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Université de Toulouse,

135, avenue de Rangueil, 31 077 Toulouse Cedex 4, France.

Email: clement.marteau@math.univ-toulouse.fr

and

Theofanis Sapatinas,

Department of Mathematics and Statistics,

University of Cyprus,

P.O. Box 20537, CY 1678 Nicosia, Cyprus.

Email: fanis@ucy.ac.cy

March 27, 2015

Abstract

We consider a Gaussian sequence model that contains ill-posed inverse problems as special
cases. We assume that the associated operator is partially unknown in the sense that its
singular functions are known and the corresponding singular values are unknown but observed
with Gaussian noise. For the considered model, we study the minimax goodness-of-fit testing
problem. Working with certain ellipsoids in the space of squared-summable sequences of
real numbers, with a ball of positive radius removed, we obtain lower and upper bounds
for the minimax separation radius in the non-asymptotic framework, i.e., for fixed values
of the involved noise levels. Examples of mildly and severely ill-posed inverse problems
with ellipsoids of ordinary-smooth and super-smooth sequences are examined in detail and
minimax rates of goodness-of-fit testing are obtained for illustrative purposes.
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1 Introduction

We consider the following Gaussian sequence model (GSM),
{

Yj = bjθj + ε ξj, j ∈ N,

Xj = bj + σ ηj , j ∈ N,
(1.1)

where N = {1, 2, . . .} is the set of natural numbers, b = {bj}j∈N > 0 is an unknown se-
quence, θ = {θj}j∈N ∈ l2(N) is the unknown signal of interest, ξ = {ξj}j∈N and η = {ηj}j∈N
are sequences of independent standard Gaussian random variables (and independent of each
other), and ε, σ > 0 are known parameters (the noise levels). The observations are given
by the sequence (Y,X) = {(Yj ,Xj)}j∈N from the GSM (1.1) and their joint law is denoted
by Pθ,b. Here, l2(N) denotes the space of squared-summable sequence of real numbers, i.e.,
l2(N) = {θ ∈ R

N : ‖θ‖2 :=∑j∈N θ
2
j < +∞}.

The GSM (1.1) arises in the case of ill-posed inverse problems with noisy operators. Indeed,
consider the Gaussian white noise model (GWNM)

dYε(t) = Af(t)dt+ ε dW (t), t ∈ V, (1.2)

where A is a linear bounded operator acting on a Hilbert spaceH1 with values on another Hilbert
space H2, f(·) ∈ H1 is the unknown response function that one wants to detect or estimate,
W (·) is a standard Wiener process on V ⊆ R, and ε > 0 is a known parameter (the noise level).
For the sake of simplicity, we only consider the case when A is injective (meaning that A has a
trivial nullspace) and assume that V = [0, 1], H1 = L2([0, 1]), U ⊆ R and H2 = L2(U). In most
cases of interest, A is a compact operator (see, e.g., Chapter 2 of [10]). In particular, it admits
a singular value decomposition (SVD) (bj , ψj , ϕj)j∈N, in the sense that

Aϕj = bjψj , A⋆ψj = bjϕj , j ∈ N, (1.3)

where A⋆ denotes the adjoint operator of A – here (b2j )j∈N and (ϕj)j∈N are, respectively, the
eigenvalues and the eigenfunctions of A⋆A. Thus, the (first equation in) GSM (1.1) arises where
for all j ∈ N

Yj =

∫ 1

0
ψj(t)dYε(t), θj =

∫ 1

0
ϕj(t)f(t)dt, ξj =

∫ 1

0
ψj(t)dW (t), j ∈ N,

and b2j > 0 (since A is injective). In this case, the GWNM (1.2) corresponds to a so-called
ill-posed inverse problem since the inversion of A∗A is not bounded. Possible examples of such
decompositions arise with, e.g., convolution or Radon-transform operators, see, e.g., [10]. The
effect of the ill-posedness of the model is clearly seen in the decay of the singular values bj as
j → +∞. As j → +∞, bjθj gets weaker and is then more difficult to perform inference on the
sequence θ = {θj}j∈N.

In the early literature, the compact operator A (and, hence, its sequence b = {bj}j∈N of
singular values) was supposed to be fully known. (Note that, in this case, the second equation
in the GSM (1.1) does not appear.) We refer, e.g., to [3], [5], [4], [7], [8] (minimax estimation)
and to [14], [11] (minimax signal detection/minimax goodness-of-fit testing). Therein, minimax
rates/oracle inequalities (estimation) and minimax separation radius/minimax separation rates
(signal detection or goodness-of-fit testing) were established, amongst other investigations, for
ill-posed inverse problems with smoothness conditions on the sequence of interest.

The case of an unknown compact operator A that is observed with Gaussian noise has also
been recently treated in the estimation literature, especially the situation where A is partially
unknown, see, e.g., [6], [9], [13]. In these contributions, it is assumed for the corresponding SVD
(1.3) that
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• the sequence of singular functions (ψ,ϕ) = (ψj , ϕj)j∈N is known,

• the sequence of singular values b = {bj}j∈N is unknown but observed with some Gaussian
noise.

In other words, the following sequence model is considered

Xj = bj + σ ηj , j ∈ N,

where η = {ηj}j∈N is a sequence of independent standard Gaussian random variables (and inde-
pendent of the standard Gaussian sequence ξ = {ξj}j∈N), and σ > 0 is a known parameter (the
noise level). Therefore, the second equation in the GSM (1.1) is also readily available.

To practically motivate the GSM (1.1), consider the following deconvolution model (see also
[6] for a complete discussion on this subject)

dYε(t) = g ⋆ f(t) + ε dW (t), t ∈ [0, 1], (1.4)

where

g ⋆ f(t) =

∫ 1

0
g(t− x)f(x)dx, t ∈ [0, 1],

is the convolution between g(·) and f(·), g(·) is an unknown 1-periodic (convolution) kernel
in L2([0, 1]), f(·) is an unknown 1-periodic signal in L2([0, 1]), dYε(·) is observed, W (·) is a
standard Wiener process, and ε > 0 is the noise level. Let φj(·), j ∈ N, be the usual real
trigonometric basis on V . The model (1.4) is equivalent to the (first equation in the) GSM
(1.1) by a projection on the trigonometric basis φj(·), j ∈ N. In the case where the kernel
g(·) is unknown (i.e., the sequence (bk)k∈N = (〈g, φk〉)k∈N is unknown), suppose that we can
pass the trigonometric basis φj(·), j ∈ N, through the convolution kernel, i.e., to send each
φj(·), j ∈ N, as an input function f(·) and observe the corresponding dYε,j(·), j ∈ N. In other
words,we are able to obtain training data for the estimation of the unknown convolution ker-
nel g(·) in this setting. In particular, we obtain exactly the two sequences of observations Yj
and Xj , j ∈ N, in the GSM (1.1). In this case, the corresponding noise levels coincide, i.e., ε = σ.

To the best of our knowledge, there is no research work on minimax goodness-of-fit testing
in ill-posed inverse problems with partially unknown operators. Our aim is to fill this gap. In
particular, considering model (1.1) and working with certain ellipsoids in the space of squared-
summable sequences of real numbers, with a ball of positive radius removed, we obtain lower
and upper bounds for the minimax separation radius in the non-asymptotic framework, i.e.,
for fixed values of ε and σ. Examples of mildly and severely ill-posed inverse problems with
ellipsoids of ordinary-smooth and super-smooth sequences are examined in detail and minimax
rates of goodness-of-fit testing are obtained for illustrative purposes.

The paper is organized as follows. Section 2 presents the considered statistical setting and a
brief overview of the main results. Section 3 is devoted to the construction of the suggested test-
ing procedure. A general upper bound on the maximal second kind error is then displayed and
special benchmark examples are presented for illustrative purposes. The corresponding lower
bounds are proposed in Section 4. Some concluding remarks and open questions are discussed
in Section 5. Finally, all proofs and technical arguments are gathered in Section 6.

Throughout the paper we set the following notations. For all x, y ∈ R, δx(y) = 1 if x = y
and δx(y) = 0 if x 6= y. Also, x ∧ y := min{x, y} and x ∨ y := max{x, y}. Given two sequences
(cj)j∈N and (dj)j∈N of real numbers, cj ∼ dj means that there exists 0 < κ0 ≤ κ1 <∞ such that
κ0 ≤ cj/dj ≤ κ1 for all j ∈ N. Let ν be either ε or σ or (ε, σ), and let V be either R+ := (0,+∞)
or R+×R

+. Given two collections (cν)ν∈V and (dν)ν∈V of positive real numbers, cν & dν means
that there exists 0 < κ0 < +∞ such that cν ≥ κ0 dν for all ν ∈ V. Similarly, cν . dν means that
there exists 0 < κ1 < +∞ such that cν ≤ κ1 dν for all ν ∈ V.
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2 Minimax Goodness-of-Fit Testing

2.1 The Statistical Setting

Given observations (Y,X) = {(Yj ,Xj)}j∈N from the GSM (1.1), the aim is to compare the
underlying (unknown) signal θ ∈ l2(N) to a (known) benchmark signal θ0, i.e., to test

H0 : θ = θ0 versus H1 : θ − θ0 ∈ F , (2.1)

for some given θ0 and a given subspace F . The statistical setting (2.1) is known as goodness-of-fit
testing when θ0 6= 0 or signal detection when θ0 = 0.

Remark 2.1 Given observations from the GWNM (1.2), the goodness-of-fit testing problem
(2.1) is equivalent to

H0 : f = f0 versus H1 : f − f0 ∈ F̃ ,
for a given benchmark function f0 and a given subspace F̃ . In most cases, F̃ contains functions
f ∈ L2([0, 1]) that admit a Fourier series expansion with Fourier coefficients θ belonging to F
(see, e.g., [12], Section 3.2.).

The choice of the set F is important. Indeed, it should be rich enough in order to contain
the true θ. At the same time, if it is too rich, it will not be possible to control the performances
of a given test due to the complexity of the problem. The common approach for such problems
is to impose both a regularity condition (which characterizes the smoothness of the underlying
signal) and an energy condition (which measures the amount of the underlying signal).

Concerning the regularity condition, we will work with certain ellipsoids in l2(N). In partic-
ular, we assume that θ ∈ Ea(R), the set Ea(R) being defined as

Ea(R) =







θ ∈ l2(N),
∑

j∈N

a2jθ
2
j ≤ R







, (2.2)

where a = (aj)j∈N denotes a non-decreasing sequence of positive real numbers with aj → +∞
as j → +∞, and R > 0 is a constant. The set Ea(R) can be seen as a condition on the decay of
θ. The cases where a increases very fast correspond to θ with a small amount of non-zero coef-
ficients. In such a case, the corresponding signal can be considered as being ‘smooth’. Without
loss of generality, in what follows, we set R = 1, and write Ea instead of Ea(1).

Regarding the energy condition, it will be measured in the l2(N)-norm. In particular, given
rε,σ > 0 (called the radius), which is allowed to depend on the noise levels ε, σ > 0, we will
consider θ ∈ Ea such that ‖θ‖ > rε,σ. Given a smoothness sequence a and a radius rε,σ > 0, the
set F can thus be defined as

F := Θa(rε,σ) = {θ ∈ Ea, ‖θ‖ ≥ rε,σ} . (2.3)

In other words, the set F is an ellipsoid in l2(N) with a ball of radius rε,σ > 0 removed. In many
cases of interest, the set F provides constraints on the Fourier coefficients of f ∈ L2([0, 1]) in
the model (1.2) (see, e.g., [12], Section 3.2).

We consider below the hypothesis testing setting (2.1) with θ0 6= 0 (i.e., goodness-of-fit
testing). Formally, given observations from the GSM (1.1), for any given θ0 6= 0, we will be
dealing with the following goodness-of-fit testing problem

H0 : θ = θ0 versus H1 : θ0 ∈ Ea, θ − θ0 ∈ Θa(rε,σ), (2.4)
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where Θa(rε,σ) is defined in (2.3). The sequence a being fixed, the main issue for the problem
(2.4) is then to characterize the values of rε,σ > 0 for which both hypotheses H0 (called the null
hypothesis) and H1 (called the alternative hypothesis) are ‘separable’ (in a sense which will be
made precise later on).

Remark 2.2 We would like to stress that in the standard GSM (i.e., (1.1) with σ = 0), sig-
nal detection (i.e., θ0 = 0) and goodness-of-fit testing (i.e., θ0 6= 0) problems are equivalent
as soon as the involved operator is injective. Indeed, without loss of generality, we can still
replace the observed sequence (Yj)j∈N by (Ỹj)j∈N := (Yj − bjθ0,j)j∈N. This is no more the case
in the GSM (1.1) since the sequence (bj)j∈N is unknown. Signal detection and goodness-of-fit
problems should therefore be treated in a different manner. In this work, we only address the
goodness-of-fit testing problem (2.4).

