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A NEW METHOD FOR SMOOTHING AND INTERPOLATING
WITH INEQUALITY CONSTRAINTS

X. BAY', L. GRAMMONT?!, AND H. MAATOUKT*

Abstract. In this paper, smoothing curve or surface with both interpolation conditions and
inequality constraints is considered as a general convex optimization problem in a Hilbert space.
We propose a new approximation method based on a discretized optimization problem in a finite-
dimensional Hilbert space under the same set of constraints. We prove that the approximate solution
converges uniformly to the optimal constrained interpolating function. An efficient algorithm is
derived and numerical examples with bound and monotonicity constraints in one and two dimensions
are given. A comparison with existing monotone cubic splines interpolation algorithms in terms of
linearized energy criterion is included.

Key words. RKHS, interpolation, smoothing, inequality constraints, splines

AMS subject classifications. 65D10, 65D07, 65D05, 47N10

1. Introduction. Let X be a nonempty set of R? (d > 1) and E = C°(X) the
linear (topological) space of real valued continuous functions on X. Given n distincts
points () ... 2™ € X and y1,...,y, € R, we define the set I of interpolating
functions by

I:= {feE, f@D) =y, i= 1,...,n}.
Let C be a closed convex set of E. We consider the following smoothing problem
(P) min{||h||%, h€ HNC NI}

where H is a Reproducing Kernel Hilbert Space (RKHS) continuously included in
E. Notice that HNC N1 is a closed convex subset of H and the (unique) solution
of (P) is the projection in H of the null function onto this convex set (assumed to
be nonempty). The reproducing kernel (r.k.) K of H is a continuous symmetric
definite-positive function:

K : (2,y) €ER'XRY — K(z,y) = (K(,y),K(,2))y €R.

Choosing different kernels, the norm with corresponding RKHS defines different no-
tions of smoothness or different regularization criteria for scattered data interpola-
tion.

In terms of the reproducing property (see [3]), the interpolation conditions can
be formulated in the Hilbert space H as

(1.1) vhe H, h(z9)= 0K tDNg=y, i=1,...,n

Very often in practice, the convex set C' is an infinite set of linear inequality con-
straints. The following smoothing interpolation problem without such constraints
(case C = E)

(@) min {||h]|3, he HNI}

*Corresponding author (maatouk@emse.fr).

TMines Saint-Etienne, UMR CNRS 6158, LIMOS, F-42023 Saint-Etienne, France. (bay@emse.fr).

$Université de Lyon, Institut Camille Jordan, UMR 5208, 23 rue du Dr Paul Michelon, 42023
Saint-Etienne Cedex 2, France. (laurence.grammont@univ-st-etienne.fr).

1


mailto:{\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \U/msb/m/n/5 {\OT1/cmr/m/n/8 }\U/msb/m/n/5 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \U/msb/m/n/5 {\OT1/cmr/m/n/8 }\U/msb/m/n/5 \size@update \enc@update maatouk@emse.fr}
mailto:{\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \U/msb/m/n/5 {\OT1/cmr/m/n/8 }\U/msb/m/n/5 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \U/msb/m/n/5 {\OT1/cmr/m/n/8 }\U/msb/m/n/5 \size@update \enc@update bay@emse.fr}
mailto:{\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \U/msb/m/n/5 {\OT1/cmr/m/n/8 }\U/msb/m/n/5 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \U/msb/m/n/5 {\OT1/cmr/m/n/8 }\U/msb/m/n/5 \size@update \enc@update laurence.grammont@univ-st-etienne.fr}

2 X. BAY, L. GRAMMONT AND H. MAATOUK

has been solved so far. It is easy to prove that, if H NI # &, then (Q) has a unique
solution. Let Z be the interpolation operator from H into R™ defined as

I(h) = (h (x(1)> .k (x<n>)) :

From equation (1.1), Z is a bounded linear operator whose range is included in the
usual Euclidian space R™. The kernel Ker(Z) of Z is closed in H so that, for any
y € R*, h = Zf(y) is the unique solution of (Q), where Z' is the generalized inverse
or Moore-Penrose inverse of Z (see [21]). If the matrix K = (K (2%, 20))),<; i<, is
invertible, 2 = ZT(y) can be expressed as (see Proposition 2.3, §2.1)

(1.2) h(z) = k(z) "K'y,
where k(z) = (K (z,2W),... ,K(Jc,yc(”)))T and y = (y1,---,Yn) -

In many applications from science to engineering, there is a priori information on
the shape of the solution such as lower and upper bounds or monotonicity property.
The shape constraints restrict the reconstruction to some closed convex subset of
the relevant function space. The general approach is based on using a minimization
principle: the so called smoothing spline principle (see [2], [24]). The starting point is
a characterization of the solution of the problem (P) as the orthogonal projection onto
the convex set C' of a finite linear combination (with unknown coefficients) of certain
basis functions. The coefficients are defined from interpolation conditions which lead
to a set of nonlinear equations that can be solved by Newton’s method (see [2]).

