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Abstract: This paper deals with parameter and state estimation in a bounded-error context for uncertain dynamical
aerospace models when the input is considered optimized or not. In a bounded-error context, perturbations are
assumed bounded but otherwise unknown. The parameters to be estimated are also considered bounded. The
tools of the presented work are based on a guaranteed numerical set integration solver of ordinary differential
equations combined with adapted set inversion computation. The main contribution of this work consists in
developing procedures for parameter estimation whose performance is highly related with the input of system.
In this paper, a comparison with a classical non-optimized input is proposed.

1 INTRODUCTION

Complex systems are often subjected to uncertainties
that make the modeling task awkward. These uncer-
tainties can be unstructured when the equations of the
system are not entirely known or structured when the
equations are known but not the values of their pa-
rameters. In both cases, it is particularly difficult to
get an accurate model of the perturbations and noises
acting on the system. This may turn the usual stochas-
tic framework inappropriate. Thus, we prefer to deal
with set-membership framework in which perturba-
tions and noises are assumed to be bounded but other-
wise unknown. In this framework, we obtain ”guaran-
teed solutions”. This last expression means that for all
conditions belonging to a bounded set, the obtained
set contains all the solutions.

Guaranteed state and parameter estimation meth-
ods are an interesting alternative to stochastic model
based estimation when perturbations and noises are
assumed to be bounded but otherwise unknown.
These methods have received a lot of attention in the
last years and the literature on this topic shows in-
teresting progress, for example (Kieffer et al., 2002),
(Deville et al., 2002), (Jaulin, 2009), (Rauh and Auer,
2011), (Pasca, 2010) or for example (Jauberthie et al.,
2013).

Moreover, experimental design is important for

identifying mathematical models of modern aircraft
dynamics from flight test data, for example. In the
case of aerospace domain, the flight test input has a
major impact on the quality of the data for modeling
purposes. Good experimental design must account
for practical constraints during the test. The overall
goal is to design an experiment that produces data
from which model parameters can be estimated ac-
curately. Most importantly, in an estimation frame-
work, the experimental conditions about noise and
disturbances are usually properly modeled through
appropriate assumptions about probability distribu-
tions ((Mehra, 1974), (Walter and Pronzato, 1994),
(Kiefer, 1974)). The conventional approach for the
experimental design is based on stochastic models for
uncertain parameters and measurement errors (see for
example (Rojas et al., 2007)). However, other sources
of uncertainty are not well-suited to the stochastic
approach and are better modeled as bounded uncer-
tainty. This is the case of parameter uncertainties that
generally arise from design tolerances and from ag-
ing. In such cases, combining stochastic and bounded
uncertainties may be an appropriate solution. Some
works consider that the parameters belong to some
prior domain, on which no probability function has to
be defined (for example (Pronzato and Walter, 1988),
(Belforte and Gay, 2004)). The first aim at optimiz-
ing is the worst possible performance of the experi-



ment over the prior domain for the parameters. This
maximin approach to synthesis the optimal input is
described and the specific criterion are developped.

In a recent paper (Jauberthie and Chanthery,
2013), it is supposed that the uncertainty on param-
eters can be modelled by bounded intervals and the
concepts of interval analysis are used for the opti-
mal input synthesis. In this paper the original ap-
proach of optimal input design for uncertain bounded
parameter estimation is an extension of the works of
E.A. Morelli ((Morelli, 1999)) using the dynamic pro-
gramming. This approach combines the concepts of
dynamical programming with the maximin approach
and with the tools of interval analysis. In the pre-
sented work, we propose to apply an optimal input
obtained in (Jauberthie and Chanthery, 2013) for the
same case study taken from aerospace domain. By
using this optimal input, we obtain an original algo-
rithm to achieve a guaranteed state and parameter es-
timation based on interval analysis.

This paper is organized as follows. In Section 2,
the problem statement and the case study are pre-
sented. The case study is taken from aerospace
domain and describes the longitudinal motion of a
glider. Section 3 presents some basic tools of interval
analysis. The notions of interval, box, interval matrix
and inclusion function are given. Section 4 presents
the fundamental algorithm to implement state and pa-
rameter estimation. In Section 5, the estimation re-
sults obtained on the case study are presented and dis-
cussed. Two cases of inputs are tested and the perfor-
mance of the optimal input is highlighted. Finally,
some conclusions are outlined in section 6.