In the following, a (non-randomized) test Ψ := Ψ(Y,X) will be defined as a measurable
function of the observation (Y,X) = (Yj ,Xj)j∈N from GSM (1.1) having values in the set {0, 1}.
By convention, H0 is rejected if Ψ = 1 and H0 is not rejected if Ψ = 0. Then, given a test Ψ,
we can investigate

• the first kind error probability defined as

αε,σ(Ψ) := Pθ0,b(Ψ = 1), (2.5)

which measures the probability to reject H0 when H0 is true (i.e., θ = θ0); it is often
constrained as being bounded by a prescribed level α ∈]0, 1[, and

• the maximal second kind error probability defined as

βε,σ(Θa(rε,σ),Ψ) := sup
θ0∈Ea, θ−θ0∈Θa(rε,σ)

Pθ,b(Ψ = 0), (2.6)

which measures the worst possible probability not to reject H0 when H0 is not true (i.e.,
when θ0 ∈ Ea and θ − θ0 ∈ Θa(rε,σ)); one would like to ensure that it is bounded by a
prescribed level β ∈]0, 1[.

For simplicity in our exposition, we will restrict ourselves to α-level tests, i.e., tests Ψα sat-
isfying αε,σ(Ψα) ≤ α, for any fixed value α ∈]0, 1[.

Let α, β ∈]0, 1[ be given, and let Ψα be an α-level test.

Definition 2.1 The separation radius of the α-level test Ψα over the class Ea is defined as

rε,σ(Ea,Ψα, β) := inf
{

rε,σ > 0 : βε,σ(Θa(rε,σ),Ψα) ≤ β
}

,

where the maximal second kind error probability βε,σ(Θa(rε,σ),Ψα) is defined in (2.6).

In some sense, the separation radius rε,σ(Ea,Ψα, β) corresponds to the smallest possible value
of the available signal ‖θ − θ0‖ for which H0 and H1 can be ‘separated’ by the α-level test Ψα

with maximal second kind error probability, bounded by a prescribed level β ∈]0, 1[.

Definition 2.2 The minimax separation radius r̃ε,σ := r̃ε,σ(Ea, α, β) > 0 over the class Ea is
defined as

r̃ε,σ := inf
Ψ̃α:αε,σ(Ψ̃α)≤α

rε,σ(Ea, Ψ̃α, β). (2.7)

The minimax separation radius r̃ε,σ corresponds to the smallest radius rε,σ > 0 such that
there exists some α-level test Ψ̃α for which the maximal second kind error probability βε,σ(Θa(rε,σ), Ψ̃α)
is not greater than β.
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2.2 Summary of the Results

Our aim is to establish ‘optimal’ separation conditions for the goodness-of-fit testing problem
(2.4). This task requires, in particular, precise (non-asymptotic) controls of the first kind error
probability αε,σ(Ψα) and the maximal second kind error probability βε,σ(Θa(rε,σ),Ψα) (of a
specific test Ψα that will be made precise in Section 3) by prescribed levels α, β ∈]0, 1[, respec-
tively. Such controls allow us to derive both upper and lower bounds on the minimax separation
radius r̃ε,σ, as summarized in the following theorem.

Theorem 2.1 Let α, β ∈]0, 1[ be fixed, such that α ≤ β. Consider the goodness-of-fit testing
problem (2.4). Then, there exist explicit positive constants1 C̃(α, β) > 0, Cα,β > 0, cα,β > 0 and
σ0 ∈]0, 1[ such that, for all 0 < σ ≤ σ0 and for each ε > 0,

(i) r̃2ε,σ ≤ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

(

7 +
√

ln(2/α)
)

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 ,

and, for all ε, σ > 0,

(ii) r̃2ε,σ ≥
{

C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ]

}

∨







sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D











,

where the bandwidths M0,M1 and M2 depend1 on both (bj)j∈N and σ.

Theorem 2.1 provides a precise description on the behavior of the minimax separation radius
r̃ǫ,σ in terms of the sequences (aj)j∈N and (bj)j∈N and of the noise levels ǫ and σ. It is worth
pointing out that this control is non-asymptotic. There is indeed a technical constraint on the
value of σ (0 < σ ≤ σ0, σ0 ∈]0, 1[), but we do not assume its convergence towards 0, i.e., we
work with fixed values of the noise levels ε and σ.

Then, we apply the above result on specific problems. Namely, we consider various behaviors
for both sequences (aj)j∈N and (bj)j∈N, and discuss the properties of the associated minimax sep-
aration radii r̃ε,σ. Concerning the eigenvalues (b2j )j∈N of the operator A∗A, we will alternatively
consider situations where

bj ∼ j−t or bj ∼ exp(−jt), ∀j ∈ N, for some t > 0.

The first case corresponds to the so-called mildly ill-posed problems while the second one cor-
responds to severely ill-posed problems. Concerning the ellipsoids Ea, i.e., the sequence (aj)j∈N,
two different kinds of smoothness will be investigated, namely,

aj ∼ js or aj ∼ exp(js), ∀j ∈ N, for some s > 0,

the so-called ordinary-smooth and super-smooth cases, respectively. In the above scenarios, we
apply Theorem 2.1 and describe the associated upper and lower bounds on the minimax sepa-
ration radius r̃ε,σ. They are, respectively, displayed in Table 2.1 and Table 2.2.

Looking at these tables, both lower and upper bounds coincide in every considered case, up
to a logarithm term that depends on the noise level σ. Hence, Theorem 2.1 provides a sharp

1For the sake of brevity, these quantities are made precise in the subsequent sections
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Goodness-of-Fit ordinary-smooth super-smooth
Testing Problem aj ∼ js aj ∼ exp{js}
mildly ill-posed ε4s/(2s+2t+1/2) ∨ [σ ln3/4(1/σ)]2[(s/t)∧1] ε2(ln(1/ε))2t+1/2 ∨ σ2 ln3/2(1/σ)

bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ ln−1/2(1/σ))]−2s ε2s/(s+t) ∨ [σ ln1/2(1/σ)]2[(s/t)∧1]

bj ∼ exp{−jt}

Table 2.1: Minimax goodness-of-fit testing with unknown singular values: upper bounds on the
minimax separation radius r̃2ε,σ for 0 < ε ≤ ε0, ε0 ∈]0, 1[, and 0 < σ ≤ σ0, σ0 ∈]0, 1[, for all
t, s > 0.

Goodness-of-Fit ordinary smooth super smooth
Testing Problem aj ∼ js aj ∼ exp{js}
mildly ill-posed ε4s/(2s+2t+1/2) ∨ σ2[(s/t)∧1] ε2(ln ε−1)2t+1/2 ∨ σ2

bj ∼ j−t

severely ill-posed (ln(1/ε))−2s ∨ (ln(1/σ))−2s ε2s/(s+t) ∨ σ2[(s/t)∧1]
bj ∼ exp{−jt}

Table 2.2: Minimax goodness-of-fit testing with unknown singular values: lower bounds on the
minimax separation radius r̃2ε,σ for 0 < ε ≤ ε0, ε0 ∈]0, 1[, and 0 < σ ≤ σ0, σ0 ∈]0, 1[, for all
t, s > 0.

control on the minimax separation radius r̃ε,σ in various settings. The interesting property of
such minimax separation radii is that they have the same structure whatever the considered
situation: a maximum between two terms depending, respectively, on the noise levels ǫ and σ.
It is also worth pointing out that the first term depending on ǫ corresponds to the minimax
separation radius in the case where the operator is known (i.e., σ = 0), as displayed in Table
2.3.

Goodness-of-Fit ordinary-smooth super-smooth
Testing Problem aj ∼ js aj ∼ exp{js}
mildly ill-posed ε4s/(2s+2t+1/2) ε2(ln ε−1)2t+1/2

bj ∼ j−t

severely ill-posed (ln ε−1)−2s ε2s/(s+t)

bj ∼ exp{−jt}

Table 2.3: Minimax goodness-of-fit testing with known singular values: the separation rates r̃2ε
for 0 < ε ≤ ε0, ε0 ∈]0, 1[, for all t, s > 0.

The results displayed in Theorem 2.1 and Tables 2.1, 2.2 can also be understood as follows.
Two problems are at hand: detection of the underlying signal (with a minimax separation radius
that only depends on ǫ) and detection of the ‘frequencies’ j for which the terms bj can be replaced
by observations Xj without loss of precision (with a minimax separation radius that depends
only on σ). The final minimax separation radius is then the maximum of these two terms, i.e.,
the signal detection hardness is related to the most difficult underlying problem. We stress that
such phenomenon has already been discussed in the minimax estimation framework, see e.g.,
[9], [13].
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3 Upper Bound on the Minimax Separation Radius

In this section, we first propose an α-level testing procedure. Then, we investigate its maximal
second kind error probability and establish a non-asymptotic upper bound on the minimax
separation radius (which corresponds to item (i) of Theorem 2.1). Finally, in Section 3.3, we
provide a control of the upper bounds for minimax separation radii for the specific cases displayed
in Table 2.1.

3.1 The Spectral Cut-Off Test

For a given θ0 6= 0, the aim of the goodness-of-fit testing problem (2.4) is to determine whether
or not θ = θ0. In particular, for any given j ∈ N, one would like to infer the corresponding value
θj from the observation (Y,X) = (Yj ,Xj)j∈N from GSM (1.1). Typically, for any given j ∈ N,

one may use the ‘naive’ estimate θ̂j of θj, defined by

θ̂j :=
Yj
Xj

=
bj
Xj

θj + ε
1

Xj
ξj, j ∈ N.

In order to ensure a ‘good’ approximation of θj by θ̂j (in a sense which will be made precise later
on), a precise control of the ratio bj/Xj is required. To this end, we want to avoid coefficients
for which Xj . σ, namely for which the observation Xj is of the order of the corresponding
noise level σ, that does not have ‘discriminatory’ power . Therefore, we will restrict ourselves
to coefficients Xj with indices 1 ≤ j ≤M , where the bandwidth M is defined by

M := inf{j ∈ N : |Xj | ≤ σhj} − 1, (3.1)

where, for all j ∈ N,

hj = 16

√

ln

(

κj2

α

)

+

√

2 ln

(

10

α

)

, (3.2)

for some κ > exp(1).

Remark 3.1 The value of κ is, in some sense, related to the value of the first kind error
probability of the suggested testing procedure. We will see below that the value κ = 5(3π2+12)/6
is convenient to our purpose. We stress that κ is not a regularization parameter : an ‘optimal’
value of κ only allows to get ‘optimal’ constants in the final results but will not change the order
of the corresponding minimax separation rates. Finding optimal constants is outside the scope
of this work.

The bandwidthM is a random variable but can be controlled in the sense thatM ∈ [M0,M1[
with high probability (see Lemma 6.1 for precise computations and Figure 3.1 for a graphical
illustration), where the bandwidths M0 and M1 are defined by

{

M0 := inf{j ∈ N : bj ≤ σh0,j} − 1,

M1 := inf{j ∈ N : bj ≤ σh1,j},
(3.3)

and the sequences h0 = (h0,j)j∈N, h1 = (h1,j)j∈N satisfy

h0,j = 18

√

ln

(

κj2

α

)

+

√

2 ln

(

10

α

)

, (3.4)

h1,j = 16

√

ln

(

κj2

α

)

, (3.5)
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j
0

bj

M0

σh0,M0

M1

σh1,M1

Figure 3.1: An illustration of the spatial positions of the bandwidths M0 and M1, defined in (3.3).
The decreasing solid curve corresponds to the values of the sequence b = (bj)j∈N with respect to
the index j ∈ N, while the oscillating curve demonstrates one realization of the random sequence
X = (Xj)j∈N according to the GSM (1.1). The increasing dashed curve draws the behavior of
the sequence σhj . For the corresponding random ‘bandwidth’ M defined in (3.3), Lemma 6.1
shows that M ∈ [M0,M1[ with high probability.

for all j ∈ N. The sequences h = (hj)j∈N, h0 = (h0,j)j∈N and h1 = (h1,j)j∈N in the definition
of M0, M1 and M allow a ‘uniform’ control of the standard Gaussian sequence η = (ηj)j∈N
(associated with X = (Xj)j∈N), for all 1 ≤ j ≤M1 (see Lemmas 6.1, 6.2 and 6.3 in Section 6).

We are now in the position to construct a (spectral cut-off) testing procedure. According
to the methodology proposed earlier in the literature (see e.g. [1], [12] or [15]), our test will be
based on an estimation of ‖θ − θ0‖2. For any fixed D ∈ N, consider the test statistic

TD,M :=

D∧M
∑

j=1

(

Yj
Xj

− θj,0

)2

. (3.6)

Given a prescribed level α ∈]0, 1[ for the kind error probability, the associated spectral cut-off
test is then defined as

ΨD,M := 1{TD,M > t1−α,D(X)}, (3.7)

where

t1−α,D(X) := ε2
D∧M
∑

j=1

X−2
j + C(α)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j + (1 +

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]

, (3.8)

and
C(α) = 3

√

xα/2 + 2xα/2 > 0, xγ := ln(1/γ) ∀γ ∈]0, 1[. (3.9)

In other words, if the ’estimator’ TD,M of ‖θ−θ0‖2 is greater than the fixed threshold t1−α,D(X),
θ and θ0 are very unlikely to be close to each other, and we will reject H0.

