the corresponding experimental values kJ /kM . The values compare relatively well taking into account 

the fact that the simulation is 2D. There is one exception concerning kG-/kM (the groove inner edge) where the 

calculated value is 7 times lower than the measured value. This discrepancy is due to the assumption in the 

simulation of the boundary layer above the groove. In the reality, the layer should curve towards the groove, thus 

enhancing the growth rate.  

 

VI. CONCLUDING REMARKS  

 

From this study it appears that droplet growth on a cooled substrate can be significantly modified by 

discontinuities. They can be of geometric or thermal nature and growth can be enhanced or reduced. In the case 

where mass diffusion around the drops controls growth, drops can collect more or less moisture near a boundary 

than in the middle of the substrate depending on the shape and nature of the discontinuity. In certain cases, the 

growth enhancement can reach nearly 500% on edges or corners. 

On the other hand, these boundary effects can disappear when another process than mass diffusion limits growth. 

This is for example the case for substrates where the cooling heat flux is limited by the low thermal conductivity of 
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the substrate (PMMA substrate in this study) or strong heat exchange in a windy atmosphere when cooling is 

ensured by radiation deficit (natural dew).  
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TABLES 

 
Table 1. Surface roughness (root mean square RMS) of the materials with contact angles of water. 

 

 

Table 2. Values of radius growth rate kM on substrate central region (exp.: experimental value; calc.: calculated from 

Eq. (15)), kE (substrate edge). Comparison is also given between the experimental ratios kE/kM (overall uncertainties 

are within 10%) and the simulated ratios I/IM. Δp is the difference p∞	 - pS (see text). The values under brackets for 

G3 [(1) and (2)] correspond to the ratio of heat fluxes for low conductivity PMMA substrate. The missing data 

correspond to non-existent geometries in the simulation or in the substrates.  
  

Materials substrate roughness 
RMS (nm) 

Contact angles (deg.) 
advancing receeding 

Duralumin  G1 460 84.5 ± 5.5 21.0 ± 4.5 
PP  G2 150 98.0 ± 2.5 65.0 ± 5.5 

PMMA G3 100 70.0 ± 4.5 40.0 ± 3.0 
PVC P1 1600 86.0 ± 4.5 31.0 ± 4.5 
PP P2 180 94.5 ± 2.5 67.5 ± 5.0 

 

  G1 G2 G3 P1 P2 I/IM 

kM  

(10-3 mm.min.-1) 
exp. 6.2 15.3 4.5 3.5 1.8  

 
calc. 22 9.0 6.7 11.4 9.8 

kC/kM 4.6 5.2 1 (1) 3.4 - - 
kE/kM 2.6 3.0 1 (1) 2.4 2.7 1.90 
kG+/kM 1.6 - 1 (1) - - 1.66 
kGM/kM 0.86 - 1.7 (2) - - 0.43 
kG-/kM 0.51 - 1.7 (2) - - 0.072 
kT/kM - - - - 2.2 2.64 

Ta (°C) 25 23 25 22.6 22.6  
Ts (°C) 15 12.5 16 4.8 4.8 
RH (%) 78 76 62 44 44 
Δp (kPa) 0.80 0.40 0.20 0.35 0.35 
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FIG. 1. (Color online) Schematics of different regimes for the droplet growth on a substrate : (a) single drop 

evolution ; (b) growth in a pattern with overlapping water vapor concentration profile, and film of average thickness 

h. 
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FIG. 2. (Color online) Substrate geometries and condensation patterns in experiment type 1 (see text). (a) Schematic 

of substrate P1: PVC foil on brass parallelepiped . (b) Schematic of substrate P2: PP foil on duralumin diamond. (c) 

Condensation on P1 (28 min, Ta	 = 25.9°C, RH = 59%, Ts = 7.7°C). (d) Condensation on P2 (26 min 40 s, Ta	 = 

22.6°C, RH = 44%, Ts = 4.8°C).  
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FIG. 3. (Color online) Substrate geometries and condensation patterns in experiment type 2 (see text). (a) Schematic 

of G1, G2 and G3 substrates. (b) Condensation on G1 (120 min; Ta	 = 25°C, RH = 78%, Ts = 15°C). (c) Condensation 

on G3 where growth is limited by the cooling heat flux (240 min, Ta = 25°C, RH = 62%, Ts = 16°C). 

(a) 

(c) 

(b) 

173 mm 

    

  
  

40 mm 

10 mm 

1 mm  
2 mm  

123.2 mm 

scratch
  

central groove 

edge groove + (2) 

edge groove - 

edge 
edge groove + (1) 

scratch central 



 23 

   
 

 
 

FIG. 4. (Color online) (a-b) Left ordinate: evolution of the mean drop radius <R> on corners, edges and central area. 

The lines are fits to Eq. (14). Right ordinate: evolution of the drop coverage on corners, edges and central area 

(surface coverage: full lines; interrupted line: edge linear coverage). The lines are fits to a constant. (a): P1 substrate 

(Ta = 22.6°C , Ts = 4.8°C , RH = 44% ). (b): P2 substrate (Ta= 22.6°C , Ts= 4.8°C , RH = 44 %). (c) Voronoi polygon 

construction (P1, t = 60 min) for corner, edge and central region, showing the band approximation with length L and 

thickness w (see text).  
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FIG. 5. (Color online) Evolution of the mean drop radius <R> on plate corners, edges, upper and lower groove edges 

and plate and groove central areas (see text). The lines are fits to Eq. (14). (a) G1 substrate (Ta = 25°C , Ts = 15°C , 

RH = 78% ). (b) G2 substrate (Ta = 25°C, Ts = 16°C, RH = 62%). (The step-like evolution on corners correspond to 

coalescence with a neighboring drop).  
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FIG. 6. (Color online) Condensation on a smooth substrate at 30° from horizontal (square silicon wafer of 21 mm 

side; 156 min; Ta	 = 26°C, RH = 60%, Ts = 1.2°C ). At the top horizontal edge, the drops grow faster, they thus reach 

sooner the critical size for detachment and slide down, collecting the other drops. On the fresh bare area a new 

generation of drops nucleates and grows. 

  



 26 

 

 

FIG. 7. (Color online) Diffusion flux (arrows) and concentration gradient intensity (colors, arb. units). (a) Edge 

configuration. (b) Groove configuration. (c) Thermal configuration where the substrate X<1mm is adiabatic. Note 

the average vertical gradient that validates the film model, section II-C. 