IfHNCN Z-'({y}) # @ then (P) has a unique solution of the form

h = Po (T(a)) = Pe (zn: K (x“)) ,

where a = (aq,...,a,)" is a vector in R" and P is the orthogonal projection onto
the convex set H N C (see [20], Theorem 3.2, pp 739). Conversely, if for arbitrary
vector o, b = Po(Y), ;K (., () satisfies the condition Z(h) = y then h is the
solution of (P) (see [2], Theorem 2.1, pp 304). Under particular assumptions (see
[20]), if & is solution of the following dual problem

win {3 1Pe(@ (@I (0. a R},

then h = Po(Z*(&)) is the solution of (P). In the general case (see [20], Theorem
3.2), & is the solution the following dual problem

win {5 17 @ 51" (@) = Pe( (@) ~ (0, a e &' |

This last problem is not easy to solve. As Andersson and Elfving wrote it in
their paper [2], to transform this result into a numerical algorithm, it is necessary
to compute the orthogonal projection Po and the difficulty lies in that calculation.
Andersson and Elfving [2] investigate the structure of the projection operator P for
particular constraints defining the convex set C. Laurent [17] proposed an algorithm
to solve this kind of minimization problem. This algorithm was applied by Utreras
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and Varas in [23] for the K-Monotone Thin Plate Spline (K-M.T.P.S). The algorithm
is based on iterations using Kuhn and Tucker’s theorem. Moreover, as the authors
wrote it in the paper [23], the computational cost of the dual-type algorithm is still
high.

In this paper, we propose a new method to solve (P). It is intended to overcome
the computational cost problem and to be easy to implement. The philosophy is
quite different from the methods constructed so far : it does not rely on minimization
principles. We defined a discretized optimization problem (Py) in a finite-dimensional
space Hy under the same interpolation conditions and inequality constraints:

(Py) min {|h]|%,, h € HynCNI)}

The main step of the method is the construction of the finite-dimensional Hilbert
space Hy in the bigger space F = C°(X), using a much more flexible set of basis
functions in E to incorporate inequality constraints. In a particular framework, we
prove that the problems (P) and (Py) have a unique solution and that the solution
of the discretized problem (Py) tends to the solution of (P), for the convergence in
the space E (uniform convergence).

The article is organized as follows: in §2, the new method to approximate (P) is
described and its convergence property is proved. In order to investigate the efficiency
of the proposed approach, some numerical examples with bound and monotonicity
constraints in one and two dimensions are given in §3. The algorithm is applied
to classic spline cases with inequality constraints. In that case, a comparison with
existing algorithms is included in §4.

2. A new algorithm based on a discretized optimization problem. Con-
sider the infinite-dimensional convex optimization problem

(0) min{J(h), h € HNCY,

where J is a real valued criterion defined on a Hilbert space H and C' is a closed
convex set of H.

By analogy with Finite Element Method (see the Ritz-Galerkin method [11]), a
discretized optimization problem is of the form

(ON) min{J(pNhN), hy € Hy N CN},

where Hy = wy(H) is a finite-dimensional space, my is a linear operator from H
to Hy (projection or restriction operator), py is an extension operator from Hy to
H and Cn = {hn € Hy s.t. pn(hn) € C} (see [5] and [18]). If 7y (C) C Cn and
under some stability and consistency properties of mx and py, one can expect that
J(un) — J(u) and uy — u weakly in H, where u is the solution of (O) and uy is
the solution of (On).

Our approach is different: we do not discretize the constraints set but we discretize
the criterion:

min{JN(hN), hy € Hy N C}
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Nevertheless, the analysis of this discretized optimization problem involves a triple
(Hy, 7N, pN), where Ty is a linear operator from F to Hy C F and py is an operator
from Hy to H. In this section, the space E = C°(X) is the Banach space of continuous
functions equipped with the uniform norm ||.||e, where X is a compact subspace of
R<. Let h be the solution of (P) and le the solution of (Py), we will prove that

hy —> hin the space F.
N—+o00
2.1. The approximating subspaces Hy and operators ny and py. For
simplicity, X is assumed to be the unit interval [0,1]. Let Ay be a subdivision of
[0,1] being a graded mesh:

Ay OZtN7O<tN,1<...<tN7N:1, ANCAN_H,
and hy = max{|tni+1 —tnil, ©=0,...,N—1} — 0. For each N, we define
N ——+oco

the approximating subspace Hy of E = C%(X) to be the subspace of piecewise linear
continuous functions associated to Ay. The canonical basis of Hy is formed by the
so-called hat functions [pn.0,- .., NN

t—tN .
Nt tE N1 tNgl,
(2'1) j=1,...,N-1 @N,j(t) = %a te [tN,jvtNJ-i-l]v
0 otherwise.
tn.a—t te [t " ] t—tN, N—1 te [t t ]
tNi1—tNo’ N,05UN,1}]5 INN—INN_1’ N,N—-1,UN,N|,
eno(t) = oNN(t) ==
0 otherwise, 0 otherwise.

Next, we define the linear operators ny : F — Hy, py : Hy — H and a norm
|-l 2y such that mx and py are stable, i.e.