Remark 3.2 Under H0, Yj = bjθj,0 + εξj , j ∈ N, and, hence,

TD,M =

D∧M
∑

j=1

[(

bj
Xj

− 1

)

θj,0 + εX−1
j ξj

]2

.
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Therefore, the law of TD,M is not available and, thus, its corresponding (1 − α)-quantile is not
computable in practice, since the sequence b = (bj)j∈N is unknown. However, Proposition 3.1
below ensures that the threshold t1−α,D(X) defined in (3.8) provides a computable upper bound
on this quantile.

First, we focus on the first kind error probability. The following proposition states that the
spectral cut-off test ΨD,M defined in (3.7)-(3.8), is an α-level test.

Proposition 3.1 Let α ∈]0, 1[ be fixed. Consider the goodness-of-fit testing problem (2.4).
Then, setting κ = 5(3π2 + 12)/6, there exists σ0 ∈]0, 1[ such that, for all 0 < σ ≤ σ0 and for
each ε > 0, the spectral cut-off test ΨD,M , defined in (3.7)-(3.8), is an α-level test, i.e.,

αε,σ(ΨD,M) ≤ α. (3.10)

The proof is postponed to Section 6.2.1.

Remark 3.3 In order to shed light on the term σ0, we provide bellow a heuristic argument.
Note that, under H0, thanks to a (rough) Taylor expansion,

TD,M ≃
D∧M
∑

j=1

[

εb−1
j ξj + σb−1

j θj,0ηj

]2
.

Compared to the ‘noise-free’ case (i.e., σ = 0), we have in some sense to deal with the additional
term σb−1

j θj,0ηj. Two scenarios are at hand

• If supj b
−1
j a−1

j ≤ C0, the expected amount of additional signal is

σ2
D∧M
∑

j=1

b−2
j θ2j ≤ σ2C0‖θ‖2,

which is of the order of the classical parametric rate σ2. However, since C0 is unknown, we
use a rough standard deviation control on this additional term, which requires a logarithmic
term (i.e., ln3/2(1/σ)) in the right hand side of (3.8). We stress that this logarithmic term
can be removed if the knowledge of C0 is assumed.

• On the other hand, we can prove that σb−1
j ηj (see Lemma 6.4) is bounded with controlled

probability, according to the construction of the bandwidthM given in (3.1). In such case,
the additional term can be controlled by the ‘bias’ a−2

D∧M .

Due to the additional logarithmic term mentioned above, the first kind error probability can be
controlled as soon as σ is small enough (i.e., 0 < σ ≤ σ0 for some σ0 ∈]0, 1[). Unsurprisingly, it
is impossible to retrieve any kind of information on the observations if the noise level σ is too
large.

3.2 A Non-Asymptotic Upper Bound

We now turn our attention to the the maximal second error probability. The following propo-
sition provides, for each noise level ε > 0 and for noise level σ small enough, an upper bound
for the separation radius rε,σ(Ea,ΨD,M , β) of the spectral cut-off test ΨD,M defined in (3.6)-(3.8).
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Proposition 3.2 Let α, β ∈]0, 1[ be fixed, such that α ≤ β. Consider the goodness-of-fit testing
problem (2.4). Let ΨD,M be the spectral cut-off test, defined in (3.7)-(3.8). Then, there exists
σ0 ∈]0, 1[ such that, for all 0 < σ ≤ σ0 and for each ε > 0,

r2ε,σ(Ea,ΨD,M , β) ≤ C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]

, (3.11)

where
C̃(α, β) = 16(C(α) + 3

√

xβ/2). (3.12)

The proof is postponed to Section 6.2.2.

Remark 3.4 According to Proposition 3.2, given a radius rε,σ > 0, then

r2ε,σ ≥ C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +(7+4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]

⇒ βε,σ(Θa(rε,σ),ΨD,M) ≤ β,

and, hence,

r̃2ε,σ ≤ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 .

Note that the upper bound on the separation radius r2ε,σ(Ea,ΨD,M , β) given in (3.15) depends

on two antagonistic terms, namely, ε2
√

∑D∧M1
j=1 b−4

j and σ2 ln3/2(1/σ) ∨ a−2
D∧M0

. Ideally, one

would like to make this upper bound as small as possible, i.e., to obtain the weakest possible
condition on ‖θ − θ0‖ such that, for any fixed β ∈]0, 1[, βε,σ(Θa(rε,σ),ΨD,M ) ≤ β. Therefore,
one would like to select D := D⋆ such that

D⋆ := argmin
D∈N







C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]







,

where C̃(α, β) is defined in (3.12). However, this ‘optimal’ bandwith D⋆ is not available in
practice since the sequence b = (bj)j∈N is not assumed to be known. To this end, we use instead
the bandwidth D := D† defined as

D† := argmin
D∈N







C̃(α, β)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]







, (3.13)

The following theorem illustrates the performances of the corresponding spectral cut-off test
ΨD†,M , defined in (3.7), with D := D†, defined in (3.13).

Theorem 3.1 Let α, β ∈]0, 1[ be fixed, such that α ≤ β. Consider the goodness-of-fit testing
problem (2.4). Let ΨD†,M be the spectral cut-off test, defined in (3.7) with D := D†, defined in
(3.13). Then, there exists σ0 ∈]0, 1[ such that, for all 0 < σ ≤ σ0 and for each ε > 0,

αε,σ(ΨD†,M) ≤ α (3.14)

and

r2ε,σ(Ea,ΨD†,M , β) ≤ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 ,

(3.15)
where the constant C̃(α, β) has been introduced in (3.12).
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The proof of Theorem 3.1 is postponed to Section 6.2.3.

Remark 3.5 According to Theorem 3.1, given a radius rε,σ > 0, then

r2ε,σ ≥ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]





⇒ βε,σ(Θa(rε,σ),ΨD†,M ) ≤ β,

and, hence,

r̃2ε,σ ≤ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . (3.16)

This upper bound corresponds to item (i) of Theorem 2.1.

3.3 Upper Bounds: Specific Cases

Our aim in this section is to determine an explicit value (in terms of the noise levels ε and σ)
for the upper bounds on the minimax separation radius r̃ε,σ obtained in Theorem 3.1 above.
To this end, we will consider well-known specific cases regarding the behavior of both sequences
(aj)j∈N and (bj)j∈N. According to the existing literature, we will essentially deal with mildly
and severely ill-posed problems with ellipsoids of ordinary-smooth and super-smooth functions
(see also Section 2.2 for formal definitions).

Theorem 3.2 Consider the goodness-of-fit testing problem (2.4) when observations are given
by (1.1), and the signal of interest has smoothness governed by (2.2). Then,

(i) If bj ∼ j−t, t > 0, and aj ∼ js, s > 0, for all j ∈ N, then, there exists ε0, σ0 ∈]0, 1[ such
that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2ε,σ . ε
4s

2s+2t+1/2 ∨
[

σ ln3/4(1/σ)
]2( s

t
∧1)

.

(ii) If bj ∼ j−t, t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exists ε0, σ0 ∈]0, 1[
such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2ε,σ . ε2 [ln (1/ε)](2t+
1
2) ∨ σ2 ln 3

2 (1/σ) .

(iii) If bj ∼ exp{−jt}, t > 0, and aj ∼ js, s > 0, for all j ∈ N, then, there exists ε0, σ0 ∈]0, 1[
such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2ε,σ . [ln (1/ε)]−2s ∨
[

ln

(

1

σ ln1/2(1/σ)

)]−2s

.

(iv) If bj ∼ exp{−jt}, t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exists
ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius
r̃ε,σ satisfies

r̃2ε,σ . ε
2s
s+t ∨ [σ ln1/2(1/σ)]2(

s
t
∧1).

The proof is postponed to Section 6.3. The main task is to compute the asymptotic trade-

off between both antagonistic terms ε2
√

∑D∧M1
j=1 b−4

j and
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]

in the upper

bounds on the minimax separation radius r̃ε,σ displayed in (3.16).
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4 Lower Bounds on the Minimax Separation Radius

We establish a non-asymptotic lower bound on the minimax separation radius (which corre-
sponds to item (ii) of Theorem 2.1). In order to do this, we consider two special cases of the
GSM (1.1), namely the situations where

(a) ε = 0: the signal is observed without noise but the eigenvalues of the operator at hand are
still noisy, and

(b) σ = 0: the ‘classical’ model (see, e.g., [11] or [14]) where the eigenvalues of the operator
at hand are known.

Both models (a) and (b) correspond to some ‘extreme’ situations but provide, in some sense, a
benchmark for the problem at hand. We first establish a lower bound for the case (a) in Section
4.1 and recall the lower bound for the case (b) (that has already been discussed in, e.g., [1], [14]
or [15]) in Section 4.2. Then, we establish in Section 4.3 that the minimax separation radius
associated to goodness-of-fit testing problem (2.4) is always greater than the maximum of the
minimax separation radii associated to the cases (a) and (b). Finally, in Section 4.4, we provide
a control of the lower bounds for minimax separation radii for the specific cases displayed in
Table 2.2.

4.1 Lower Bounds for a GSM with ε = 0

We consider the GSM (1.1) with b = b̄ and ε = 0, i.e.,

{

Yj = b̄jθj, j ∈ N,

Xj = b̄j + σ ηj , j ∈ N.
(4.1)

For a given sequence b = (b)j∈N, define

B(b) = {ν ∈ l2(N) : C0|bj | ≤ |νj| ≤ C1|bj |, j ∈ N, 0 < C0 ≤ 1 ≤ C1 < +∞}.

Given observations from the GSM (4.1), for any given θ0 6= 0 and b̄ ∈ B(b), we consider the
following goodness-of-fit testing problem

H0 : θ = θ0 versus H1 : θ0 ∈ Ea, θ − θ0 ∈ Θa(rσ), b̄ ∈ B(b), (4.2)

where Θa(rσ) = {µ ∈ Ea, ‖µ‖ ≥ rσ}.

Our aim below is to provide a lower bound on the minimax separation radius r̃0,σ, defined
as

r̃0,σ := inf
Ψ̃α:α0,σ(Ψ̃α)≤α

r0,σ(Ea, Ψ̃α, β),

where r0,σ(Ea,Ψα, β) is the separation radius of any given α-level test Ψα, defined as

r0,σ(Ea,Ψα, β) := inf
{

rσ > 0 : β0,σ,b(Θa(rσ),B(b),Ψα) ≤ β
}

,

and β0,σ,b(Θ(rσ),B(b),Ψα) is the associated maximal second kind error probability, defined as

β0,σ,b(Θ(rσ),B(b),Ψα) := sup
θ0∈Ea, θ−θ0∈Θa(rσ)

b̄∈B(b)

Pθ,b̄(Ψα = 0).

The following proposition states a lower bound for the minimax separation radius r̃0,σ of the
goodness-of-fit testing problem (4.2).
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Proposition 4.1 Assume that (Y,X) = (Yj ,Xj)j∈N are observations from the GSM 4.1) and
consider the goodness-of-fit testing problem (4.2). Let α ∈]0, 1[ and β ∈ ]0, 1−α[ be given. Then,
for every σ > 0, the minimax separation radius r̃0,σ is lower bounded by

r̃0,σ ≥ Cα,β

4
σ max

1≤D≤M2

[

b−1
D a−1

D

]

, (4.3)

where

M2 := sup

{

D ∈ N : Cα,β σb
−1
D ≤ 2 and GD(C0, C1) ≥ 1

√

1 + 4(1− α− β)2

}

(4.4)

with

Cα,β = ln(1 + 4(1 − α− β)2) > 0 and GD(C0, C1) =
1

σ
√
2π

∫ C1bD

C0bD

exp

{

− 1

2σ2
(t− bD)

2

}

dt,

(4.5)
for some constants 0 < C0 ≤ 1 ≤ C1 < +∞.

The proof is postponed to Section 6.4.1.

Remark 4.1 Note that

GD(C0, C1) = Φ

(

(C1 − 1)
bD
σ

)

− Φ

(

(C0 − 1)
bD
σ

)

,

where Φ(·) is the cumulative distribution function of the standard Gaussian distribution. Hence,

GD(C0, C1) ≥ 1
√

1 + 4(1 − α− β)2
⇔ bD ≥ σK,

where K := K(C0, C1, α, β) > 0. Then M2 in (4.4) can be re-expressed as

M2 := sup {D ∈ N : bD ≥ σ[K ∨Cα,β/2]} . (4.6)

This expression M2 in (4.6) can be compared to the respective expressions of M0 and M1 defined
in (3.3). In particular, we point-out that there is no logarithmic term involved in M2.