2 PROBLEM FORMULATION
AND CASE STUDY

This paper deals with estimating the unknown
state and parameters for a nonlinear dynamic system
of the following form:{

ẋ(t, p) = f (x(t, p), p)+u(t)g(x(t, p), p)),
y(t, p) = h(x(t, p), p), x(0) ∈ [X0], p ∈ [P0],

(1)
where x(t, p) ∈ Rn and y(t, p) ∈ Rny denote respec-
tively the state variables and the measured outputs.
The initial conditions x(0) are supposed to belong to
an initial bounded box [X0]. u(t) represents the input.

The vector p is the vector of parameters to be esti-
mated and p ∈Rnp which is supposed to belong to an
a priori box [P0].

The time t is assumed to belong to [0, tmax]. The
functions f , g and h are nonlinear functions. f and g

are supposed analytic on M for every p ∈ [p0], where
M is an open set of Rn such that x(t, p) ∈M for every
p ∈ [p0] and t ∈ [0, tmax]).

The output error is assumed to be given by:

v(ti) = ym(ti)− y(ti, p), i = 1, ...,N. (2)
We assume that v(ti) and v(ti) are known as

lower and upper bounds for the acceptable output er-
rors. Such bounds may, for instance, correspond to
a bounded measurement noise. The integer N is the
total number of sample times.

Interval arithmetic is used to compute guaranteed
bounds for the considered problem at the sampling
times {t1, t2, ..., tN}.

The case study that we consider in this work is
given by an aerospace model which describes the lon-
gitudinal motion of a glider. The projection of the
general equations of motion onto the aerodynamic
reference frame of the aircraft and the linearization of
aerodynamic coefficients give the following system:
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θ̇ = q.
(3)

In these equations, the state vector x is given by
(V,α,q,θ)>, the observation y is full (i.e., y = x), the
input u is δm (δm0 represents the initial condition).
The variable V denotes the speed of the aircraft, α

the angle of attack, α0 the trim value of α, θ the pitch
angle, q the pitch rate, δm the elevator deflection an-
gle, ρ the air density, g the acceleration due to gravity,
l a reference length and S the area of a reference sur-
face. B represents a moment of inertia. The parame-
ters to be estimated are Czα̇, Czq, Cmα̇, Cmq, which are
assumed to be uncertain. The other coefficients cor-
respond to the dynamic stability derivatives are sup-
posed to be known.



3 BASIC TOOLS

Interval analysis provides tools for comput-
ing with sets which are described using outer-
approximations formed by union of non-overlapping
boxes. The following results are mainly taken from
(Jaulin et al., 2001).

3.1 Basic tools

A real interval [u] = [u,u] is a closed and connected
subset of R where u represents the lower bound of
[u] and u represents the upper bound. The width of
an interval [u] is defined by w([u]) = u− u, and its
midpoint by m([u]) = (u+u)/2.

The set of all real intervals of R is denoted IR.
Two intervals [u] and [v] are equal if and only if

u = v and u = v. Real arithmetic operations are ex-
tended to intervals (Moore, 1966).

Arithmetic operations on two intervals [u] and [v]
can be defined by:

◦ ∈ {+,−,∗,/}, [u] ◦ [v] = {x◦ y | x ∈ [u], y ∈ [v]}.

An interval vector (or box) [X ] is a vector with
interval components and may equivalently be seen as
a cartesian product of scalar intervals:

[X ] = [x1]× [x2]...× [xn].

The set of n−dimensional real interval vectors is de-
noted by IRn.

An interval matrix is a matrix with interval com-
ponents. The set of n×m real interval matrices is
denoted by IRn×m. The width w(.) of an interval vec-
tor (or of an interval matrix) is the maximum of the
widths of its interval components. The midpoint m(.)
of an interval vector (resp. an interval matrix) is a
vector (resp. a matrix) composed of the midpoint of
its interval components.

Classical operations for interval vectors (resp. in-
terval matrices) are direct extensions of the same op-
erations for punctual vectors (resp. punctual matrices)
(Moore, 1966).