Vh € H, Imn ()N < IRl &,
Vhy € Hy, lon (hn)lla < [Ihn |y

and 7y and py are consistent, i.e.

Vh e H, pn o7 (h) Nt h.

PROPOSITION 2.1. Let mn be the linear operator defined from E onto Hy by
N
VieE,  an(f)=) fltni)en.
j=0
Then, Ty oty = 7N and

mn (f) Nt [ E.
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Proof. Tt is a classical result related to the usual Schauder basis of the Banach F
(see [19]). 0

REMARK 2.2. Take J(h) = ||h||% in (O). If |pnhn|lex = |hn||ay, then (On)
becomes a finite-dimensional problem easy to handle. So, it would be nice to construct
the operator pn and the norm on Hy satisfying this last equality.

For this, we consider the interpolation operator Zy : H — RN by Zy(h) :=
(h(tn,0),---,h(tn,n)). By the reproducing property, we also have

(2.2) In(h) = ((h, K(,tno)gs---» (b K(., tN,N))H) .

Hence, Zy is a bounded operator and for all y € RN*!, the following optimization
problem

. 2 .
min {1113, h(tw) = y5, 3= 0., N}

has a unique solution h = I}Lv(y) Let us define the operator py : Hy — H as
follows :

Vhy GI{N7 pN(hN):I}Lv(ChN)v
where ¢, == (hn (tno), .- by (tN,N))T

We assume in the following that the Gram matrix I'n := (K(tn,tn5))0<; <N
is inwvertible for all N. o

PrRoOPOSITION 2.3. For all hy € Hy, we have
(2.3) pn () = k() Ty ey,
where k(.) = (K(.,tno), ..., K(.,tnn))". Moreover,
(2.4) lpx ()l = en TN -

Proof. By definition, py(hy) € Ker(Zy)*. Additionally, from relation (2.2), we
obtain

Ker(IN)J‘ = span (K(.,tno),...,K(,tnnN)),

so we can write for some Qg

N
(2.5) pn () =D K (. tn ;).
=0
As pn(hn)(tnyi) = hn(tn) for i =0,..., N, we have a := (o, . . Lan) = F]_VlchN,

which leads to equation (2.3). Using equation (2.5), one gets

N N
o ()17 = (o (), o (hv) i = DY~ e (K (o tn ) K () g -
i—0 j—=0
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Since (K(.,tn,), K(.,tnj))y = K(tni,tn,;), we obtain
N N
lon ()7 =Y ajaiK (tni ) = o Tva,
i=0 j=0
with a = I‘;Vl chy , which completes the proof of the proposition. d

In view of Proposition 2.3, let us construct an inner product in Hy so that
lon ()l = ([N -

THEOREM 2.4. Define the scalar product in Hy by
(2:6) (£:9)my = ;TN e,
with ¢y := (f(tno),-- -, f(?fNJ\;))—r and cg := (g(tn,0), - - - ,g(tN,N))T. Then, the space
Hy is a RKHS with r.k. Ky given by

N

Valwe01],  Kn@,z)= > K(tnitn;)en;@)enia).
i,5=0

Proof. Clearly, Hy is a finite-dimensional Hilbert space. Let = be in [0,1]. We
have

N
(27) KN(.,I) :Z)\j’l‘(‘DN’j EHN,
j=0
N
where \; , = ZK(tNJ, tne)en k() = (Cnp(z));, with p(z) == (ono(2), .. ., on.N(T))T.
k=0
N
Let h := Z a;on,i € Hy. Using equation (2.6), we obtain
i=0

(ha KN(wx))HN = aTI‘Ji\ll (FNSD(:L')) - aTSD(:L') - h(l‘),

which is the reproducing property in Hy. O

ProprosITION 2.5. The operator py is stable. Indeed, pn is an isometry from
Hpy into H, 1i.e.

Vhn € Hy,  lon(hao)llzr = 1Al -
Furthermore,
N
(2.8) VeeX,  pn(En(,2) = oni@)K(,tn;).
j=0

Proof. Let hy be in Hy, then hy = cZNga(:E). According to the definition of the
inner product in Hy, we have

||h’N||?-IN = (hN;hN)HN = C;LFNFXIIChAw
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Using (2.4), we obtain ||pn(hn)||% = [hnl|F, - Since cxy (20 = Pve(z) (see equa-
tion (2.7)), we deduce the relation (2.8) from Proposition 2.3 and equation (2.3). O

PROPOSITION 2.6. For all f in E,
lmn ()i, = ¢ Tx'er
with ¢y = (f(tno), - .-, f(tN,N))T. Moreover, Ty is stable, i.e.

VheH,  |an(W)llay <[Pl

Proof. The first part is a direct consequence of Theorem 2.4. Now, consider the
1L
orthogonal decomposition in H: H = HY & H{, with
HY ={he€H : hity;)=0, j=0,...,N},
HY = span{K(.,tn;), 7=0,...,N}.

