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ABSTRACT
PACS numbers:43.28.Js, 43.28.En, 43.20.El

A time-domain solver of the linearized Euler equations is used to study outdoor propagation
of acoustic waves generated by broadband moving sources. For that, high-order schemes,
developed initially in the computational aeroacoustics community, are employed. A time-domain
impedance boundary condition recently proposed in the literature is implemented to deal with
reflexion of acoustic waves over the ground. In addition, curvilinear coordinates are used to
account for topographic effects. First, test cases show that long range sound propagation and
diffraction by obstacles in three-dimensional geometries are accurately determined. Simulation
of the acoustic radiation by a broadband monopole source moving above a perfectly reflecting
plane is then considered. Numerical results are satisfactorily compared to those obtained from an
analytical solution. At last, the case of a broadband source moving above a non-flat terrain, with
an inhomogeneous impedance ground, is investigated. The effects of a topography defect on the
acoustic field are examined.

I. INTRODUCTION
Increase of transportation speed and traffic has a large impact on populations. Indeed,
more than 100 million Europeans are exposed to traffic noise levels which are
detrimental to health [1]. Therefore, there is a considerable pressure from policy
makers to reduce noise pollution. Industry can then be expected to be faced with more
and more drastic regulations in the coming years. As a consequence, there is an urgent
need to both reduce noise sources and better predict the propagation of the generated
noise in the environment.

However, prediction of noise due to sources in motion outdoors is still an open
challenge. Indeed, analytical solutions are only known in very simple cases. The
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most common problem is concerned with sound radiation by a monopole moving
at a constant speed and at a constant height above a flat ground [2, 3, 4]. Analytical
solutions have been obtained under strong hypothesis, assuming that the ground
properties are constant with frequency [2, 4] or neglecting the contributions due to
the singularities of the reflection coefficient [2, 3]. Recently, analytical solutions for
the same problem have been proposed without these assumptions by Ochmann [5]
but only for simple impedance models. For more general configurations, there are
only heuristic approaches [4]. Moreover, existing numerical tools to predict
transportation noise such as railway noise or aircraft flyover noise (see e.g. [6, 7,
8]) are based on simple propagation models, such as ray-tracing or parabolic
equation methods, which do not account or only partially account for
meteorological and ground effects.

As acoustic sources motion is time dependent, time-domain simulations of oudoor
sound propagation are therefore well-suited. They have been used for more than ten
years especially to study the influence of meteorological conditions on the acoustic
field [9, 10, 11, 12, 13, 14]. The objective of the paper is to develop a numerical solver
able to account for sources in motion in complex environments. For that, high-order
numerical schemes are employed. Topography and reflexion on an impedance ground
are accounted for by using curvilinear coordinates and a time-domain impedance
boundary condition, respectively.

The paper is organized as follows. In Sec. II, the numerical solver is presented.
Two test cases are performed for validation. In Sec. III, the solver is used to
simulate the radiation by sources in motion. First, the case of a source moving at a
constant speed and at a constant height above a perfectly reflecting plane is
considered. Then, the radiation by a moving source above a non-flat terrain with an
inhomogeneous ground is examined.

II. NUMERICAL SOLVER
A. Equations in curvilinear coordinates
Different sets of equations can be proposed to describe sound propagation in the
atmosphere. For applications in transportation noise, in which the acoustic field does
not perturbate the mean flow, it is appropriate to solve the linearized Euler equations.
In this study, we consider a set of coupled equations for the acoustic pressure p and the
acoustic velocity v = (υx, υy, υz), which have been obtained by neglecting terms of
order (|V0|/c)2 [10]. These equations are given by:
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where V0 = (V0x, V0y, V0z) is the mean flow, ρ0 is the mean density of air and c is the
adiabatic sound speed in the air. In the examples presented in this study, the sound speed is
constant, c = c0, where c0 is the reference sound speed, and there is no mean flow, V0 = 0.
The source terms S and R represent respectively a mass source and external forces. The
equations (1) and (2) are then written in the following conservative form:

(3)

where U = [p, ρ0 υx, ρ0υy, ρ0υz]
T is the unkown vector, E, F, G and H are the Eulerian

fluxes and B is the source vector.
Non-flat boundaries are accounted for by using curvilinear coordinates (see,

e.g., [15]). For that, a mapping is defined from a Cartesian mesh to a curvilinear
boundary-fitted mesh, as shown in Fig. 1. The equation (3) is obtained in the
curvilinear coordinate system (ξ, ζ , η) using chain rule expansions:

(4)

where J = ∂(ξ, ζ, η)/∂(x, y, z) is the Jacobian matrix of the transformation. This leads to:
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Figure 1: Coordinate transformation from the physical domain to the
computational domain. From Dragna et al. [12]



where the fluxes are U* = U/J, E* = (ξxE + ξyF + ξzF)/J, F* = (ζxE + ζyF + ζzG)/J,
G*= (ηxE + ηyF + ηzG)/J, H* = H/J and B* = B/J. In the preceding equations, 
J = |J| is the Jacobian of the transformation. The notation ij = ∂i/∂j is employed to express
the partial derivatives of the coordinate functions.

B. Numerical schemes
Low-dissipation and low-dispersion schemes are required to obtain accurate numerical
solutions in long range sound propagation problems. Among various possible methods
to compute the spatial derivatives, finite-difference methods are probably the most
common. Given an uniform mesh of spatial step Dx, the derivative of the quantity u at
the mesh point xl = lDx, is obtained for a centered finite-difference scheme over 
2N + 1 points by :

(6)

where am are the stencil coefficients with a0 = 0 and a-m = am . The stencil coefficients are
deduced classically from a Taylor expansion, yielding an error decreasing as (Dx)2N.
Alternative methods, based on the minimization of the errors generated by finite-difference
schemes in the wavenumber space, are also widespread [16, 17]. One can cite the centered
fourth-order scheme over 11 points of Bogey and Bailly [17], which has been optimized
down to four points per wavelength and which is employed later.

A standard method to study the numerical errors generated by the finite difference
schemes is to consider an harmonic wave u = exp(ikx), with wavenumber k. Eq. (6)
becomes:

(7)

The term on the right side of the preceding equation can be written as ik*ul, where
k∗ is called the effective wavenumber and is given by the relation:

(8)

The effective wavenumber allows us to quantify easily the errors generated by the
numerical schemes. For that, the simplest wave equation, which is the 1-D advection
equation:
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(9)

is considered with the initial value u(x, t = 0) = exp(ikx). The solution is then given by [18]:

u(x, t) = exp(ikx – ik*ct) = exp(ikx – ikct) exp(i[k – k*]ct). (10)

As the effective wavenumber is real for a centered finite-difference scheme, only
an error on the phase, which grows as the wave propagates, is introduced. At a mesh
point xl = lDx, the signal emitted initially at x = 0 is received with a phase error
equal to εphase = l[k – k*]Dx. Following Fornberg [19], one can then deduce the
number of points per wavelength required to ensure a phase error lower than a
chosen threshold after that the wave has propagated over a given number of
wavelength. This has been displayed for a threshold of π/10 in Fig. 2 (a), and of
π/20 in Fig. 2 (b) for various finite-difference schemes, which are the standard
schemes of order 2 (denoted by FD2s), 4 (FD4s), 6 (FD6s), 8 (FD8s) and 10
(FD10s) and the optimized scheme of Bogey and Bailly [17] of order 4 over 11
points (FD4o11). It is seen that as the order of the standard scheme increases, the
number of points per wavelength is reduced. Additionaly, the optimized scheme
FD4o11 appears favorably compared to the standard scheme with the same number
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Figure 2: Number of points per wavelength λ/Dx as a function of the maximal
number of wavelength accurately resolved for a criterion (a) εphase ≤
π/10 and (b) εphase ≤ π/20 for various numerical methods: FD2s (blue),
FD4s (red), FD6s (green), FD8s (cyan), FD10s (magenta), FD4o11
(magenta with open circles) and Fourier PS (black).



of stencil points, which is the standard scheme of order 10. As an exemple,
propagation of an harmonic wave of wavelength λ = 1 m, corresponding to a
frequency f = 340 Hz, over 100 m is considered. For FD2s, approximately 80
points per wavelength are required to obtain a phase error lower than π/10, resulting
at a computational domain of about 8000 points. For the other standard schemes,
17, 10, 7 and 5 points per wavelength are required for FD4s, FD6s, FD8s and
FD10s, respectively. Only 4 points per wavelength are required for the optimized
scheme, yielding only 400 points in the computational domain. The situation is
even worse as the precision increases. Thus, to get a phase error lower than π/20,
125 points per wavelength are now required for FD2s, while 4 points per
wavelength are still sufficient for FD4o11. This demonstrate that high-order
schemes are numerically efficient for long range wave propagation and that low-
order shemes should be prohibited. Although not discussed here, similar
considerations apply also for the time-integration scheme (see, e.g., [20, 17, 21]).