Let f : Rn→ Rm, the range of the function f over
an interval vector [u] is given by:

f ([u]) = { f (x) | x ∈ [u]}.
The interval function denoted [ f ] is a function

from IRn to IRm. It is an inclusion function for f
if:

∀[u] ∈ IRn, f ([u])⊆ [ f ]([u]).
An inclusion function of f can be obtained by re-

placing each occurrence of a real variable by its cor-
responding interval and by replacing each standard

function by its interval evaluation. Such a function
is called the natural inclusion function. In practice
the inclusion function is not unique, it depends on the
syntax of f .

3.2 Set Inversion

Consider the problem of determining a solution set for
the unknown quantities u defined by:

S = {u ∈ U |Φ(u) ∈ [y]}= Φ
−1([y])∩U, (4)

where [y] is known a priori, U is an a priori search
set for u and Φ a nonlinear function not necessarily
invertible in the classical sense. (4) involves com-
puting the reciprocal image of Φ and is known as a
set inversion problem which can be solved using the
algorithm Set Inverter Via Interval Analysis (denoted
SIVIA). The algorithm SIVIA proposed in (Jaulin and
Walter, 1993) is a recursive algorithm which explores
all the search space without losing any solution. This
algorithm makes it possible to derive a guaranteed en-
closure of the solution set S as follows:

S⊆ S⊆ S.

The inner enclosure S is composed of the boxes that
have been proved feasible. To prove that a box [u]
is feasible it is sufficient to prove that Φ([u]) ⊆ [y].
Reversely, if it can be proved that Φ([u])∩ [y] = /0,
then the box [u] is unfeasible. Otherwise, no conclu-
sion can be reached and the box [u] is said undeter-
mined. The latter is then bisected and tested again
until its size reaches a user-specified precision thresh-
old ε > 0. Such a termination criterion ensures that
SIVIA terminates after a finite number of iterations.

4 GUARANTEED STATE AND
PARAMETER ESTIMATION

This section concerns the integration of (1) and
set inversion computation. Thus, the objective of this
section is fist to obtain the state vector x at the sam-
pling times {t1, t2, ..., tN} corresponding to the mea-
surement times of the outputs. Second follow the
SIVIA procedure to get the validated sets of feasible
parameters.

We note [x j] the box [x(t j)] where t j represents the
sampling time, j = 1, ...,N and x j represents the solu-
tion of (1) at t j.



4.1 Validated Integration for Nonlinear
Systems

Rigorous solution for dynamical nonlinear systems
can be solved efficiently by considering methods
based on Taylor expansions (Moore, 1966), (Rihm,
1994), (Berz and Makino, 1998) or (Nedialkov and
Jackson, 2001). These methods consist in two parts:
the first one verifies the existence and uniqueness of
the solution by using the fixed point theorem and the
Picard-Lindelöf operator. At a time t j+1, an a priori
box [x̃ j] containing all solutions corresponding to all
possible trajectories between t j and t j+1 is computed.
In the second part, the solution at t j+1 is computed by
using a Taylor expansion, where the remainder term
is [x̃ j].

To obtain the set [x̃ j], a classical technique consists
in inflating this set until it verifies the following inclu-
sion (Lohner, 1987), (Nedialkov and Jackson, 2001):

[x j]+h j f ([x̃ j])⊆ [x̃ j], (5)

where h j denotes the integration step and [x j] the
first solution. In the proposed work, to state esti-
mate, we use the package VNODE in which the pre-
vious validated integration method is implemented.
The package VNODE, developed by N.S Nedialkov
(Nedialkov et al., 2001), is a C++ package for com-
puting bounds of solutions in Initial Value Problem
for ordinary differential equation. In the latest ver-
sion, named VNODE-LP, algorithms corresponding
to high order enclosure and Hermite- Obreschkoff
method (Nedialkov, 2006) have been implemented.
Thus VNODE-LP gives a way to obtain tighter en-
closure.

4.2 Parameter Estimation

Parameters estimation from experimental measures
are usually obtained within a stochastic framework in
which known distribution laws are associated to in-
terferences and measurement noise. Oppositely, in a
bounded error context, measures and modeling errors
are supposed to be unknown but to stay within known
and acceptable bounds.