For all h € H, there exists a unique hg € HY and hy € HY¥ such that h = hg + h.
Thus,

17 < [1R]17-
Additionally, every hy € HY¥ can be expressed as hi(.) = Z;.V:O a; K(.,ty ;). From
the reproducing property (K(.,tn;), K(.,tn:))y = K(tn,i tn,j), we get

N
1hllF = (b1 i)y = Y cwaK(tntng) = a Tya.

4,§=0
As hi(tny,) = Z;VZO a; K(tn,i,tn,;) for i =0,..., N, we have o = I‘]_Vlch1 and
1hallF = en, TN TNT N eny = e, D' ey -
Since hg € HY', cn, = cn and ||h1]|} = ¢ Ty en = ||mn(R)[|%, , which completes the

proof of the proposition. O

PROPOSITION 2.7. Let Qn be the orthogonal projection from H onto (HY )t =
HN. For all h € H, we have

PN © FN(h) = QN(h)
Moreover, (Hn, 7N, pN) is consistent, i.e.

pN(ﬂN(h)) N::oo h in H.

Proof. According to the proof of Proposition 2.6, we have Qn(h) = k:(.)TF;,lch.
On the other hand, we know that py(mn(h)) = k(.)['y'cs from Proposition 2.3.
Hence, px o 7y is the orthogonal projection from H into H{¥. To complete the proof
of the proposition, it is sufficient to show that the subspace Uy H IN is dense in H. Let
h be in (UNHlN)l. By the reproducing property, we have h(ty ;) = 0, for all N € N
and i =0,...,N. By continuity, h = 0 and (UNHfV)L ={0}. O
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2.2. Existence and uniqueness of the solution of (Py). We recall the prob-
lems (P), (Pn) respectively:

min{||h||%{, he HNCNI} and min{HhH%{N, hEHNﬂCﬂI}.

Assumptions.

(H1) Wi NI+
(H2)YN, 75 (C) C C

By the first hypothesis, the closed convex set H N C'N I is nonempty, so the initial
problem (P) admits an unique solution h.
[e]

Now, if g € HnCnI # &, we will construct a sequence gy € H N C such that
limy 51009y = g in H and wn(gy) € I. Using (H2) and also (H1), this result will
prove that my(gn) is in Hy NC' NI for N large enough. Thus, the problem (Py) also
admits an unique solution.

Let us construct now the sequence (gn)n associated to g € HNOoNI If 2™ is
a data point, let [an k, by i) be the smallest interval of Ay containing z®) | then we
can write z(%) = AN EONE + (1 — AN g)bN g, where An i € [0,1]. Now we define the
set

Fy = {h €H : )\Nykh(a]vyk) + (1 — )\N,k)h(bN,k) =yr, k=1,... ,TL}.
We consider the following optimization problem:

R in ||k —g|%.
(Rn) Juin [k — glf7

According to the classical projection theorem, the problem (Ry) has a unique solu-
tion denoted by gn.

— nn(9)
-- 7nn(gn)

0
1
1
I
1
1
1
1
1
1
1
1
1
I
1
Il
T

b oo

0 N k-1 ane x® by N k+2 1 x

Fig. 1: The function 7y (gx) in the neighborhood of the data point z().
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Figure 1 shows the projection 7 (gn) (black dashed line) of the solution of the
problem (Ry). Notice that the function 7x(g) (red line) does not respect the inter-
polation condition.

LEMMA 2.8. Ifg € H/H\C’ﬂl, then gy — g in H.
N —4o00

Proof. We define the space GYY and G¥ respectively as

Gév ={heH : )\N,kh(aN,k)+(1_)\N,k)h(bN,k) =0, k=1,...,n},
G{V = span{)\N,kK(., aN,k) + (]. — )\N,k)K(~a bN,k); k=1,..., Tl} .
For arbitrary f in Fy (# @), we have Fy = f + G} and gy = f+Pgx(g—[), where

Pgx is the orthogonal projection onto GY. Therefore, g—gn =g— f — Pax (9—1f) €
(G = GY. Then, there exists (8V,...,8N)T in R" such that

n
(2.9) g—gn =) By,
k=1

where € := Ay 1K (., ank) + (1 — A k) K (., by k). The vector 8 = (BN,....BN)T
can be seen as the solution of the following linear system

(2.10) ANBN = bV,

where A, == (e, €¢"),, and bY = (BN, b)) T, with bY = Ay rg(ans) + (1 —
AN.%)9(ON.&) — yr. Now, each dot product

(en €)= OnaeK(ane) + (1= A i) K (L by i), A K (ang) + (1= An ) K (b)) g

converges to (K (.,z(®), K(.,x(l)))H = K(z®,2) by the continuity of K(.,.). On
the other hand, the right vector in (2.10) converges to zero by continuity of the func-
tion g. Since the matrix ((K(.,ac(k))7 K(., ac(l))) is invertible, Lemma 2.8 is
deduced from relations (2.9) and (2.10). O

H)1gk,l§n

THEOREM 2.9. Under the assumptions (H1) and (H2), the discretized optimiza-
tion problem (Px) has a unique solution hy (for N large enough).