4.2 Lower Bounds for the GSM when σ = 0

We consider the GSM (1.1) with σ = 0, i.e.,

{

Yj = bjθj + εξj , j ∈ N,

Xj = bj, j ∈ N.
(4.7)

Note that, in this case, the above model can be re-expressed as

Yj = bjθj + εξj , j ∈ N, (4.8)

where b = (bj)j∈N is a known positive sequence.

The following proposition states a lower bound for the minimax separation radius r̃ε,0, defined
in (2.2) with σ = 0, of the following goodness-of-fit testing problem

H0 : θ = θ0 versus H1 : θ0 ∈ Ea, θ − θ0 ∈ Θa(rε,0), (4.9)

where Θa(rε,0) is defined in (2.3) with σ = 0.
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Proposition 4.2 Assume that Y = (Yj)j∈N are observations from the GSM 4.8) and consider
the goodness-of-fit testing problem (4.9). Let α ∈]0, 1[ and β ∈ ]0, 1 − α[ be given. Then, for
every ε > 0, the minimax separation radius r̃ε,0 is lower bounded by

r̃2ε,0 ≥ sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D



 , (4.10)

where
cα,β = (2 ln(1 + 4(1 − α− β)2))1/4 > 0. (4.11)

The proof of the Proposition 4.2 with detailed arguments are related discussion can be found in
e.g., [1], [14] and [15].

4.3 A Combined Lower Bound

The following result provides a lower bound on the minimax separation radius r̃ε,σ for the
goodness-of-fit testing problem (2.4). This lower bound corresponds to item (ii) of Theorem
2.1.

Theorem 4.1 Consider the GSMs (1.1), (4.1) and (4.7). Denote by r̃ε,σ, r̃0,σ and r̃ε,0 the
corresponding minimax separation radii. Then, for every ε > 0 and σ > 0,

r̃ε,σ ≥ r̃0,σ ∨ r̃ε,0. (4.12)

In particular,

r̃2ε,σ ≥
{

C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ]

}

∨







sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D











, (4.13)

where Cα,β is given in (4.5), M2 is given in (4.4) and cα,β is given in (4.11).

The proof of Theorem 4.1 is postponed to Section 6.4.2.

Remark 4.2 At a first sight, the upper and lower bounds respectively displayed in (i) and
(ii) of Theorem 2.1 do not exactly match up. However, a closer look at the involved formulas
indicates that both quantities contain terms that have similar behaviors. This is, in some sense,
confirmed in Section 4.4 below where specific sequences (aj)j∈N and (bj)j∈N are treated.

4.4 Lower Bounds: Specific Cases

Our aim in this section is to determine an explicit value (in terms of the noise levels ε and σ)
for the lower bounds on the minimax separation radius r̃ε,σ obtained in Theorem 4.1 above for
the specific sequences (aj)j∈N and (bj)j∈N considered in Section 3.3.

Theorem 4.2 Consider the goodness-of-fit testing problem (2.4) when observations are given
by (1.1), and the signal of interest has smoothness governed by (2.2). Then,

(i) If bj ∼ j−t, t > 0, and aj ∼ js, s > 0, for all j ∈ N, then, there exists ε0, σ0 ∈]0, 1[ such
that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2ε,σ & ε
4s

2s+2t+1/2 ∨ σ2( s
t
∧1).
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(ii) If bj ∼ j−t, t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exists ε0, σ0 ∈]0, 1[
such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2ε,σ & ε2 [ln (1/ε)](2t+
1
2) ∨ σ2.

(iii) If bj ∼ exp{−jt}, t > 0, and aj ∼ js, s > 0, for all j ∈ N, then, there exists ε0, σ0 ∈]0, 1[
such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2ε,σ & [ln (1/ε)]−2s ∨ [ln (1/σ)]−2s .

(iv) If bj ∼ exp{−jt}, t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exists
ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius
r̃ε,σ satisfies

r̃2ε,σ & ε
2s
s+t ∨ σ2( s

t
∧1).

The proof is postponed to Section 6.5. As in the case of the upper bound, the main task is
to compute the trade-off between both different antagonistic terms involved in the lower bound
on the minimax separation radius r̃ε,σ displayed in (4.13).

5 Concluding Remarks

The main conclusion of this work is that goodness-of-fit testing in an inverse problem setting is
‘feasible’, even in the specific situation where some uncertainty is observed on the operator at
hand in the model (1.1). We have established ‘optimal’ separation conditions for the goodness-
of-fit testing problem (2.4) via a sharp control of the associated minimax separation radius.

We stress that several outcomes and open questions are still of interest. We can mention,
among others,

• Adaptivity: As proved in Theorem 3.1, the test ΨD†,M introduced in (3.6)-(3.9) with D†

defined in (3.13) is powerful in the sense that its separation radius is equal (up to constant)
to the minimax one. However, this test strongly depends on the sequence a = (aj)j∈N that
characterizes the smoothness of the signal of interest. In practice, this sequence is unknown
and adaptive procedures are necessary (see, e.g., [12] or [11]).

• Signal detection: We have already mentioned in Remark 2.2 that signal detection is
different from goodness-of-fit testing (2.4) when the GSM (1.1) is at hand. In this work,
we were concerned with the case where θ0 6= 0 (goodness-of-fit testing). However, some
attention should also be paid in the future to the case where θ0 = 0 (signal detection). In
particular, testing methodologies and related minimax separation radii are quite different
from those presented above.

• Errors-in-variables model: Density model with measurement errors have been at the
core of several statistical studies in the past decades (see, e.g., [16] for an overview). For-
mally, given a sample of independent and identical distributed random variables (Yi)i=1,2,...,n

satisfying
Yi = Xi + ǫi i = 1, 2, . . . , n,

the aim is to produce some inference on the unknown density of the Xi denoted by f ,
the ǫi corresponding to some error, with known density η. This appears to be an inverse
(deconvolution) problem since the Yi are associated to the convolved density f ∗ η. In a
goodness-of-fit testing task, this model has been discussed in [2] and minimax separation
rates (in the asymptotic minimax testing framework) have been established in various
settings. In the spirit of our contribution, it could be interesting to propose methods
taking into account some possible uncertainty on the density η at hand.
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All these topics require special attention that is beyond the scope of this paper. Nevertheless,
they provide an avenue for future research.

6 Appendix: Proofs

6.1 Useful Lemmas

The constant C > 0 and 0 < τ < 1 below will vary from place to place.

The following lemma is inspired by Lemma 6.1 of [6].

Lemma 6.1 Let M,M0,M1 be defined as in (3.1)-(3.5) where α ∈]0, 1[ and κ ≥ exp(1) are
fixed values. Define the event

M = {M0 ≤M < M1}. (6.1)

Then, for any σ ∈]0, 1[,
P(Mc) ≤ α

10
+
απ2

6κ
. (6.2)

Proof of Lemma 6.1. It is easily seen that

P(M ≥M1) = P





M1
⋂

j=1

{|Xj | > σhj}



 ≤ P (|XM1 | > σhM1) ,

≤ P (|bM1 |+ σ|ηM1 | > σhM1) ,

≤ P (|ηM1 | > hM1 − h1,M1) ,

= P

(

|ηM1 | >
√

2 ln

(

10

α

)

)

,

where the sequences (hj)j∈N and (h1,j)j∈N are defined in (3.2) and (3.5) respectively. Using the
bound

1

2π

∫ +∞

x
e−

x2

2 dx ≤ 1

x

e−
x2

2√
2π

∀x > 0, (6.3)

we get

P(M ≥M1) ≤
2√
2π

α

10

1
√

2 ln(10/α)
≤ α

10
, (6.4)

since
√

2 ln(10/α) > 1 for all α ∈]0, 1[. In the same spirit,

P(M < M0) = P





M0
⋃

j=1

{|Xj | ≤ σhj}



 ≤
M0
∑

j=1

P (|Xj | ≤ σhj) ,

≤
M0
∑

j=1

P (|bj | − σ|ηj | ≤ σhj) ,

≤
M0
∑

j=1

P (σ|ηj | ≥ |bj | − σhj)) ,

≤
M0
∑

j=1

P (|ηj | ≥ h0,j − hj) .
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According to the respective definition of (hj)j∈N, (h0,j)j∈N (see (3.2) and (3.4)), and using again
inequality (6.3), we obtain

P(M ≥M1) ≤ 2√
2π

M0
∑

j=1

1

h0,j − hj
exp

{

−1

2
(h0,j − hj)

2

}

,

≤ 2√
2π

M0
∑

j=1

1

2

√

ln
(

κj2

α

)

α

κj2
,

≤ α

κ

∑

j∈N

1

j2
=
απ2

6κ
, (6.5)

on noting that
∑

j∈N
1
j2 = π2/6. Since

P(Mc) ≤ P(M < M0) + P(M ≥M1),

the lemma follows, thanks to (6.4) and (6.5).

�

Lemma 6.2 Let M be defined as in (3.1) and (3.4) where α ∈]0, 1[ and κ ≥ exp(1) are fixed
values. Define the event

B =

M
⋂

j=1

{

σ|ηj | ≤
bj
2

}

. (6.6)

Then, for any σ ∈]0, 1[
P(Bc) ≤ α

10
+
απ2

3κ
. (6.7)

Proof of Lemma 6.2 Using the definitions of M and M1, simple calculations give

P(Bc) = P(Bc ∩M) + P(Bc ∩Mc),

≤ P





M1−1
⋃

j=1

{

σ|ηj | >
bj
2

}



+ P(Mc),

≤
M1−1
∑

j=1

P

(

|ηj | >
1

2
h1,j

)

+ P(Mc).

Using (3.5), Lemma 6.1 and (6.3), we obtain

P(Bc) ≤ 2√
2π

M1
∑

j=1

1
√

82 ln
(

κj2

α

)

α

κj2
+
α

10
+
απ2

6κ

≤ α

10
+
απ2

3κ
. (6.8)

Hence, the lemma holds true.

�

Lemma 6.3 Let θ ∈ Ea be given. Let M be defined as in (3.1) and (3.4) where α ∈]0, 1[ and
κ ≥ exp(1) are fixed values. Then, for any σ ∈]0, 1[ and for any D ∈ N,

P





D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j ≥ σ2 ln3/2(1/σ) ∨ a−2
D∧M



 ≤ α

5
+
α

κ

(

π2

2
+ 2

)

+ C exp{− ln1+τ (1/σ)},

for some C > 0 and 0 < τ < 1.
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Proof of Lemma 6.3. Using Lemma 6.1, Lemma 6.2 and a Taylor expansion as in Lemma
6.6 of [6], we get, for all j ≤M ,

bj
Xj

=
1

1 + σb−1
j ηj

= 1− σb−1
j ηj + σ2ζ−2

j η2j ,

where ζ−1
j ≤ 8b−1

j on the even B defined in (6.6). Hence

P





D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j ≥ σ2 ln3/2(1/σ) ∨ a−2
D∧M





= P





D∧M
∑

j=1

(−σb−1
j ηj + σ2ζ−2

j η2j )
2θ2j ≥ σ2 ln3/2(1/σ) ∨ a−2

D∧M



 ,

≤ P



2σ2
D∧M
∑

j=1

b−2
j θ2jη

2
j + 2σ4

D∧M
∑

j=1

ζ−4
j θ2jη

4
j ≥ σ2 ln3/2(1/σ) ∨ a−2

D∧M



 .

Therefore

P





D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j ≥ σ2 ln3/2(1/σ) ∨ a−2
D∧M





≤ P











2σ2
D∧M
∑

j=1

b−2
j θ2jη

2
j ≥ 1

2

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]







∩ (B ∩M)





+P











2σ4
D∧M
∑

j=1

ζ−4
j θ2jη

4
j ≥ 1

2

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]







∩ (B ∩M)



+ P ((B ∩M)c) ,

:= T1 + T2 + P ((B ∩M)c) . (6.9)

We concentrate bellow our attention on the term T1 defined as

P











2σ2
D∧M
∑

j=1

b−2
j θ2jη

2
j ≥ 1

2

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]







∩ (B ∩M)



 .

We consider the two following possible scenarios: (i) a−1
j b−1

j ≤ C0 as j → +∞, for some C0 > 0,

and (ii) a−1
j b−1

j → +∞ as j → +∞.