Errors between measured and predicted outputs
may rely on many factors, among them: limited sen-
sors accuracy, interferences, noise, structured uncer-
tainties, etc. Some are quantifiable, some are not. We
consider here the quantifiable error ν, which is added
to the model output y. The experimental outputs ym
are given by (Equation (2)):

ym(ti) = y(ti, p)+ν(ti), 1≤ i≤ N. (6)

In the presented work, the error ν is supposed to be
within an interval whose lower bound is ν and upper
bound is ν. An allowable error set E may be defined
as a set of constraints:

E= {ν(ti) | ν(ti)≤ ν(ti)≤ ν(ti)}. (7)

These bounds may be considered constant over time
as well as variable. They may be established from
data given by constructors for electronic parts for ex-
ample.

A parameter vector p is acceptable if and only
if the error between ym and the model output y is
bounded in a known way. To estimate system param-
eters, we have to get the set P of all parameters p en-
closed in the a priori search set [P0] such that error
between real data and model outputs belongs to E:

P={p ∈ [P0] | ym(ti)− y(ti, p) ∈ [vi,vi], ∀i = 1, · · · ,N},
={p ∈ [P0] | [ν(ti)] ∈ E, ∀i = 1, · · · ,N} .

(8)
The characterization of the set P may be defined as

a set inversion problem (4). By simplicity of notation,
we note this set:

P= [ν−1](E)∩ [P0]. (9)

A guaranteed enclosure of P may be computed by
using the SIVIA algorithm presented in Section 3.2.

4.3 Parameter and state estimation

To perform the state and parameter estimation, we
propose the following algorithm. This algorithm has
been implemented in C++. It combines the strategy
of bisections used in SIVIA and the validated inte-
gration used by VNODE. A threshold ε is considered
for the bisections in SIVIA. The choice of this thresh-
old depends on the a priori initial box of parameters
to be estimated. In this algorithm, the function bisect-
Box divides a box into two sub-boxes and the function
VNODELP is the call to the software VNODE-LP.



Algorithm 1 Parameter estimation ([h], [y], Padmis, ε)

Require: [x](0), [p](0);
Ensure: Padmis, Puncertain, Pre jected ;

1: initialization: Plist := [p](0), xe(0) :=
([x](0), [p](0));

2: while Plist : 6= /0 do
3: [p] := Pop(Plist);
4: i := 1;
5: while i <= N do
6: xe(i) :=V NODELP(xe(i−1));
7: j := i;
8: i := i+1;
9: end while

10: if [h]([xe(1 : j)])⊆ [y(1 : j)] then
11: Padmis := Padmis∪ [p];
12: else if [h]([xe(1 : j)])∩ [y(1 : j)] := /0 then
13: Pre jected := Pre jected ∪ [p];
14: else if w([p])< ε then
15: Puncertain := Puncertain∪ [p];
16: else
17: bisectBox([p])

→{[p]1, [p]2 | [p]1∪ [p]2 = [p]};
18: Plist := Plist ∪ [p]1, Plist := Plist ∪ [p]2;
19: end if
20: end while

5 APPLICATION

In this section, the state and parameter estimation
of the aerospace system is performed by using the
proposed algorithm. The initial conditions are sup-
posed to belong to:

[X0] =

 28.48 28.52
6.2682 6.7265
−0.2292 0.2292
2.2002 2.6585

 . (10)

The parameters are supposed to be included in:

[P0] =

 1.71 1.89
4.75 5.25
−5.25 −4.75
−23.1 −20.9

 . (11)

The output error (2) is supposed to be bounded by:

[ν] =

 −0.0447 0.0447
−0.0044 0.0044
−0.0044 0.0044
−0.0044 0.0044

 . (12)

The measurements have been simulated by using the
parameters equal to (1.8,5,−5,−22) and initial states
[X0]. The test duration is fixed at one second. The
stop criterion for SIVIA is ε = [0.01,0.05,0.05,0.1]

that means that the stop threshold for the first param-
eter is 0.01, the second and third are 0.05 and the last
one is 0.1.