Proof. HyNCNI is a nonempty closed convex subset of Hy for IV large enough. O

2.3. Convergence analysis. LEMMA 2.10. Let hy € HNC NI and hy €

HNCNI. Define hy := (1 —t)hg + thy € H, t € [0,1]. Then
e Ny converges to hy when t tends to 1.

eVt<l,hye HNCNI.

Proof. The first property is straightforward. Now, since hg € H/ﬂ\C’, there exists
r > 0 such that the open ball B(hg, ) is contained in H N C. For ¢ € [0,1], we define

¢ as:

¢+ he H— (1—1t)ho+ thy.
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We have ¢:(HNC) C HNC so that ¢¢(B(ho,r)) = B(ht, (1 —t)r) C HNC. Thus

h € HNC. The proof of the lemma is done since hg € I, hy € I and I is convex. a

LEMMA 2.11. Let € > 0 be arbitrary small. There exists g € HNCNI such that
lgllzr < |h|ler + €, where h is the solution of the problem (P).

Proof. By assumption (H1), there exists g € HnCnl. Using Lemma 2.10

with hg = g and hy = h e HNC NI, we choose t such that hy € HNC NI and
|[he — Rl < €, which implies that ||h¢l|g < ||h||m + €. O

LeEmMMA 2.12. Let € > 0. For N large enough, we have

onlry < NPl + 2.

Proof. Let g € HNC NI be such that lgllz < [|h]| + € (see Lemma 2.11). Let
gn be the solution of (Ry) associated to g. By Lemma 2.8, we have for N large
enough

lgn e < llglle + € < ||Allm + 2e.

Since mn(gn) € Hy NC'N T and 7y is stable, we have ||f1N||HN < |lmn(gn) |y <
|lgn ||z, which completes the proof of the lemma.

LEMMA 2.13. For all z in X, pn(Kn(.,2)) NI K(.,z) in H. Furthermore,
— 400

sup [[on (Kn (@) = K(so)g — 0.
zeX —+oo

Proof. From Proposition 2.5, we have

lpn (Kn () = K 2)E = llon (Kn (@) 17+ 1K 0)llf =2 (on (Kn (), K( 7))

N
= [|En (), + 1K 2)l5 =2 on(@) K (@, ty)
j=0

N
= KN(xvx) + K(I,I) - 2Z@N,j(I)K(IatN,j)'
j=0

By uniform continuity of K(.,.) on the compact set X x X, we deduce that both
Ky(z,z) = ijzo K(tn tn, ) en,i(z)en j(z) and Z;VZO on,j(z)K(x,tn ;) are uni-
formly convergent to the function K (x,x), which completes the proof of the lemma.
a

PROPOSITION 2.14. Let hy and h be respectively the solutions of (Px) and (P).
Then
Loll2 2
O %

2. pN(hN) Njoo ]Al i H.
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Proof. From Lemma 2.12; we have

limsup ||An| ey < |5 a-
— 400

Additionally, by Proposition 2.5, ||pn ()|l & = [|n ||z, therefore limsup ||pn (hy)|| g <

N—+oc0
Al < +o0o. By weak compactness in Hilbert space, there exists a subsequence
(pn,, (AN, ))ken which is weakly convergent:

(2.11) pn,(hn,) — lin H.

k—+oo

Let us prove that the limit function [ is in C' N I.
eVieNandi=1,...,n

yi = h, (21) = (HNMKNk(-vx(i))) = (PNk(ﬁNk)aka (KNk(-,I(i))))

Hn, H

Since pn,, (Kn, (., 2)) — K(.,2%) strongly in H (see Lemma 2.13) and

k—+o0
using (2.11), we have

(ol (K () 2 (K s = 1),

which implies that y; = [(z("). Hence [ € I.

e Fix N > 1. We have my(hn,) o 7w (1) in the finite-dimensional space
—+o0
Hpy because isz (tn,i) k—) [(tn,;)) by the previous argument showing [ € I.
—>+0o0

Since iLNk € C,nn(C) Cc Cand CNHy is closed in Hy, we have mn (1) € C.
As mn (1) converges to I in E (see Proposition 2.1) and C' is closed for the
topology of F, one gets [ € C.

Since l € HNC NI, we have
IR < 11213

As pn, (hn,) oo, Lin H, we know that [l i < lim inf lon, (ha)| a2 So,

(2.12) limsup || pw, (hw )l < 1Bl < g < liminf || pw, (Al 2-
k—+4o00 k=00

Hence, |||z = |||z and I = h by unicity of the solution of the problem (P). From
inequalities (2.12), we deduce that ||pn, (hn, )|z i ||~||. But, weak conver-
—+0o0

gence (see (2.11)) and convergence of the sequence of the norms imply strong conver-
gence. Hence, the subsequence py, (hn, ) converges strongly to i and the sequence
(pn(hn))N as well. |

The first part of Proposition 2.14 is a crucial step for convergence analysis of
the sequence of the minimizers (hy)y. The following theorem summarizes the main
results of this paper.
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THEOREM 2.15. Under assumptions (H1) and (H2), the discretized optimization
problem (Py ) has an unique solution hy € Hy C E = C%(X) (for N large enough).
Let h be the unique solution in the RKHS H C E of the constrained interpolation
smoothing problem (P). Then, we have

hy — hin E,
N—+o00

and
22 2012
llit = Ihl%,

pN(ilN) Nj—i-)oo il mn H.