Other high-order numerical methods than finite-difference methods are also
possible for spatial differentiation. For instance, pseudospectral methods based on
Fourier series (see e.g. [22]) are well-spread numerical techniques for wave-
propagation problems. Their major interest is that they ensure a satisfactory
accuracy for waves down to two points per wavelength, which is the Nyquist-
Shannon sampling limit. They are however restricted to problems with periodic
boundaries. Extensions have been proposed to account for perfectly reflecting
surfaces [23] or impedance surfaces with frequency-independent properties [11].
However, frequency-dependent impedance models for naturals ground can not be
accounted for up to now using the Fourier pseudospectral method, which limits its
use for practical applications.

In this work, optimized finite-difference schemes and selective filters over 11 points
are used to compute the spatial derivative and to remove grid-to-grid oscillations,
respectively. For the interior points, the centered fourth-order finite-difference scheme
of Bogey and Bailly [17] and the sixth-order selective filter of Bogey et al. [24] are
chosen. For the boundary points, the non-centered finite-difference schemes and the
non-centered selective filters of Berland et al. [18] are used. The filtering coefficient is
set to 0.2 for all filters except at the end points at which the filtering coefficient is 0.01.
The time integration is performed with an optimized six-step fourth-order Runge-Kutta
algorithm [21].

C. Time-domain impedance boundary condition
For sound propagation over natural ground, the local reaction approximation is
generally applicable (see e.g. [4]). Under this assumption, the impedance boundary
condition is written in the frequency domain as P (ω) + Z (ω)Vn(ω) = 0, where
ω is the angular frequency, P and Vn are the Fourier transforms of the pressure p
and of the acoustic velocity normal to the ground vn . For a rigid ground, vn = 0
and the surface impedance is infinite. The translation of the impedance boundary
condition into the time domain leads to the convolution:
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(11)

where z(t) is the inverse Fourier transform of the surface impedance. Not all surface
impedance models are physically possible [25]. Indeed, z(t) must be real and causal.
Moreover, because the ground absorbs energy, one must have Re[Z (ω)] > 0, for ω > 0,
where Re denotes the real part. In [26], these conditions have been checked for various
impedance models widely used in the outdoor sound propagation community. It has
been shown, for instance, that the Delany and Bazley impedance model [27], which is
probably the most widespread model in outdoor sound propagation studies, can not be
causal and real simultaneously and is thus not suitable for time-domain computations.

The computation of convolution in Eq. (11) is not straightforward. Indeed, a direct
evaluation of the convolution would require to store the acoustic velocity at the ground
at each iteration. This would be inefficient for long range sound propagation in a 3-D
environment. Therefore, a time-domain boundary condition (TDBC) [28, 29, 30], based
on a recursive convolution approach, is used to account for an impedance ground
surface. The TDBC requires the approximation of the impedance in the frequency-
domain by a rational function:

(12)

where Z∞ is the limit value of Z (ω) as ω tends to infinite, λk are the poles, N is the
number of poles and Ak are numerical coefficients. The parameters λk and Ak can be
obtained by using different methods [30], such as the vector fitting algorithm [31]. The
rational function is passive and causal if the poles λk are real or complex conjugates and
have positive real parts [29]. The condition Re[Z (ω)] > 0 for ω > 0 must be checked
for  each set of coefficients (Ak , λk). 

For simplicity, only real poles are considered hereafter. A detailed presentation of the
TDBC can be found in [29]. Assuming that the normal acoustic velocity is constant over a
time step Dt, the values of the acoutic pressure and velocity at the ground at the discretized
time mDt, respectively denoted by p(m) and un

(m), are related by the formula.