Consider first scenario (i). Then, using again (6.3)

T1 ≤ P

({

2σ2 max
1≤j≤D∧M

(b−2
j a−2

j η2j ) ≥
1

2
σ2 ln3/2(1/σ) ∨ a−2

D∧M

}

∩ (B ∩M)

)

≤ P

({

2C2
0σ

2 max
1≤j≤D∧M

(η2j ) ≥
1

2
σ2 ln3/2(1/σ)

}

∩ (B ∩M)

)

≤
M1−1
∑

j=1

P

(

ηj ≥
1

2C0
ln3/4(1/σ)

)

,

≤ 2M1√
2π

2C0

ln3/4(1/σ)
exp

(

−C ln3/2(1/σ)

8C2
0

)

≤ C exp{− ln1+τ (1/σ)}. (6.10)

for some constants C, τ ∈ R
+. A similar bound occurs for the term T2 for this scenario.
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Consider now the second scenario (ii). Then

T1 ≤ P

({

2b−2
D∧Ma

−2
D∧Mσ

2 max
1≤j≤D∧M

(η2j ) ≥
1

2
a−2
D∧M

}

∩ (B ∩M)

)

≤ P

({

σ2 max
1≤j≤D∧M

(η2j ) ≥
1

4
b2D∧M

}

∩ (B ∩M)

)

≤
M1−1
∑

j=1

P

(

σ2η2j ≥ 1

4
b2M1−1

)

,

since the sequence (bj)j∈N is non-increasing. Using (6.3), we get

T1 ≤
M1−1
∑

j=1

P

(

ηj ≥
1

2
h1,M1−1

)

,

≤ 2M1√
2π

2

h1,M1−1
exp

(

−
h21,M1−1

8

)

,

≤ M1 exp

(

− ln

(

κM2
1

α

))

≤ M1 ×
α

κM2
1

≤ α

κ
. (6.11)

By similar computations, we get

T2 := P











2σ4
D∧M
∑

j=1

ζ−4
j θ2jη

4
j ≥ 1

2
σ2 ln3/2(1/σ) ∨ a−2

D∧M







∩ (B ∩M)



 ,

≤ P











2× 84σ4
D∧M
∑

j=1

b−4
j θ2jη

4
j ≥ 1

2
a−2
D∧M







∩ (B ∩M)



 ,

≤ P

({

2× 84σ4 max
j=1..D∧M

η4j ≥ 1

2
b4D∧M

}

∩ (B ∩M)

)

,

≤
M1−1
∑

j=1

P

(

|ηj | ≥
1

8
√
2
h1,M1−1

)

,

≤ 2√
2π

8
√
2M1

h1,M1

exp

(

− 1

4× 82
4× 82 ln

(

κM2
1

α

))

≤ α

κ
. (6.12)

Hence, the lemma follows from Lemmas 6.1, 6.2 and (6.9)-(6.12).

�

Lemma 6.4 Let
Zj = νj + vjωj, j ∈ N,

where ω = (ωj)j∈N is a sequence of independent standard Gaussian random variables. For all
D ∈ N, define

T =

D
∑

j=1

Z2
j and Σ =

D
∑

j=1

v4j + 2

D
∑

j=1

v2j ν
2
j .

Then, for all x > 0,

P

(

T − E(T ) > 2
√
Σx+ 2x sup

1≤j≤D
(v2j )

)

≤ exp(−x) (6.13)

P

(

T − E(T ) < −2
√
Σx
)

≤ exp(−x). (6.14)
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Proof of Lemma 6.4 The proof is given in Lemma 2 of [14].

�

6.2 Non-Asymptotic Upper bounds

6.2.1 Proof of Proposition 3.1

By definition,

αε,σ(ΨD,M ) := Pθ0,b(ΨD,M = 1) = Pθ0,b(TD,M > t1−α,D(X)).

Conditionally to the sequence X = (Xj)j∈N, for each 1 ≤ j ≤ D ∧ M , the random variable
X−1

j Yj − θj,0 is Gaussian with mean νj = (bj/Xj − 1)θj,0 and standard deviation vj = εX−1
j . In

particular, for all D ∈ N

Eθ0,b(TD,M | X) := Eθ0,b





D∧M
∑

j=1

(

Yj
Xj

− θj,0

)2

| X



 =

D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j,0 + ε2
D∧M
∑

j=1

X−2
j .

(6.15)
For all D ∈ N, define

ΣD,M := ε4
D∧M
∑

j=1

X−4
j + ε2

D∧M
∑

j=1

X−2
j

(

bj
Xj

− 1

)2

θ2j,0.

Applying Lemma 6.4 with T = TD,M , Σ = ΣD,M and x = xα/2 := ln(2/α), we get

Pθ0,b

(

TD,M − Eθ0(TD,M | X) > 2
√

ΣD,Mxα/2 + 2ε2xα/2 max
1≤j≤D∧M

(X−2
j ) | X

)

≤ α

2
. (6.16)

Using the inequalities
√
a+ b ≤ √

a+
√
b and ab ≤ a2/2+ b2/2 for a, b > 0, it is easily seen that

√

ΣD,M ≤ ε2

√

√

√

√

D∧M
∑

j=1

X−4
j +

√

√

√

√ε2
D∧M
∑

j=1

X−2
j

(

bj
Xj

− 1

)2

θ2j,0

≤ ε2

√

√

√

√

D∧M
∑

j=1

X−4
j +

√

√

√

√ε2 max
1≤j≤D∧M

X−2
j

D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j,0

≤ ε2

√

√

√

√

D∧M
∑

j=1

X−4
j +

1

2
ε2 max

1≤j≤D∧M
X−2

j +
1

2

D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j,0. (6.17)

According to (6.15)-(6.17), we obtain the following bound

Pθ0,b



TD,M > (1 +
√

xα/2)

D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j,0 + ε2
D∧M
∑

j=1

X−2
j + C(α)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j | X



 ≤ α

2
,

where the constant C(α) is defined in (3.9). Since E[E(V |W )] = E(V ) for any random variables
V and W , the previous inequality leads to

Pθ0,b



TD,M > (1 +
√

xα/2)

D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j,0 + ε2
D∧M
∑

j=1

X−2
j + C(α)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j



 ≤ α

2
.
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Then, by defining

A =







D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j,0 < σ2 ln3/2(1/σ) ∨ a−2
D∧M







,

and applying Lemma 6.3, we immediately get

αε,σ(ΨD,M ) ≤ Pθ0,b({TD,M > t1−α,D(X)} ∩ A) + P(Ac)

≤ α

2
+
α

5
+

α

6κ
(3π2 + 12) + C exp{− ln1+τ (1/σ),

=
7α

10
+
α

κ

(

π2

2
+ 2

)

) + C exp{− ln1+τ (1/σ),

for some C > 0 and 0 < τ < 1. In particular, setting

κ = 5

(

π2

2
+ 2

)

,

there exists σ0 ∈]0, 1[ such that, for all σ ≤ σ0 and for each ε > 0,

αε,σ(ΨD,M) ≤ α.

This concludes the proof of the proposition.

�

6.2.2 Proof of Proposition 3.2

Let θ, θ0 ∈ Ea and θ − θ0 ∈ Θa(rε,σ). Then

Pθ,b(ΨD,M = 0) = Pθ,b({ΨD,M = 0} ∩ (B ∩M)) + Pθ,b({ΨD,M = 0} ∩ (B ∩M)c)

:= T1 + T2. (6.18)

Control of T2: Using Lemma 6.1, Lemma 6.2 and elementary probabilistic arguments, we get

T2 := Pθ,b({ΨD,M = 0} ∩ (B ∩M)c) ≤ P((B ∩M)c)

≤ P(Bc) + P(Mc)

≤ α

5
+
α

κ

(

π2

2
+ 2

)

≤ β

5
+
β

κ

(

π2

2
+ 2

)

, (6.19)

since β > α.

Control of T1: Define tβ/2,D(θ,X) to be the β/2-quantile of TD,M , conditionally on X, i.e.,

Pθ,b(TD,M ≤ tβ/2,D(θ,X) | X) ≤ β

2
.

Then, by elementary probabilistic arguments, we get

T1 := Pθ,b({ΨD,M = 0} ∩ {B ∩M}),
= E

[

Pθ,b ({ΨD,M = 0} | X) 1{B ∩M}
]

,

= E
[

Pθ,b (TD,M ≤ t1−α,D(X) | X) 1{B ∩M}
]

,

≤ β

2
E
[

1{t1−α,D(X) ≤ tβ/2,D(θ,X)}1{B ∩M}
]

+ E
[

1{t1−α,D(X) > tβ/2,D(θ,X)}1{B ∩M}
]

,

≤ β

2
+ E

[

1{t1−α,D(X) > tβ/2,D(θ,X)}1{B ∩M}
]

,

≤ β

2
+ Pθ,b

(

{t1−α,D(X) > tβ/2,D(θ,X)} ∩ {B ∩M}
)

. (6.20)
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Our next task is to provide a lower bound for tβ/2,D(θ,X). Under H1, conditionally to the

sequence X = (Xj)j∈N, for each 1 ≤ j ≤ D ∧M , the random variable X−1
j Yj − θj,0 is Gaussian

with mean νj and standard deviation vj defined as

νj =

(

bj
Xj

− 1

)

θj + (θj − θj,0) and vj = εX−1
j .

In particular,

Eθ,b(TD,M | X) =

D∧M
∑

j=1

[(

bj
Xj

− 1

)

θj + (θj − θj,0)

]2

+ ε2
D∧M
∑

j=1

X−2
j

=
D∧M
∑

j=1

ν2j + ε2
D∧M
∑

j=1

X−2
j . (6.21)

Let

Σ̃D,M := ε4
D∧M
∑

j=1

X−4
j + ε2

D∧M
∑

j=1

X−2
j

[(

bj
Xj

− 1

)

θj + (θj − θj,0)

]2

= ε4
D∧M
∑

j=1

X−4
j + ε2

D∧M
∑

j=1

X−2
j ν2j . (6.22)

Using Lemma 6.4 with T = TD,M , Σ = Σ̃D,M and x = xβ/2 := ln(2/β), we obtain

Pθ,b



TD,M <

D∧M
∑

j=1

ν2j + ε2
D∧M
∑

j=1

X−2
j − 2

√

Σ̃D,Mxβ/2 | X



 ≤ β

2

⇒ tβ/2,D(θ,X) ≥
D∧M
∑

j=1

ν2j + ε2
D∧M
∑

j=1

X−2
j − 2

√

Σ̃D,Mxβ/2. (6.23)

Therefore, using (3.8) and (6.23), we get

Pθ,b

(

{t1−α,D(X) > tβ/2,D(θ,X)} ∩ {B ∩M}
)

≤ Pθ,b











D∧M
∑

j=1

ν2j <
(

C(α) + 2
√

xβ/2

)

ε2

√

√

√

√

D∧M
∑

j=1

X−4
j

+ (1 +
√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]

+ 2
√

xβ/2

√

√

√

√ε2
D∧M
∑

j=1

X−2
j ν2j







∩ {B ∩M}





≤ Pθ,b











1

2

D∧M
∑

j=1

ν2j < C(α, β)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j + (1 +

√

xα/2)[σ
2 ln3/2(1/σ) ∨ a−2

D∧M ]







∩ {B ∩M}



 ,

where
C(α, β) := C(α) + 3

√

xβ/2, (6.24)

and C(α) is defined in (3.9). Note that, for any a, b ∈ R, using the Young inequality 2ab ≤
γa2 + γ−1b2 for γ = 1/2 we get (a+ b)2 ≥ a2/2− b2. Applying the latter inequality with

a = θj − θj,0, b =

(

bj
Xj

− 1

)

θj, j = 1, . . . ,D ∧M,
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and using Lemma 6.3, we arrive at

Pθ,b

(

{t1−α,D(X) > tβ/2,D(θ,X)} ∩ {B ∩M}
)

≤ Pθ,b











D∧M
∑

j=1

(θj − θj,0)
2 < 4C(α, β)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j

+4(1 +
√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]

+ 2

D∧M
∑

j=1

(

bj
Xj

− 1

)2

θ2j







∩ {B ∩M}





≤ Pθ,b











D∧M
∑

j=1

(θj − θj,0)
2 < 4C(α, β)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j + (6 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]







∩ {B ∩M}





+
α

5
+
α

κ

(

π2

2
+ 2

)

+ C exp{− ln1+τ (1/σ)}.