Two cases of inputs are considered for the tests:
the first one concerns a constant input and the second
one is an optimal input proposed in (Jauberthie and
Chanthery, 2013) with six stages. The optimal input
is the following:

u(t) = δm0 +a60H(t− t06)−2a61H(t− t16)
+2a62H(t− t26)−2a63H(t− t36)+
2a64H(t− t46)−2a65H(t− t56)

(13)
with a6i = 1.6 degrees with i = 0, · · · ,5 and , t06 =
0 s, a16 = 0.1667 s, a26 = 0.3334 s, a36 = 0.5001 s,
a46 = 0.6668 s a56 = 0.8335 s. The function H is the
Heaviside function.

The optimized input is given in the Figure 1:
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Figure 1: Optimized input for six stages.

The order of the Taylor expansion is chosen
automatically by the VNODE-LP.
The parameter estimation results, for a constant
input, are given in Figures 2, 3, 4, 5, 6 and 7. In
these figures, the red boxes represent the acceptable
sets for parameters, the blue boxes represent the
rejected boxes and the yellow boxes represent the
undetermined boxes. The black border cube represent
the box [P0].



Figure 2: Acceptable sets Czα̇, Czq, Cmα̇ with constant input.

Figure 3: Acceptable sets Czq, Cmα̇, Cmq with constant in-
put.

Figure 4: Rejected sets Czα̇, Czq, Cmα̇ with constant input.

Figure 5: Rejected sets Czq, Cmα̇, Cmq, with constant input.

Figure 6: Undetermined sets Czα̇, Czq and Cmα̇ with constant
input.

Figure 7: Undetermined sets Czq, Cmα̇, Cmq, with constant
input.

As seen in these figures, the first three parameters
have not been well estimated. The diameter of each
interval remained almost as proposed. The parame-
ter Cmq has been well obtained compared with other



parameters.
By using the optimal input, we obtain Figures 8,

9, 10, 11, 12 and 13.

Figure 8: Acceptable sets Czα̇, Czq, Cmα̇ with optimal input.

Figure 9: Acceptable sets Czq, Cmα̇, Cmq with optimal input.

Figure 10: Rejected sets Czα̇, Czq, Cmα̇ with optimal input.

Figure 11: Rejected sets Czα̇, Czq, Cmα̇ with optimal input.

Figure 12: Undetermined sets Czα̇, Czq, Cmα̇ with optimal
input.

Figure 13: Undetermined sets Czα̇, Czq, Cmα̇ with optimal
input.

We compare the results from the two inputs. The
term %p indicates the percentage of unacceptable
and uncertain interval sets we eliminated. Results
have been done with constant input and optimal in-
put. Clearly, the optimal input improves significantly
the estimated parameters’ domain. The last 3 rows of
Table 1 show an improvement in estimation results.



Table 1: Eliminated percentage of initial box.

Parameter %pconstant %poptimal
Czα̇ 0.00 0.00
Czq 0.00 75.00
Cmα̇ 25.00 87.50
Cmq 65.62 93.75

The volume of obtained acceptable boxes are pre-
sented in the following table:

Table 2: Volume of obtained acceptable boxes.

Parameters Constant input Optimal input
Czα̇, Czq and Cmα̇ 0.1215 9.4482e-04
Czq, Cmα̇ and Cmq 1.7325 0.0116.

Through Table 2, we show the clear improvement
of the acceptable domain for the parameters by us-
ing an optimal input. The first one (for parameters
Czα̇, Czq, Cmα̇) and the second one (for parameters Czq,
Cmα̇, Cmq) are divided by 100.

6 CONCLUSION

In this contribution, a procedure for parameter and
state estimation in a bounded-error context has been
pointed out. Two different inputs have been imple-
mented and the estimation results have been com-
pared. We can see that the coefficient Czα̇ is difficult
to be correctly estimated. The efficiency of the pro-
posed algorithm combined with an optimized input
has been pointed out. The presented method has po-
tential for being used for active diagnosis problems in
continuous-time systems or hybrid systems.

Our future works concern an improvement in the
estimation parameter problem for these models and
the potential application of this method to the active
diagnosis. In fact, this last objective will be to use
these tools to achieve an active diagnostic methodol-
ogy that is to find a sequence of actions to refine the
diagnosis.

As seen in the results for parameter estimation, the
obtained results are clearly closed to the choice of in-
put, thus another direction of our future work con-
cerns the development of a methodology of optimal
input design in a bounded error context for parameter
estimation which is a new perspective.
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