(13)

where φk
(m) are called the accumulators. They are computed using the recursive expression:

. (14)

∑ω
ω

≈ +
−∞

=

Z Z
A

i
( ) ,k

kk

N

1 λ

p t z t t t t( ) ( ) ( )d ,
t

n∫ υ=− − ′ ′ ′
−∞

∑υ φ=− +∞
=

p Z A ,m
n
m

k
k

N

k
m( ) ( )

1

( )

φ υ
λ

φ=−
−

+
λ

λ
− Δ

− − Δe
e

1
.k

m
n
m

t

k
k
m t( ) ( ) ( 1)k

k

aeroacoustics volume 13 · number 5 & 6 · 2014 411



Thus, the recursive convolution method requires only two storage locations per
accumulator, independently of the number of time steps, while a direct computation of
the convolution would demand a much larger memory space. This is, therefore, an
efficient method for long range propagation over impedance surfaces.

III. VALIDATION TEST CASES
Two test cases dealing with the diffraction of acoustic waves are performed to
demonstrate the ability of taking into account impedance surfaces. The first one is
concerned with long range propagation over a flat ground. The second one corresponds
to diffraction of acoustic waves by an impedance sphere. The schematic of these
problems is displayed in Figs. 3.

In both cases, three different boundary conditions are considered. The first one is a
perfectly reflecting surface, corresponding to an infinite surface impedance. The other ones
are impedance surfaces, using the one-parameter Miki impedance model [32]. The second
surface impedance aims at modeling a semi-infinite ground layer with an air flow
resistivity σ0 = 100 kPa.s.m–2, which represents a grassy ground, and the third one a
rigidly backed layer of thickness d =10 cm and of air flow resistivity σ0 = 10 kPa.s.m–2,
which represents a snowy ground. The source is a Gaussian impulse, obtained by
initializing the simulation with v(x, t = 0) = 0 and p(x, t = 0) = ρ0 c0

2 Q(x – xS),
where xS is the position of the  center of the source and 

(15)

with x = |x|.
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part from reference [12]



A. Long range sound propagation in an homogeneous atmosphere
In this first test case, long range propagation above a flat ground is studied. The center of
the source is located initially at xS = (0,0, zS), with zS = 1 m. As an impulse source is
considered, the spatial extent of the acoustic signal is small. Therefore, the computational
domain can be reduced to a narrow region near the impulse signal. As proposed by
Salomons et al. [33], a moving frame which follows the propagation of the impulse signal
is implemented. The mesh is uniform and the spatial step is set to Dx = Dy = Dz = 0.05
m. The CFL number, defined by CFL = c0 Dt / Dx, is 0.67 and 9000 time iterations are
performed. Perfectly matched layers [34] are used at the outter boundaries. The
computational domain has 345 ¥ 501 ¥ 396 points and its size is [–15 m, 2.25 m] ¥ [–12.5
m, 12.5 m] ¥ [0 m, 19.75 m] in the x–, y– and z-directions, respectively.

The waveforms obtained from the numerical solution and from an analytical solution 
[35, 12] are displayed in Fig. 4 as a function of the normalized time t̄ = c0t/x for the 
different boundary conditions and for two receivers M1 (x = 200 m, y = 0 m, z = 2 m) and
M2 (x = 200 m, y = 0 m, z = 10 m). For the perfectly reflecting surface, the waveforms
are quite simple. As the receivers are in grazing incidence, the direct and reflected waves are
mixed. Therefore, only one contribution can be seen. Note that the time of arrival of the
impulse signal at the receiver M2 is slightly larger than that at the receiver M1, because of
the larger travel time. For the impedance surfaces close to the ground, the waveforms are
dominated by a low-frequency oscillating wave. This is in particular the case for the snowy
ground, for which the spatial extent of this wave exceeds the length of the computational
domain. Therefore, it is seen that the numerical solution at M1 abruptly goes to 0 for

aeroacoustics volume 13 · number 5 & 6 · 2014 413

0.995 0.98 0.981 1 11.005 1.02 1.021.04

1.04

1.01 1.04
−5

1.015 1.06

0

−6

5

1.08
−6

10

0 0

6

× 10−4 × 10−5 × 10−5

6

p/
ρ 0

c 
2 0

p/
ρ 0

c 
2 0

p/
ρ 0

c 
2 0

t t t

M
1

z 
= 

2 
m

0.995 0.98 0.981 1 11.005 1.02 1.021.01 1.04
−1

1.015 1.06

0

−6

1

1.08
−1.5

2

0 0

6

× 10−4 × 10−4 × 10−4

1.5

p/
ρ 0

c 
2 0

p/
ρ 0

c 
2 0

p/
ρ 0

c 
2 0

t t t

M
2

z 
= 

10
 m

Grass SnowRigid

Figure 4: Waveforms of the normalized pressure p/ρ0c0
2 obtained at receivers M1

and M2 and for the three boundary conditions as a function of the
normalized time t̄ = c0t/x: numerical (black solid line) and analytical (red
dashed line) solutions and (black dashed line) surface wave solution.