Proof. Let h and hy be the solutions of (P) and (Py) respectively. Then

h(z) — h(z) = (ﬁN,KN(.,x)) - (E,K(.,z))
= (pN(ﬁN),PN(KN(-aI)))H - (EK(-,I))H

= (on(hn).px (K (2)) = K(2)) 4 (pn(hn) = b K (o))

H

The proof of the theorem is done by applying Proposition 2.14 and Lemma 2.13 to
the following inequality

sup [ () = h(@)] < lpon (hw)l| % sup [lon (K (@) = K (@) lu

+ low (hav) = hllzr x sup | K (. 2)|la
zeX
since sup || K (., z)||z = sup /K (x,2) < +oo (K is a continuous function in X?). O
zeX zeX

2.4. Implementation of (Py). The aim of this section is to show that the
discretized optimization problem (Py) is equivalent to a quadratic program (QP). To
do this, we define the application ¢ from RVN*! to Hy as follows:

N
Y ae RN — w(a)=ZaN7j¢N7j(.)€HN,
7=0

where ¢y j, j =0,..., N are defined in (2.1). Define a new scalar product on RV+!
as

(047 B)RNJrl = aTFJ_vlﬁ

The appli?vation 1 is a norm preserving isomorphism. For all f € Hy such that
f(@) =370 an,jon,;j(x), we have

11l = o Tx'a = [lolgws-
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Using the isomorphism ¢, we define the following closed convex subset of RN+,
C :=v¢~1C) and I :=~1(I) the following affine subspace of RV*1:

N
I ={aeRN¥*! such that ZaN,jgaN,j(:c(i)) =y, i=1,...,n
j=0
Consider now the QP problem
(Py) arg min a'Tyla,
acInC

where I and C' represent respectively the interpolation condition and the inequality
constraints in the Euclidian space RV 1. The numerical calculation of (Py) is a clas-
sical problem in the optimization of positive quadratic forms, see e.g. [4] and [12].

PROPOSITION 2.16. The solution of the discretized optimization problem (Py ) is

N

}ALN - Z(aopt)j@N,ja

=0

where aope € RV FL s the unique solution of problem (Py).

3. Numerical Illustration. This section is devoted to numerical examples to
illustrate the approximation method in various situations.

3.1. Bound constraints. Let us recall that £ = C%([0,1]). Let H be the
RKHS whose reproducing kernel is the commonly used squared exponential (or Gaus-

_(z—y)?
202

length-scale [22]. The norm on the induced RKHS defines a strong smoothness crite-
rion for data interpolation. The set C' of inequality constraints is of the form

sian) kernel K (z,y) = exp ( ), where the parameter 6 defines a characteristic

C={feE : —0o<a<f(x) <b< +o0, 2 €[0,1]},

where the lower and upper bounds a and b are assumed to be known. Notice that C
is a closed convex set of F.

In the following proposition, we give a characterization of the functions in both
Hpy and C. This characterization is easy to use in practice.

ProproSITION 3.1. Let hy € Hy. Then,

N
hy = ZaNJ(pNJ € C if and only if the coefficients an,j € [a,b], j=0,...,N.
=0

Proof. Observe that Vz € [0,1], Z;'V:o ¢n j(x) = 1. Now if the coefficients ay ;
lie in the interval [a, b], then hy is in C. Conversely, if hy € C, then

N

N
hn(tni) =Y anjon(tn) =Y andi; = ani € [a,bl,
=0 =0
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which completes the proof of the proposition. O

From Proposition 3.1, we immediately see that hypothesis (H2) holds, i.e. 7n(C) C
C for all N. Let hy be the solution of the finite optimization problem (Py). From
Proposition 2.16 and Proposition 3.1, hy can be expressed as

N

ze(0,1),  hn(@) = (Qop)ien(),
j=0

where agp € RN+ is the solution of the following QP:

. 2
arg min |« where
gaeRN+1H ”[RNH’
aclnC
N
z N+1 .
I={acRNT! . E angen(@D) =y, i=1,...,n7,
7=0

C':{ae[RN'H ta<an; <b, j:O,...,N}.
To ensure the hypothesis (H1), we need to suppose
a<y; <b, t=1,...,n.

In the illustration example (see Figure 2), a = 0, b =1 and n = 6. The value of the
parameter 6 is fixed to 0.18.

gy
Y -
©
© o
@
© |
© | o
o
< <
o | o
N N
° = unconstrained function ° —— constrained function
- constrained function — approximation N = 10
° ® dat; —  approximation N = 50
[= T 1 O . N G
o
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
(a) (b)

Fig. 2: Unconstrained and constrained interpolating function (izN with N = 500)
(Figure 2a). Convergence of the discretized solution hy, N =10and N = 50 (Figure
2b).