Using the fact that θ ∈ Ea, we get

Pθ,b

(

{t1−α,D(X) > tβ/2,D(θ,X)} ∩ {B ∩M}
)

≤ Pθ,b











‖θ − θ0‖2 < 4C(α, β)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j

+(6 + 4
√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]

+
∑

j>D∧M

(θj − θj,0)
2







∩ {B ∩M}





+
α

5
+
α

κ

(

π2

2
+ 2

)

+C exp{− ln1+τ (1/σ)}

≤ Pθ,b











‖θ − θ0‖2 < 4C(α, β)ε2

√

√

√

√

D∧M
∑

j=1

X−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M

]







∩ {B ∩M}





+
α

5
+
α

κ

(

π2

2
+ 2

)

+C exp{− ln1+τ (1/σ)}. (6.25)

To conclude the proof, note that on the event {B ∩M}, we have

M0 ≤M < M1 and
bj
Xj

∈
[

2

3
, 2

]

∀ j = 1, . . . ,M. (6.26)

Hence, using (6.25) and (6.26)

Pθ,b

(

{t1−α,D(X) > tβ/2,D(θ,X)} ∩ {B ∩M}
)

≤ Pθ,b



‖θ − θ0‖2 < 16C(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]





+
α

5
+
α

κ

(

π2

2
+ 2

)

+ C exp{− ln1+τ (1/σ)},

=
α

5
+
α

κ

(

π2

2
+ 2

)

+ C exp{− ln1+τ (1/σ)},

as soon as

‖θ − θ0‖2 ≥ C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]

, (6.27)

24



where C̃(α, β) = 16C(α, β) is defined in (3.12). Therefore, for any fixed β ∈]α, 1[, (6.27) implies
that, there exists σ0 ∈]0, 1[ such that, for all 0 < σ < σ0 and for each ε > 0,

Pθ,b(ΨD,M = 0) ≤ 7β

10
+
β

κ

(

π2

2
+ 2

)

+ C exp{− ln1+τ (1/σ)} ≤ β,

for some C > 0 and 0 < τ < 1, which, in turn, implies that (3.15) holds true. The last part
of the theorem is a direct consequence of (2.6) and (3.15). This completes the proof of the
proposition.

�

6.2.3 Proof of Theorem 3.1

The validity of (3.14) can be immediately derived from Proposition 3.1 taking into account that
Lemma 6.3 is still valid with D := D† (that depends on the sequence X = (Xj)j∈N). For the
proof of (3.15), note first that (6.18), (6.19) and (6.20) still holds true with D := D†. In the
same spirit, is is easy to see that Lemma 6.3 is still valid when the bandwidth D is measurable
with respect to the sequence (Xk)k∈N. Hence, the same inequality than (6.25) can be obtained
with D := D†, namely

Pθ,b

(

{t1−α,D†(X) > tβ/2,D†(θ,X)} ∩ {B ∩M}
)

≤ Pθ,b











‖θ − θ0‖2 < 4C(α, β)ε2

√

√

√

√

D†∧M
∑

j=1

X−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D†∧M

]







∩ {B ∩M}





≤ Pθ,b



‖θ − θ0‖2 < inf
D∈N



16C(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]









= 0,

as soon as

‖θ − θ0‖2 ≥ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 ,

where C̃(α, β) is defined in (3.12). Therefore, we immediately get that (3.15) holds true.Finally,
the validity of (3.16) follows immediately on noting that

r̃2ε,σ := inf
Ψ̃α:αε,σ(Ψ̃α)≤α

r2ε,σ(Ea, Ψ̃α, β)

≤ r2ε,σ(Ea,ΨD†,M , β)

≤ inf
D∈N



C̃(α, β)ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + (7 + 4

√

xα/2)
[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 .

This completes the proof of the theorem.

�

6.3 Upper Bounds: Specific Cases

For the sake of convenience, we give the proof of each item (i)-(iv) in Theorem 3.2 in different
sections.
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D0

ε2
√

∑D∧M1

j=1
b−4

j

a−2
D∧M0

J⋆M0 M1
D0

ε2
√

∑D∧M1

j=1
b−4

j

a−2
D∧M0

J⋆M0 M1
D0

ε2
√

∑D∧M1

j=1
b−4

j

a−2
D∧M0

J⋆M1M0

Figure 6.1: [Case I: a−2
D∧M0

& σ2 ln3/2(1/σ)] An illustration of the two resulting two terms (red

color), namely ε2
√

∑D∧M1
j=1 b−4

j and a−2
D∧M0

, for each D ∈ N, involved in the (upper bound of

the) minimax separation radius r̃2ε,σ (see (3.16), where the bandwidths M0 and M1 are defined in
(3.3). The bandwidth J⋆ corresponds to the value J ∈ N where the two dashed lines cross, i.e.,

J ∈ N : ε2
√

∑J
j=1 b

−4
j = a−2

J . The computation of the separation radius r̃ε,σ, for 0 < ε ≤ ε0,

ε0 ∈]0, 1[ and 0 < σ ≤ σ0, σ0 ∈]0, 1[, leads to three different scenarios: J⋆ . M0 . M1 (left
figure), M0 . J⋆ .M1 (center figure) and M0 .M1 . J⋆ (right figure).

D0

ε2
√

∑D∧M1

j=1
b−4

j

a−2
D∧M⋆

J⋆M⋆ M1
D0

ε2
√

∑D∧M1

j=1
b−4

j

a−2
D∧M⋆

J⋆M⋆ M1
D0

ε2
√

∑D∧M1

j=1
b−4

j

a−2
D∧M⋆

J⋆M1M⋆

Figure 6.2: [Case II: a−2
D∧M0

∼ σ2 ln3/2(1/σ)] An illustration of the two resulting two terms (red

color), namely ε2
√

∑D∧M1
j=1 b−4

j and a−2
D∧M⋆, for each D ∈ N, involved in the (upper bound of

the) minimax separation radius r̃2ε,σ (see (3.16), where the bandwidth M1 is defined in (3.3) and

the bandwidth M⋆ is the value of M ∈ N such that the two terms a−2
M and σ2 ln3/2(1/σ) are of

the same order, i.e., M ∈ N : a−2
M ∼ σ2 ln3/2(1/σ). The bandwidth J⋆ corresponds to the value

J ∈ N where the two dashed lines cross, i.e., J ∈ N : ε2
√

∑J
j=1 b

−4
j = a−2

J . The computation

of the separation radius r̃ε,σ, for 0 < ε ≤ ε0, ε0 ∈]0, 1[ and 0 < σ ≤ σ0, σ0 ∈]0, 1[, leads to
three different scenarios: J⋆ . M⋆ . M1 (left figure), M⋆ . J⋆ . M1 (center figure) and
M⋆ .M1 . J⋆ (right figure).
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6.3.1 Case (i): Mildly ill-posed problems with ordinary smooth functions

Recall that
bj ∼ j−t, t > 0, and aj ∼ js, s > 0, j ∈ N. (6.28)

Proposition 6.1 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.28).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ . ε
4s

2s+2t+1/2 ∨
[

σ ln3/4(1/σ)
]2( s

t
∧1)

. (6.29)

Proof of Proposition 6.1 In a first time, we determine the order of the bandwidths M0 and
M1. Setting

M̄1 :=

(

σ

√

1

t
ln (1/σ)

)−1/t

and M̃1 :=

(

σ

√

1

2t
ln (1/σ)

)−1/t

we get

σh1,M̄1
∼ σ

√

ln(M̄1) = σ

√

1

t
ln (1/σ) − 1

2t
ln

(

1

t
ln (1/σ)

)

≤ σ

√

1

t
ln (1/σ) ∼ bM̄1

,

which implies that M1 & M̄1. At the same time

σh1,M̃1
∼ σ

√

ln(M̃1) = σ

√

1

t
ln (1/σ)− 1

2t
ln

(

1

2t
ln (1/σ)

)

,

= σ

√

1

2t
ln (1/σ) +

1

2t
ln (1/σ)− 1

2t
ln

(

1

2t
ln (1/σ)

)

,

& σ

√

1

2t
ln (1/σ) ∼ bM̄1

,

which implies that M1 . M̃1. Hence, we can conclude that

M1 ∼
(

σ
√

ln (1/σ)
)−1/t

.

Similarly, we get that

M0 ∼
(

σ
√

ln (1/σ)
)−1/t

.

In order to control the terms involved in the upper bound on the minimax separation radius,
we consider the cases s < t and s ≥ t separately.

Consider first the case s < t. In this case, for all D ∈ N,

a−2
D∧M0

& a−2
M0

∼M−2s
0 ∼

(

σ ln1/2(1/σ)
)2s/t

& σ2 ln3/2(1/σ).

Hence,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0



 .
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Define now the value of J ∈ N that satisfies the following equation

ε2

√

√

√

√

J
∑

j=1

b−4
j ∼ a−2

J ⇔ ε2J2t+1/2 ∼ J2s ⇔ J := J⋆ ∼ ε
−2

2s+2t+1/2 .

We now consider the following situations (see Figure 6.1 for a graphical illustration):

• (J⋆ .M0) In this case,

r̃2ε,σ . a−2
J⋆ . ε

4s
2s+2t+1/2 .

• (J⋆ &M1) In this case,

r̃2ε,σ . inf
D∈N

[

a−2
D∧M0

]

. a−2
M0

∼
[

σ ln1/2(1/σ)
]

2s
t
.

• (M0 . J⋆ .M1) In this case,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0



 .

=







inf
D≤M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0











∧







inf
D>M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0











. a−2
M0

∧







inf
D>M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

M0











. a−2
M0

∧







ε2

√

√

√

√

M0
∑

j=1

b−4
j + a−2

M0







. a−2
M0

∼
[

σ ln1/2(1/σ)
] 2s

t
.

Combining the above terms, we immediately get

r̃2ε,σ . ε
4s

2s+2t+1/2 ∨
[

σ ln1/2(1/σ)
]

2s
t
. (6.30)

Consider now the case s ≥ t. Define the value of M ∈ N that satisfies the following equation

a−2
M ∼ σ2 ln3/2(1/σ) ⇔ M :=M⋆ ∼

[

σ ln3/4(1/σ)
]− 1

s
.

Hence,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M⋆



 .

Working along the lines of the case s ≤ t, by replacing M0 by M⋆ (see Figure 6.2), we get

r̃2ε,σ . ε
4s

2s+2t+1/2 ∨
[

σ ln3/4(1/σ)
]2
. (6.31)

Hence, (6.29) follows thanks to (6.30) and (6.31). This completes the proof of the proposition.

�
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6.3.2 Case (ii): Mildly ill-posed problems with super smooth functions

Recall that
bj ∼ j−t, t > 0, and aj ∼ exp{js}, s > 0, j ∈ N. (6.32)

Proposition 6.2 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.32).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ . ε2 [ln (1/ε)](2t+
1
2) ∨ σ2 ln 3

2 (1/σ) . (6.33)

Proof of Proposition 6.2 According to Section 6.3.1, we obtain again

M1 ∼
(

σ
√

ln (1/σ)
)−1/t

and M0 ∼
(

σ
√

ln (1/σ)
)−1/t

.

Then, for all D ∈ N,

a−2
D∧M0

& a−2
M0

∼ exp{−2M0s} ∼ exp

{

−2s
(

σ ln1/2(1/σ)
)−1/t

}

. σ2 ln3/2(1/σ).

Define as in the previous case the value M ∈ N that satisfies the following equation

a−2
M ∼ σ2 ln3/2(1/σ) ⇔ M =:M⋆ ∼ 1

s
ln

[

1

σ ln3/4(1/σ)

]

.

Hence,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M⋆



 .

Define now the value of J ∈ N that satisfies the following equation

ε2

√

√

√

√

J
∑

j=1

b−4
j ∼ a−2

J ⇔ ε2J2t+1/2 ∼ exp{−2Js} ⇔ J := J⋆ ∼ 1

σ
ln (1/ε) − ln

[

(

1

σ
ln (1/ε)

)2t+ 1
2

]

.

We now consider the following situations:

• (J⋆ .M⋆) In this case,

r̃2ε,σ . a−2
J⋆ . ε2 [ln (1/ε)](2t+

1
2) .

• (J⋆ &M1) In this case,

r̃2ε,σ . inf
D∈N

[

a−2
D∧M⋆

]

. a−2
M⋆ ∼ σ2 ln

3
2 (1/σ) .
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• (M⋆ . J⋆ .M1) In this case,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M⋆



 .

=







inf
D≤M⋆



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M⋆











∧







inf
D>M⋆



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M⋆











. a−2
M⋆ ∧







inf
D>M⋆



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

M⋆











. a−2
M⋆ ∧







ε2

√

√

√

√

M⋆
∑

j=1

b−4
j + a−2

M⋆







. a−2
M⋆ ∼ σ2 ln

3
2 (1/σ) .

Combining the above terms, we immediately get (6.33). This completes the proof of the propo-
sition.