t̄ = 1.07. This behaviour is expected to be related to the surface wave component. To
confirm this assumption, the surface wave solution has been plotted in a black dashed line
in Fig. 4. It matches the oscillating part of the waveform with a good agreement. For the
receiver M2 located at a higher altitude than M1, the contribution of the surface wave is
reduced, as its amplitude decays exponentialy with the height above the ground. These
surface waves have been also exhibited in results of two-dimensional simulations of
long range propagation over impedance surfaces in [36]. Note that in all cases, the
analytical and numerical solutions are superimposed.

B. Diffraction by an impedance sphere
The second test-case deals with diffraction of spherical waves by an impedance sphere.
It aims to demonstrate that the TDBC is also efficient for non-flat geometries. 
The coordinate transformation

x = (1 + η) cos ξ, (16)

y = (1 + η) sin ζ sin ξ, (17)

z = (1 + η) cos ζ sin ξ, (18)

is used. In this section, all spatial parameters are made non-dimensional using the sphere
radius R as the length scale. Note that (r = 1 + η, ξ, ζ ) correspond to the spherical
coordinates, with x-axis as the polar axis. The Gaussian pulse is centered at 
xS = (xS , 0, 0) with xS = 3. The Gaussian halfwidth is Bx = 0.4. Three receivers denoted
as M1, M2 and M3 are placed in the computational domain with r = 10, ζ = 0 and with
respectively ξ = π/2, ξ = 3π/4 and ξ = π. Periodic boundary conditions are imposed in the
polar and azimuthal directions, i.e. in the ξ and ζ -directions. In the radial direction, i.e. in
the η-direction, the non-reflecting boundary condition of Bogey and Bailly [37] is used.

The Jacobian of the transformation:

(19)

is singular at ξ = 0 and at ξ = π. To avoid these singularities, as proposed by [38] for
the polar case, the mesh is shifted by Dξ/2 in the ξ-direction. Additionaly, the mesh in
the azimuthal direction is very coarse close to ξ = 0 and at ξ = π, which would result
to a very small time step due to the CFL stability restriction and hence to a large
computational cost. Therefore, following Bogey et al. [39], the discretization in the 
ζ-direction is artificially increased by evaluating the derivative not from directly
adjacent points but from points separated by mDζ avec m > 1. Details on the numerical
methods used for this test case can be found in Dragna et al. [12]. 160 ¥ 320 ¥ 600
points are used respectively in the ξ, ζ and η directions with mesh sizes Dξ = Dζ =
0.02 and Dη = 0.025. The CFL number is set to 0.7, and 4500 time iterations are
performed.
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In Fig. 5, the pressure waveforms obtained at the three receivers for the three
boundary conditions are displayed as a function of the time. It is seen that the analytical
solution is perfectly superimposed on the numerical solution in all cases. Therefore, it
is demonstrated that the TDBC is well-adapted to account for impedance surfaces in a
non-flat geometry in the time domain.

IV. APPLICATION TO BROADBAND MOVING SOURCES
The numerical solver presented in the previous section is now used to investigate the
radiation by moving sources in a realistic environment.

A. Implementation
The implementation of a moving source in motion in discretization methods is not
straightforward. As an example, the simplest acoustic sources which are point-sources,
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are difficult to handle when they are moving. Indeed, at each time step, they must be
located on a grid node, which requires special attention for the grid generation.
Moreover, it raises an another issue for explicit time-integration schemes. Indeed, let us
consider a point-source in motion at an uniform speed V0. During one time step Dt, the
source must move at least by one spatial step Dx. In addition, the time step must satisfy
the Courant-Friedrichs-Lewy condition to ensure the numerical stability. This writes
CFL < CFLmax, where CFLmax is the CFL limit. The Mach number of the source,
defined by M = V0/c0, is then related to the CFL number by the relation M = 1/CFL,
which shows that the source speed can not be chosen too small. This dramatically limits
possible applications in transportation noise. A way to overcome these issues is to
consider an extended acoustic source. If the source is compact, it is expected that it
behaves as a point-source. Details on the effects of an extended source in motion at an
uniform speed on the acoustic field can be found in [40].