In order to investigate the efficiency of the proposed method, we plot in Figure
2a the solution of problem (P) without bound constraints (equation (1.2), black line)
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and the solution of the discretized optimization problem (Py) hy for N = 500 (red
line), which is assumed to be very closed to the function h. Unlike the first solution,
the last one respects both interpolation conditions and bound constraints. Figure
2b shows the convergence of the proposed approximate solution. The red line is the
function hy for N = 500. The blue and the green dashed line represent respectively
the function izN for N =10 and N = 50.

3.2. Monotonicity in one dimension. F and H are the spaces defined in the
previous §3.1. The convex set C' is the space of monotone non-decreasing functions
and is defined as

C:={fec’[0,1]) : f(z) < f(z)ifx <a'}.
Using the notation introduced before, we have the following result:

PROPOSITION 3.2. Let hy € Hy. Then, hy(x) := Z;VZO anjen,;(x) is non-
decreasing if and only if the sequence (an,j)j=o0,...,n i non-decreasing (i.e. oj_1,n <
anj, j=1,...,N).

Proof. If the sequence (aN7j)j:07,,,7N is non-decreasing then hy is non-decreasing
since hy is a piecewise linear function. Conversely, the sequence (an,;); = (hn(tn;));, J =
0,...,N is a non-decreasing sequence. d

From this proposition, we see again that hypothesis (H2) holds, i.e. 7x(C) C C
for all N. Moreover, the interpolation conditions and the inequality constraints in
RN*! can be expressed as follow:

N

(3.1) I={aecRN* . ZaN,jgaN,j(:c(i)):yi, i=1,...,np,
§=0

(3.2) C={aecR"" . ay;1<an;, j=0,....N}.

To ensure the hypothesis (H1), we suppose
Yi—1 < Y, 22275’”‘

From Proposition 2.16, the solution of problem (Py) is equal to

N
ze(0,1),  hn(@) = (Qop)ien(2),
j=0

where agp € RN*! is the solution of the problem (IBN), where I and C are defined
in (3.1) and (3.2) respectively. Figure 3 shows the efficiency and the convergence of
the proposed algorithm. In Figure 3a, the black line is the solution of problem (P)
without monotonicity constraints and the red line is the solution of the discretized
optimization problem (Py) for N = 500. Notice that only the last one respects both
interpolation conditions and monotonicity constraints. In Figure 3b, convergence of
different approximations is illustrated. The red line represents the function hy for
N =500 and the blue line (resp. the green line) corresponds to the function hy for
N =5 (resp. N = 20).
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— constrained function

— approximation N =5

= approximation N = 20
e data

— unconstrained function
—_ goPstrained function
.

-15 -10

-20
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

t X
(a) (b)

Fig. 3: Unconstrained and constrained interpolating function (izN with N = 500)
(Figure 3a). Convergence of discretized solutions hy, N = 5 and N = 20 (Figure 3b).

3.3. Case of a finite number of constraints. The so-called constrained in-
terpolation splines are defined as solutions of problem (P) where the general norm
(semi-norm) is defined from a differential operator. In the framework of spline theory,
the problem of interpolation under a finite number of inequality constraints has been
solved (see e.g. [8], [9] in R? and [16] in R). Our aim in this section is only to assess
the convergence of the proposed method by comparing it with the analytical solution.
To do this, let us draw attention that our method can be easily applied to a finite
number of inequality constraints. In the following, we will recall the main results given
in [8]. Firstly, the interpolation conditions are defined as f(z() = y;, i = 1,...,n.
Secondly, the finite number of inequality constraints are denoted respectively lower
and upper inequality constraints and are defined as in [8]:

(3.3) f(:c(i))zyi, i=n+1,....,n+p1,
(3.4) f@D) <y,  di=n+pi+l..,n+p+po.

In this case, we have n interpolation conditions and p inequality constraints with
p = p1 + p2. The analytical form of the constrained interpolation spline is given by
Dubrule and Kostov in [8]:

n+p

(3.5) o(x) = Z biK(ac,ac(i)),

where the function K is the underlying reproducing kernel of the RKHS H. The

(n+p) coefficients b = (bl, ceey b"“’)T are obtained by solving the following quadratic
optimization problem:

n-+p n+p

; i (i) ()
argmmebeK(x yx)y,

i=1 j=1
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under the n interpolation conditions (f(z¥) = y;, i =1,...,7n) and the p inequality
constraints given in (3.3) and (3.4). This form is generalized to any kernel or semi-
kernel, stationary covariance function or generalized covariance function, see [8] and
[15].

The convex set C' is the subset of functions that verify (3.3) and (3.4). In that
case, the solution of the discretized optimization problem (Py) is expressed as follows:

(3.6) EN(I) = Z(O‘opt)jSDN,j(I)

J

where the (N + 1) coefficients ((copt)o; - - -, (Copt) ) are the solution of the following
quadratic optimization problem

: 2
arg min lee]|garsas where

aclnC

I= {a € RN*! such that hy(z®) =y,, i =1,.. .,n},

C= {a € R¥*! such that hy verifies (3.3) and (3.4)}.