�

6.3.3 Case (iii): Severely ill-posed problems with ordinary smooth functions

Recall that
bj ∼ exp{−jt}, t > 0, and aj ∼ js, s > 0, j ∈ N. (6.34)

Proposition 6.3 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.34).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ . [ln (1/ε)]−2s ∨
[

ln

(

1

σ ln1/2(1/σ)

)]−2s

. (6.35)

Proof of Proposition 6.3 In a first time, we determine the order of the bandwidths M0 and
M1. Setting

M̄1 :=
1

t
ln

(

1

σ ln1/2(1/σ)

)

and M̃1 :=
1

t
ln (1/σ) ,

we get

σh1,M̄1
∼ σ

√

ln(M̄1) = σ

√

√

√

√ln

(

1

t
ln

(

1

σ ln1/2(1/σ)

))

. e−M̄1t = σ
√

ln(1/σ) ∼ bM̄1
,

which implies that M1 ≥ M̄1 for σ small enough. At the same time

σh1,M̃1
∼ σ

√

ln(M̃1) = σ

√

ln

(

1

t
ln (1/σ)

)

& bM̃1
∼ e−M̃1t = σ,

which implies that M1 ≤ M̃1 for σ small enough. Hence, we can conclude that

1

t
ln

(

1

σ ln1/2(1/σ)

)

≤M1 ≤
1

t
ln (1/σ) ,
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for σ small enough. Similarly, we get that

1

t
ln

(

1

σ ln1/2(1/σ)

)

≤M0 ≤
1

t
ln (1/σ) ,

for σ small enough.

Now, we turn our attention to the proof of (6.35). For all D ∈ N,

a−2
D∧M0

& a−2
M0

&M−2s
0 ∼

[

ln

(

1

σ ln1/2(1/σ)

)]−2s

& σ2 ln3/2(1/σ).

Hence,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0



 .

Define now the value of J ∈ N that satisfies the following equation

ε2

√

√

√

√

J
∑

j=1

b−4
j ∼ a−2

J ⇔ ε2 exp{2tJ} ∼ J−2s ⇔ J := J⋆ ∼ 1

t
ln (1/ε) − ln

[

(

1

t
ln (1/ε)

)2s
]

.

We now consider the following situations:

• (J⋆ .M0) In this case,
r̃2ε,σ . a−2

J⋆ . [ln (1/ε)]−2s .

• (J⋆ &M1) In this case,

r̃2ε,σ . inf
D∈N

[

a−2
D∧M0

]

. a−2
M0

∼
[

ln

(

1

σ ln1/2(1/σ)

)]−2s

.

• (M0 . J⋆ .M1) In this case,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0



 .

=







inf
D≤M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0











∧







inf
D>M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0











. a−2
M0

∧







inf
D>M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

M0











. a−2
M0

∧







ε2

√

√

√

√

M0
∑

j=1

b−4
j + a−2

M0







. a−2
M0

.

[

ln

(

1

σ ln1/2(1/σ)

)]−2s

.

Combining the above terms, we immediately get (6.35). This completes the proof of the propo-
sition.

�
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6.3.4 Case (iv): Severely ill-posed problems with super smooth functions

Recall that
bj ∼ exp{−jt}, t > 0, and aj ∼ exp{js}, s > 0, j ∈ N. (6.36)

Proposition 6.4 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.36).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ . ε
2s
s+t ∨ [σ ln1/2(1/σ)]2(

s
t
∧1). (6.37)

Proof of Proposition 6.4 According to Section 6.3.3, we obtain again that

1

t
ln

(

1

σ ln1/2(1/σ)

)

≤M1 ≤
1

t
ln (1/σ)

and
1

t
ln

(

1

σ ln1/2(1/σ)

)

≤M0 ≤
1

t
ln (1/σ) ,

for σ small enough. Now, we consider the cases s < t and s ≥ t separately.

Consider first the case s < t. In this case, for all D ∈ N,

a−2
D∧M0

& a−2
M0

∼ exp{−2sM0} &
(

σ ln1/2(1/σ)
)2s/t

& σ2 ln3/2(1/σ).

Hence,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0



 .

Define now the value of J ∈ N that satisfies the following equation

ε2

√

√

√

√

J
∑

j=1

b−4
j ∼ a−2

J ⇔ ε2 exp{2tJ} ∼ exp{2sJ} ⇔ J := J⋆ ∼ 1

s+ t
ln (1/ε) .

We now consider the following situations:

• (J⋆ .M0) In this case,

r̃2ε,σ . a−2
J⋆ . ε

2s
s+t .

• (J⋆ &M1) In this case,

r̃2ε,σ . inf
D∈N

[

a−2
D∧M0

]

. a−2
M0

.
[

σ ln1/2(1/σ)
]

2s
t
.
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• (M0 . J⋆ .M1) In this case,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0



 .

=







inf
D≤M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0











∧







inf
D>M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

D∧M0











. a−2
M0

∧







inf
D>M0



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

M0











. a−2
M0

∧







ε2

√

√

√

√

M0
∑

j=1

b−4
j + a−2

M0







. a−2
M0

.
[

σ ln1/2(1/σ)
] 2s

t
.

Combining the above terms, we immediately get

r̃2ε,σ . ε
2s
s+t ∨

[

σ ln1/2(1/σ)
]

2s
t
. (6.38)

Consider now the case s ≥ t. Define the value M ∈ N that satisfies the following equation

a−2
M ∼ σ2 ln3/2(1/σ) ⇔ M := M⋆ ∼ 1

s
ln

[

1

σ ln3/4(1/σ)

]

.

Hence,

r̃2ε,σ . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j +

[

σ2 ln3/2(1/σ) ∨ a−2
D∧M0

]



 . inf
D∈N



ε2

√

√

√

√

D∧M1
∑

j=1

b−4
j + a−2

M⋆



 .

Working along the lines of the case s < t by replacing M0 by M⋆, we get

r̃2ε,σ . ε
2s
s+t ∨

[

σ ln1/2(1/σ)
]2
. (6.39)

Hence, (6.37) follows thanks to (6.38) and (6.39). This completes the proof of the proposition.

�

6.4 Non-Asymptotic Lower Bounds

6.4.1 Proof of Proposition 4.1

Let θ0 ∈ Ea be given sequence (to be made precise below). Given a (prior) probability measure
π on the set associated with H1, i.e., a probability measure π on Θ̃a,θ0(rσ, b) := Θa,θ0(rσ)×B(b),
where Θa,θ0(rσ) = θ0 +Θa(rσ), by standard Bayesian arguments (see, e.g., Section 3.1 of [15]),
we arrive at

β0,σ,b(Θ(rσ),B(b)) = inf
Ψ̃α:α0,σ(Ψ̃α)≤α

sup
θ0∈Ea, θ−θ0∈Θa(rσ)

b̄∈B(b)

Pθ,b̄(Ψ̃α = 0)

≥ 1− α− 1

2
(E0[L

2
π(Y,X)] − 1)1/2, (6.40)
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where Lπ(Y,X) denotes the likelihood ratio between the two measures Pπ and P0, E0 denotes the
expectation with respect to P0, with P0 =

∫

Θ̃a,θ0
(rσ ,b)

Pθ0,b̄
dπ(θ, b̄) and Pπ =

∫

Θ̃a,θ0
(rσ ,b)

Pθ,b̄ dπ(θ, b̄),

and the last inequality is obtained by standard calculations (see, e.g., Section 3.1 of [15]).

The probability measure π on Θ̃a,θ0(rσ, b) is selected as product probability measure, i.e.,

π =
∏

j∈N

πj , πj = πj,1 × πj,2, j ∈ N.

Then, given the sequence θ and the bandwidth D ∈ N (to be made precise below), we set

πj,1 = δθj,0 and πj,2 = δbj , j 6= D,

and

πD,1 = G−1
D (C0, C1)δθD and dπD,2(t) =

1

σ
√
2π

exp

{

− 1

2σ2
(t− bD)

2

}

dt,

where GD(C0, C1) = (1/σ
√
2π)

∫ C1bD
C0bD

exp
{

−(t− bD)
2/(2σ2)

}

dt. In some sense, using the above
product probability measure π, we deal with observations (Y,X) = (Yj ,Xj)j∈N from the follow-
ing Bayesian sequence model

Yj = bjθj,0, Xj = bj + σηj , j ∈ N \ {D},

and
YD = BDθD, XD = BD + σηD, (6.41)

where BD is Gaussian random variable with mean bD and variance σ2, that is independent of
the standard Gaussian sequence {ηj}j∈N. Note that

π(Θ̃a,θ0(rσ, b)) := π(Θa,θ0(rσ)× B(b))
= π1(Θa,θ0(rσ))× π2(B(b))

= G−1
D (C0, C1)

1

σ
√
2π

∫ C1bD

C0bD

exp

{

− 1

2σ2
(t− bD)

2

}

dt (6.42)

= 1. (6.43)

In view of the above, it is immediately seen that

Lπ(Y,X) =
∏

j∈N

Lπj(Yj,Xj) = LπD
(YD,XD).

Hence, as before, we arrive at

β0,σ,b(Θ(rσ),B(b)) ≥ 1− α− 1

2
(E0[L

2
πD

(YD,XD)]− 1)1/2. (6.44)

Our task below is then to provide an upper bound on E0[L
2
πD

(YD,XD)]. To this end, it is easily
seen from model (6.41) that ZD = (XD, YD), D ∈ N, is Gaussian random vector with mean Uθ,D

and covariance matrix σ2Σθ,D, where

Uθ,D =

(

bD
bDθD

)

, Σθ,D =

(

2 θD
θD θ2D

)

.

Note that

Σ−1
θ,D =

1

θ2D

(

θ2D −θD
−θD 2

)

,
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and

(ZD − Uθ,D)
′Σ−1

θ,D(ZD − Uθ,D) =
1

θ2D
(XD − bD, YD − bDθD)

(

θ2D −θD
−θD 2

)(

XD − bD
YD − bDθD

)

=
1

θ2D
(XD − bD, YD − bDθD)

(

θ2D(XD − bD)− θD(YD − bDθD)
−θD(XD − bD) + 2(YD − bDθD)

)

=
1

θ2D
(XD − bD, YD − bDθD)

(

XDθ
2
D − YDθD

2YD − bDθD −XDθD

)

=
1

θ2D
((XD − bD)(XDθ

2
D − YDθD) + (YD − bDθD)(2YD − bDθD −XDθD))

=
1

θ2D
[(YD −XDθD)

2 + (YD − bDθD)
2].

Hence,

LπD
(ZD) = exp

{

(ZD − Uθ0,D)
′σ−2Σ−1

θ0,D
(ZD − Uθ0,D)− (ZD − Uθ,D)

′σ−2Σ−1
θ,D(ZD − Uθ,D)

}

= exp

{

1

σ2

[

(YD −XDθD,0)
2

θ2D,0

+
(YD − bDθD,0)

2

θ2D,0

− (YD −XDθD)
2

θ2D
− (YD − bDθD)

2

θ2D

]}

= exp

{

1

σ2

[

2Y 2
D

(

1

θ2D,0

− 1

θ2D

)

− 2XDYD

(

1

θD,0
− 1

θD

)

− 2bDYD

(

1

θD,0
− 1

θD

)

]}

= exp

{

1

σ2

[

2Y 2
D

(

1

θ2D,0

− 1

θ2D

)

− 2YD(XD + bD)

(

1

θD,0
− 1

θD

)

]}

,

Under H0, YD = BDθD,0. Therefore, conditionally on BD,

E0

[

L2
π(ZD)

]

= G−1
D (C0, C1)E

[

exp

{

2

σ2

(

2B2
D

(

1−
θ2D,0

θ2D

)

− 2BD(XD + bD)

(

1− θD,0

θD

)

)}]

= G−1
D (C0, C1)E

(

exp

{

4B2
D

σ2

(

1−
θ2D,0

θ2D

)

− 4BDbD
σ2

(

1− θD,0

θD

)

}

× E

[

exp

{

−4BDXD

σ2

(

1− θD,0

θD

)}

| BD

])

:= G−1
D (C0, C1)E

(

E0

[

L2
π(ZD) | BD

])

.

Using the formula

E [exp(−(λ1 + λ2V )] = exp(−λ1 + λ22/2), λ1, λ2 ∈ R, (6.45)

for any standard Gaussian random variable V , with

λ1 =
4B2

D

σ2

(

1− θD,0

θD

)

, λ2 =
4BD

σ

(

1− θD,0

θD

)

,

we arrive at

E0

[

L2
π(ZD) | BD

]

= exp

{

4B2
D

σ2

(

1−
θ2D,0

θ2D

)

− 4BD

σ2

(

1− θD,0

θD

)

(BD + bD)

}

× exp

{

8B2
D

σ2

(

1− θD,0

θD

)2
}

= exp{σ−2B2
D

[

4(1− ρ2D)− 4(1− ρ) + 8(1− ρD)
2
]

}
× exp{−4σ−2BDbD(1− ρD)},
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where

ρD =

(

1− θD,0

θD

)

.

Using simple algebra, we get

E0

[

L2
π(ZD) | BD

]

= exp

{

4B2
D

σ2
(ρD − 1)(ρD − 2)− 4BDbD

σ2
(1− ρD)

}

= exp

{

4

σ2
(ρD − 1)[B2

D(ρD − 2) +BDbD]

}

.