Implementation of a monopole-type moving source is performed trough the mass
source term in Eq. (1) by setting :

S(x, t) = Q(x - xS(t))s(t), (20)

where Q is the source spatial distribution and xS(t) is the position of the source center
at time t. For dipole-type sources, it is preferable to use the external forces term in Eq.
(2). The time-domain signal s(t) is obtained by multiplying the Fourier transform of a
synthetized white noise signal by the desired spectrum in the frequency domain and by
doing an inverse Fourier transform of the result. For each realization of the source
signal, one computation has to be performed. The mean value of an acoustic quantity is
thus obtained by computing its average value over the number of realizations of the
source signal. Increasing the number of realizations improves the convergence of the
results but leads to an additional computational cost. A trade-off has then to be found to
ensure a satisfactory convergence and an acceptable computational cost.

In following cases, sources are moving at a constant height and at a constant speed
and, hence, xS(t) = (V0t, 0, zS). The source spatial distribution is Gaussian, with 
Bx = 0.1 m (see Eq. (15)). In addition, the one-sided power spectral density (PSD) of
s(t) is a Gaussian function:

(21)

where s0 is a normalization parameter set to 1.07. The central frequency fc is 300 Hz.
The parameter fb controls the decrease of the Gaussian and is set to 100 Hz. The
frequency content of the source is thus significant for frequencies between 200 Hz and
400 Hz. As for the maximum frequency of interest f = 400 Hz, the parameter k0B is less
than 1, the source can be considered as compact and is expected to behave like a point
source. Ten realizations of the random source signal are performed for each case.

( )
= −

−
⎡

⎣

⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥⎥

S s
f f

f
exp 2 ,ss

c

b
0

2

2

416 Towards realistic simulations of sound radiation by moving sources 

in outdoor environments



B. Validation
First, radiation by a source moving at a constant above a perfectly reflecting ground is
considered as a test case to validate the proposed methodology. A schematic of the
problem is depicted in Figure 6. The source is moving along the x-axis at a constant
height zS = 2.1 m and at a constant speed V0 = 50 m.s-1. The Mach number is then
equal to 0.15. At the initial simulation time, the source is located at x = -95 m. The
grid has 2001 ¥ 351 ¥ 72 points. The mesh grid is uniform and Dx = Dy = Dz = 0.1 m.
The domain size is then [–100 m; 100 m] ¥ [-5 m; 30 m] ¥ [0 m; 7.1 m]. The CFL
number is set to unity and 12000 time iterations are performed. Two receivers denoted
as M1 and M2 and located respectively at x = 0 m, y = 4.9 m and z = 3 m and at x =
0 m, y = 24.9 m and z = 3.5 m are considered. The instantaneous PSD obtained at these
receivers are plotted as a function of the time and the frequency in Figure 7. The
reference pressure is set to pref = 2 ¥ 10-5 Pa. The Doppler shift is clearly observed, as
the acoustic pressure has a higher frequency content when the source approaches the
receiver than when the source recedes from the receiver. As for a non-moving source,
the ground effects are important. As an illustration, strong destructive and constructive
interferences are clearly visible.

In the case of reflection by a perfectly reflecting surface, the acoustic field is the sum of
two contributions, the first one due to the source and the second one due to an image source
located symmetrically to the source with respect to the ground plane. As the analytical
solution of the acoustic pressure for a point source moving at a constant speed in free field
is well-known [41], the analytical solution for a harmonic point source moving at a constant
speed above a perfectly reflecting surface and emitting at the angular trequency ω0 is thus
easily obtained, yielding:

(22)
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Figure 6: Source moving above a flat surface of impedance ZS along the x-axis at a
constant speed V0 in a 3-D geometry. Two receivers M1 and M2 are
considered. From Dragna et al. [40].



In the preceding equation, (Re,1, cos θe,1) and (Re,2, cos θe,2) are the retarded time
coordinates whose origin is the source and the image source, respectively. Minima of
the acoustic pressure modulus occur when kn (Re,2 - Re,1) = (1 + 2n)π, for n positive
integer. The destructive interference is directly linked to the frequency fn = c0kn /(2π).
However, due to the Doppler shift, it does not appear from the observer’s point of view
at the frequency fn. Moreover, the signal originated from the source and the image
source are not perceived at the same frequencies for a fixed observer, because their
locations are not the same. However, as the source is close to the ground, and, hence,
cos θe,2 ≈ cos θe,1, the frequency at the observer is approximately equal to fD,n = fn / (1
- M0 cos θe,1). The curves representing fD,n for n = 0 at the two receivers and for n =
1 at the receiver M1 are plotted in a dashed line in Figure 7. A good agreement is found
for the destructive interference location. Other values of n are related to higher
frequencies which are not relevant for the source considered here.

The numerical solution is now compared to an analytical solution. From Eq. (22), the
instantaneous PSD for a broadband spherical source with a spherical symmetry moving
above a rigid ground is given by:

(23)

In the preceding equation, Q̂ is the spatial Fourier transform of the source spatial
distribution Q evaluated at wavenumber kD = k0 / (1 - M0 cos θe,1). It accounts for the
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effect of the source spatial distribution on the acoustic field. The instantaneous sound
pressure level (SPL), which is obtained by integrating the one-sided power spectral
densities over frequencies:

(24)

is displayed in Figure 8 as a function of the time for the analytical and numerical solutions. It is
seen that the time variations of the SPL are large at the receiver M1. Indeed, due to the
constructive interference pattern, there is almost 20 dB difference in the SPL when the source is
in front of the receiver and when the source is far from the receiver. For the receiver M2, the
amplitude of the variations of the SPL is reduced. The SPL computed from the analytical and
numerical solutions are in a very good accordance, as the maximum difference is about 0.5 dB.

C. Application on a realistic site
The methodology presented in the preceding section is now applied to investigate the acoustic
radiation by moving sources in a realistic environment. The site corresponds to a railway site with
a ballasted track in La Veuve, near Reims in France, where outdoor acoustic measurements were
performed in May 2010. Comparisons between experimental results and numerical predictions
are presented in Dragna et al. [42]. The topography of the site is invariant in the x-axis. The
topographic cross-section is shown in Fig. 9. The terrain is non-flat and presents, in particular, a
gap for y = 18 m, whose depth is approximately 0.8 m. Moreover, the ground is inhomogeneous,
as three different ground types corresponding to a ballast bed, a soil and a grassy ground, were
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distinguished. The ballast bed is modeled using the Hamet and Bérangier impedance model [43]
for a semi-infinite layer of air flow resistivity 0.3 kPa.s.m-2 , tortuosity 1.12 and porosity 0. 5.
The soil and the grassy ground are modeled using the one-parameter Miki impedance model [32]
of a rigidly backed layer of air flow resistivity 600 kPa.s.m-2 and thickness 0.006 m and of air
flow resistivity 180 kPa.s.m-2 and thickness 0.018 m, respectively.

The grid is similar to that of the previous simulation. The CFL number is set to 0.4
and 16000 time iterations are performed. The source is moving along the x-axis at a
speed V0 = 100 m.s-1 and at a height zS = 0.32 m, corresponding to 0.5 m above the
ballast surface. The coordinate transformation is:

x = ξ, (25)

y = ζ, (26)

z = η + H (ζ), (27)

where H is the ground profile. In order to investigate the effects of the gap, two
simulations in which the gap is accounted for or not are performed. Corresponding
ground profiles are displayed in Fig. 9.