It is easily seen that

B2
D(ρD − 2) +BDbD = (bD + ση̃D)

2(ρD − 2) + (bD + ση̃D)bD

= b2D(ρD − 1) + 2ση̃DbD(ρD − 3/2) + σ2η̃2D(ρD − 2),

where {η̃D}D∈N is a sequence of independent standard Gaussian random variables. Therefore,

E0

[

L2
π(ZD) | BD

]

= exp

{

4b2D
σ2

(1− ρD)
2

}

× exp

{

8

σ
bDη̃D(ρD − 1)

(

ρD − 3

2

)

+ 4η̃2D(ρD − 2)

}

.

Since ρD ∈]1, 2[, then 4η̃2D(ρD − 2) < 0 and, hence,

E0

[

L2
π(ZD) | BD

]

≤ exp

{

4b2D
σ2

(1− ρD)
2 +

8

σ
bDη̃D(ρD − 1)

(

ρD − 3

2

)}

.

Using (6.45) with

λ1 = 0, λ2 =
8

σ
bD(ρD − 1)

(

ρD − 3

2

)

,

we get

E0

[

L2
π(ZD)

]

= G−1
D (C0, C1)E

(

E0

[

L2
π(ZD) | BD

])

≤ G−1
D (C0, C1)E

(

exp

{

4b2D
σ2

(1− ρD)
2 +

8

σ
bDη̃D(ρD − 1)

(

ρD − 3

2

)})

= G−1
D (C0, C1) exp

{

4b2D
σ2

(1− ρD)
2

[

1 +

(

ρD − 3

2

)2
]}

≤ G−1
D (C0, C1) exp

{

5b2D
σ2

(1− ρD)
2

}

≤ 1 + 4(1− α− β)2,

as soon as
5b2D
σ2

(1− ρD)
2 ≤ ln(1 + 4(1− α− β)2) + ln(G(C0, C1)),

or, equivalently, as soon as
|θD − θD,0| ≤ Cα,β,D σ|θD|b−1

D ,

where

Cα,β,D = ln(1 + 4(1 − α− β)2) + ln(GD(C0, C1))

:= Cα,β + ln(GD(C0, C1)). (6.46)

(Note that, according to (4.4), for all D ≤M2, Cα,β,D ≥ Cα,β/2.)
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Choice of θ: The sequence θ = (θj)j∈N is chosen as follows

θj =

{

0 if j 6= D,

a−1
D /2 if j = D.

It can be easily seen that θ ∈ Ea.

Choice of θ0: The sequence θ0 = (θj,0)j∈N is chosen as follows

θj,0 =

{

0 if j 6= D,

a−1
D /2 + Cα,β,D σa−1

D b−1
D /2 if j = D.

Note that θ0 ∈ Ea as soon as
Cα,β,D σb−1

D ≤ 1. (6.47)

Indeed, using the standard inequality (x+ y)2 ≤ 2(x2 + y2), for x, y ∈ R, we immediately get

∑

j∈N

a2jθ
2
j,0 = a2Dθ

2
D,0 ≤ a2D

(

2
a−2
D

4
+ 2C2

α,β,D

σ2

b2D

a−2
D

4

)

≤ 1

2
+ C2

α,β,D

σ2

2b2D
≤ 1, (6.48)

as soon as (6.47) is satisfied. Furthermore, as soon as (6.47) is satisfied, it is easily seen that
θ − θ0 ∈ Ea.

Moreover, for the specific choices of θ and θ0 given above, it is immediately seen that

|θD − θD,0| = Cα,β,D σb−1
D |θD| ⇔ ‖θ − θ0‖ =

Cα,β,D

2
σb−1

D a−1
D .

In other words, we have proved that for all D ∈ N satisfying (6.47) then

β0,σ,b(Θ(rσ,D),B(b)) > β, where rσ,D =
Cα,β,D

2
σb−1

D a−1
D ,

for any given β ∈]0, 1 − α[. This implies that, for every ρ > 0, β0,σ,b(Θ(ρ),B(b)) > β as soon as

ρ ≤ Cα,β,D

2
σb−1

D a−1
D for some D ∈ N : Cα,β,D σb−1

D ≤ 1,

which holds, as soon as

ρ ≤ Cα,β

4
σb−1

D a−1
D for some 1 ≤ D ≤M2,

on noting that

M2 := sup

{

D ∈ N : Cα,β σ|b−1
D | ≤ 2 and GD(C0, C1) ≥ 1

√

1 + 4(1 − α− β)2

}

,

and that

Cα,β,D ≥ Cα,β

2
, 1 ≤ D ≤M2.

In particular,

β0,σ,b(Θ(ρ),B(b)) > β for all ρ ≤ Cα,β

4
σ max

1≤D≤M2

[b−1
D a−1

D ].

Hence,

r̃0,σ ≥ Cα,β

4
σ max

1≤D≤M2

[b−1
D a−1

D ].

This completes the proof of the proposition.

�
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6.4.2 Proof of Theorem 4.1

The proof is splitted in two parts. We first show that r̃ε,σ ≥ r̃ε,0 and then show that r̃ε,σ ≥ r̃0,σ.

Consider observations Y = (Yj)j∈N from the GSM (4.8). Introduce the following goodness-
of-fit testing algorithm:

• Generate a sequence X̃ = (X̃j)j∈N according to the GSM

X̃j = bj + ση̃j , j ∈ N, (6.49)

where η̃ = (η̃j)j∈N is a sequence of independent standard Gaussian random variables
(that is also independent of the sequence ξ = (ξj)j∈N). (Note that the GSM (6.49) is an
independent copy of the second equation in the GSM (1.1).)

• Let Ψ̃α := Ψ̃α(Y, X̃) be a given (non-randomized) α-level goodness-of-fit testing procedure
based on observations (Y, X̃) = (Yj, X̃j)j∈N from the GSMs (4.8) and (6.49).

• Define the randomized test Ψα := Ψα(Y )2 as

Ψα(Y ) := E[Ψ̃α | Y ],

where E[·] refers to expectation with respect to the independent standard Gaussian se-
quence η̃.

In particular, for every ε > 0 and σ > 0, the randomized test Ψα is an α-level test. Indeed,

αε(Ψα) = Eθ0,b[Ψα]

= Eθ0,b[E[Ψ̃α | Y ]]

= Eθ0,b[Ψ̃α]

= Pθ0,b(Ψ̃α = 1) = α, (6.50)

since Ψ̃α is an α-level test.

Let θ ∈ l2(N) and θ − θ0 ∈ Ea be fixed. Then, the associated second kind error probability
satisfies

Eθ,b(1−Ψα(Y )) = Eθ,b(1− E[Ψ̃α | Y ])

= Eθ,b(1− Ψ̃α)

= Pθ,b(Ψ̃α = 0) ≤ β, (6.51)

as soon as
‖θ − θ0‖ ≥ rǫ,σ(Ea, Ψ̃α, β).

This implies that for any α-level goodness-of-fit testing procedure Ψ̃α, based on observations
(Y, X̃) from the GSMs (4.8)-(6.49), we can associate an α-level goodness-of-fit testing procedure
Ψα, based on observations Y from the GSM (4.8), such that the separation radius of Ψα is
smaller than the separation radius of Ψ̃α, i.e.,

rε,0(Ea,Ψα, β) ≤ rε,σ(Ea, Ψ̃α, β).

2a measurable function of the observation Y = (Yj)j∈N from the GSM (4.8) with values in the interval [0, 1]: for
any given radius ρ > 0, the null hypothesis is rejected with probability Ψα(Y ) and it is not rejected with probability
1−Ψα(Y ). In this case, αε(Ψα) := Eθ0,b(Ψα(Y )) and βε(Θa(ρ),Ψα) := supθ0∈Ea θ−θ0∈Θa(ρ)

Eθ,b(1−Ψα(Y ))).
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Hence, it is immediately seen that, for any α-level goodness-of-fit testing procedure Ψ̃α, based
on observations (Y, X̃) from the GSMs (4.8) and (6.49),

r̃ε,0 := inf
Ψα:αε,0(Ψ̄α)≤α

rε,0(Ea, Ψ̄α, β)

≤ rε,0(Ea,Ψα, β)

≤ rε,σ(Ea, Ψ̃α, β), (6.52)

implying that
r̃ε,0 ≤ r̃ε,σ.

The proof of the assertion
r̃0,σ ≤ r̃ε,σ.

follows similarly, along the lines of the proof of the previous assertion, and it is therefore omitted.
This completes the proof of (4.12)

Finally, (4.13) follows immediately form (4.12), taking into account (4.3) and (4.10). This
completes the proof of the theorem.

�

6.5 Lower Bounds: Specific Cases

For the sake of convenience, we give the proof of each item (i)-(iv) in Theorem 4.2 in different
sections.

6.5.1 Case (i): Mildly ill-posed problems with ordinary smooth functions

We assume that (6.28) holds true, i.e.,

bj ∼ j−t, t > 0, and aj ∼ js, s > 0, j ∈ N.

Proposition 6.5 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.28).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ & ε
4s

2s+2t+1/2 ∨ σ2( s
t
∧1). (6.53)

Proof of Proposition 6.5 For the second term in (4.13), it is known that (see [14], [11]),

sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D



 ∼ ε
4s

2s+2t+1/2 .

Consider now the first term in (4.13). If s > t, then the sequence {b−1
j a−1

j }j∈N is non-
increasing and, thus,

C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ] ∼ σ2.

On the other hand, if s ≤ t, then the sequence {b−1
j a−1

j }j∈N is non-decreasing. Hence, thanks
to (4.4),

σ2 ∼ b2M2
⇔M2 ∼ σ−1/t,

and, thus,
C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ] ∼ σ2b−2
M2
a−2
M2

∼ a−2
M2

∼ σ
2s
t .

Combining the above terms, we arrive at (6.53). This completes the proof of the proposition.

�
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6.5.2 Case (ii): Mildly ill-posed problems with super smooth functions

We assume that (6.32) holds true, i.e.,

bj ∼ j−t, t > 0, and aj ∼ exp{js}, s > 0, j ∈ N.

Proposition 6.6 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.32).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ & ε2 [ln (1/ε)](2t+
1
2) ∨ σ2. (6.54)

Proof of Proposition 6.6 For the second term in (4.13), it is known that (see [14], [11]),

sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D



 ∼ ε2 [ln (1/ε)](2t+
1
2) .

Consider now the first term in (4.13). Then, the sequence {b−1
j a−1

j }j∈N is non-increasing for
each s, t > 0, and, thus,

C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ] ∼ σ2.

Combining the above terms, we arrive at (6.54). This completes the proof of the proposition.

�

6.5.3 Case (iii): Severely ill-posed problems with ordinary smooth functions

We assume that (6.34) holds true, i.e.,

bj ∼ exp{−jt}, t > 0, and aj ∼ js, s > 0, j ∈ N.

Proposition 6.7 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.34).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ & [ln (1/ε)]−2s ∨ [ln (1/σ)]−2s . (6.55)

Proof of Proposition 6.7 For the second term in (4.13), it is known that (see [14], [11]),

sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D



 ∼ [ln (1/ε)]−2s .

Consider now the first term in (4.13). Then, the sequence {b−1
j a−1

j }j∈N is non-decreasing.
Hence, thanks to (4.4),

σ2 ∼ b2M2
⇔M2 ∼

1

t
ln (1/σ)

and, thus,
C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ] ∼ σ2b−2
M2
a−2
M2

∼ a−2
M2

∼ [ln (1/σ)]−2s .

Combining the above terms, we arrive at (6.55). This completes the proof of the proposition.

�

40



6.5.4 Case (iv): Severely ill-posed problems with super smooth functions

We assume that (6.36) holds true, i.e.,

bj ∼ exp{−jt}, t > 0, and aj ∼ exp{js}, s > 0, j ∈ N.

Proposition 6.8 Assume that the sequences b = (bj)j∈N and a = (aj)j∈N are given by (6.36).
Then, there exists ε0, σ0 ∈]0, 1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax
separation radius r̃ε,σ satisfies

r̃2ε,σ & ε
2s
s+t ∨ σ2( s

t
∧1). (6.56)

Proof of Proposition 6.8 For the second term in (4.13), it is known that (see [14], [11]),

sup
D∈N



cα,β ε
2

√

√

√

√

D
∑

j=1

b−4
j ∧ a−2

D



 ∼ ε
2s
s+t .

Consider now the first term in (4.13). If s > t, then the sequence {b−1
j a−1

j }j∈N is non-
increasing and, thus,

C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ] ∼ σ2.

On the other hand, if s ≤ t, then the sequence {b−1
j a−1

j }j∈N is non-decreasing. Hence, thanks
to (4.4),

σ2 ∼ b2M2
⇔M2 ∼

1

t
ln (1/σ) ,

and, thus,
C2
α,β

16
σ2 max

1≤D≤M2

[b−2
D a−2

D ] ∼ σ2b−2
M2
a−2
M2

∼ a−2
M2

∼ σ
2s
t .

Combining the above terms, we arrive at (6.53). This completes the proof of the proposition.
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