Firstly, the results obtained for the ground profile with the gap are considered. The
instantaneous Power Spectral Density (PSD) of the acoustic pressure at two receivers
located at M1 (x = 0 m, y = 7.5 m, z = 0.13 m) and M2 (x = 0 m, y = 20 m, z = -
0.39 m) are displayed as a function of the frequency and the time in Fig. 10. The PSD
at M1 is typical of a moving source. The frequency content of the acoustic pressure is
centered around f = 400 Hz as the source approaches the receiver (t<0 s) and around
f = 250 Hz as the source recedes from the receiver (t>0 s). The Doppler effect is more
pronounced than in Figs. 7 (a) and (b) as the source speed is greater and as there is no
noticeable interference patterns in this case. The PSD at the receiver M2, located just
after the gap, is similar to the previous one. The Doppler shift occurs over a larger time,
as the receiver M2 is located at a larger distance from the source than M1. It is seen that
the PSD is lower over all the frequency band of interest as the source approaches the
receiver than as the sources recedes from the receiver.
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The effects of the gap are now investigated by examining the acoustic field at a
column of receivers located just after the gap, at x = 0 m and y = 20 m. The equivalent
sound pressure level:

(28)

with tp = 0.5 s, is displayed as a function of z in Fig. 11. For receivers with z < 0 m, the
sound pressure level is reduced due to the presence of the gap. As the opposite, for higher 
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heights, it is increased. The maximal deviation is obtained at the receiver M2 at z = -0.39
m and is equal to 1.5 dB.

At last, the SPL obtained at the two receivers are represented as a function of the time in
Fig. 12. The receiver M1, is located between the source and the gap. Therefore, the curves
obtained for both ground profiles are superimposed and the gap has no noticeable effect. The
SPL is maximum when the source is in front of the receiver, and decreases as the distance
to the receiver increases. At M2, the curves representing the SPL are flatter. They are also
non-symmetric around t = 0 s, as observed previously for the time-frequency
decompositions in Fig. 10 (b). This is due to the source motion and, in particular, to the
convective amplification and also to the ground attenuation which depends on the
frequency content of the incident waves. As the frequencies of the acoustic waves
impacting the ground are not the same when the sources approaches or recedes from the
receiver, the ground effect is dramatically modified. The effects of the gap are
pronounced when the source is in front of the receiver. Thus, there are more than 2 dB
difference for t = 0 s. When the source is far from the receiver, the effects of the gap
are reduced and for |t| > 0.3 s, the curves obtained for the cases with and without the
gap are almost superimposed. This behavior can be explained as diffraction effects are
not the same depending on the source position relative to the receiver position. Indeed,
when the source is in front of the receiver, the length of the gap along the sound
propagation path is approximately 3 m, as seen in Fig. 9. As the distance from the
receiver increases, the length of the gap along the sound propagation path increases. It
can then be expected that diffraction effects are significant when the source is in front
of the receiver, corresponding to t = 0 s, and decrease as the distance from the receiver
increases.

422 Towards realistic simulations of sound radiation by moving sources 

in outdoor environments

−0.5 0 0.5
70

80

90

100

110

t, s

S
P

L,
 d

B

Figure 12: Instantaneous SPL in dB as a function of the time at M1 (red) and M2
(black) for the topography with (full line) and without (dashed line)
the gap. 



V. CONCLUSION
A numerical solver of the linearized Euler equations has been developed with the aim of
accounting for acoustic radiation by moving sources in outdoor environments. It uses high-
order finite-difference schemes for the spatial derivation and a high-order Runge-Kutta
algorithm for the time-integration. An impedance boundary condition based on a recursive
convolution approach is implemented to account for reflexion of acoustic waves on ground
surfaces. The solver has been first validated against test cases dealing with long range
propagation above an impedance plane and diffraction by an impedance sphere. It has been
then employed to study radiation by moving sources. In the simple configuration of a
broadband monopole-type source in motion at a constant height and at a constant speed
above a perfecly reflecting ground, the time-frequency decompositions have shown strong
destructive interference patterns as for a fixed source. Deviations from an analytical solution
were shown to be small. The more complex configuration of a broadband source moving at
a constant height and at a constant speed above a non-flat terrain, presenting a gap and with
a mixed impedance ground has been examined. The time-frequency decomposition does not
present any interference pattern over the frequency band of interest. The gap plays an
important role when the source is in front of the receiver, but its effect on the acoustic field
is negligible when the distance source-receiver is large. In both configurations, the Doppler
shift is exhibited.

Time-domain simulations of outdoor sound propagation are now mature for
applications in industry. As shown in this paper, they allow one to consider complex
environments, with a topography and a mixed impedance ground, and can account for
any source trajectory. Time signals obtained directly from the results of the simulations
without any further assumption can be used for auralization. In near future, they can be
applied for virtual certification of acoustic performance under the condition that
transportation noise sources are sufficiently well described.
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