In Figure 4, the kernel is the Matérn 3/2 covariance kernel defined as follows:

Km%(xay) = <1 + w> exp <w> ,

where 6 is a smoothing parameter of value 0.3. We choose n = 6 interpolation
conditions and p = 3 inequality constraints (p; = 2 and ps = 1). The black line
represents the constrained interpolation spline given by (3.5). In Figures 4a and
4b, we plot respectively the function Ay given in (3.6) for N = 10 and N = 40.
Notice that hy respects both interpolation conditions and inequality constraints and
coincides with the constrained interpolation spline when N is large enough.

In Figure 5, the Gaussian kernel is used where the parameter 0 is also equal to
0.3. The black line represents the constrained interpolation spline using Dubrule’s
algorithm. The red dashed line is the function hy defined as the solution of problem
(Py) for N =10 (Figure 5a) and N = 40 (Figure 5b).

3.4. Monotonicity in multidimensional cases. Let us begin by the two di-
mensional case where = (z1,22) € R%. The unknown function f is assumed to be
continuous and monotone non-decreasing on the unit square X = [0, 1] x [0, 1]:

r1 <) and o <zh = f(w,me) < f(2h, ).

Like the one dimensional case, we construct the basis functions such that the mono-
tonicity constraints are equivalent to constraints on the coefficients. First, we dis-
cretize the unit square, e.g. uniformly with (N + 1)? knots, see Figure 6 for N = 7.
Then, the basis function at the knot (tn;,tn ;) is defined as

vij(®) = oni(z1)en j(22),
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— constrained spline — constrained spline
/ trained spli trained spli
— approximation — approximation
® equality data
- A |owlneq data
[ v upperineq data [

® equality data
A lowlneq data
v upperineq data

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Fig. 4: The black line represents the constrained interpolation spline using the Matérn
3/2 kernel. The red dashed-line corresponds to the function hy for N = 10 (Figure
4a) and N = 40 (Figure 4b).

— constrained spline — constrained spline
= approximation = approximation

2 oy e 2 iy data

T v upperineq data 1 v upperineq data

T T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Fig. 5: The black line represents the constrained interpolation spline using the Gaus-
sian kernel. The red dashed-line corresponds to the function hy for N = 10 (Figure
5a) and N = 40 (Figure 5b).

where ¢y j, j=0,...,N are given in (2.1). Now, we have
@it tng) = oniltne)en(tng) = 6ikdje,  k1=0,...,N.

N
PROPOSITION 3.3. Let hy € Hy. Then, hy(x) := Zi,j:o a; jon,i(z1)en,j(z2)
is mon-decreasing with respect to the two input variables if and only if the (N + 1)
coefficients o ;, 1,5 = 0,..., N verify the following linear constraints:
(1) Q1,5 S Q4 and Q-1 § 5 g, Z,] = ]., .. .,N
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Fig. 6: Data for the monotone 2D interpolation problem (black points) and knots
(tn,i,tN,j)o<i,j<7 used to define the basis functions.

(i) aj—10 <@, i=1,...,N
(111) Qp,j—1 SO&Q,]‘, ]21,,N

Proof. 1f the (N + 1)? coefficients «; ;, 4,7 = 0,---, N verify the above linear
constraints (i), (ii) and (iii), then hy is non-decreasing as a piecewise linear function
with respect to x1 or xy direction. Conversely, the relations h (ﬁNﬂ-7 Ing)=ouji,j=
0,...,N complete the proof of the proposition. a

Consequently and from Proposition 2.16, the solution of the problem (Pp) can be
expressed as

N

hn(@) = Y (Qopt)ijoni(@1)en,(w2),
i,j=0

where aopr = (Qopt)i,; is the solution of the following QP:

i 2
argaeér(llifr}rlﬂ Ha”[R(N-f—l)L

aelnC

with C' = {a € RV+D? guch that inequalities 1, 2 and 3 are satisfied in Proposition 3.3}
and I is defined by (3.1).

In Figure 7, we take the kernel to be the 2-dimensional Gaussian kernel

K(z,y) = exp (%) X eXp <%>
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with smoothing parameters (01,02) = (0.4,0.4). In Figures 7a and 7b, we plot re-
spectively the solution of the discretized optimization problem (Py) hy for N = 20
and the associated contour levels. Notice that hx satisfies both interpolation con-
ditions and monotonicity (non-decreasing) constraints with respect to the two input
variables. Figure 8 shows the case where the true function is known to be monotone
(non-decreasing) for the second variable only (see Remark 3.4 below). In this case,
the set of constraints is C':= {f € E : f(x1,22) < f(x1,2%), if 2o < 24}, where
E=CX).

> 10
<
sl o—®
N
o
~10
o \
2
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7: The solution hy of the discretized optimization problem (Py) (Figure 7a) and
the associated contour levels (Figure 7b).

REMARK 3.4. Proposition 3.3 can be easily extended to the monotonicity with
respect to one of the input variables. For instance, the function hy defined in Proposi-
tion 3.3 is non-decreasing with respect to the second variable if and only if the (N +1)2
coefficients verify: a;j—1 < oy, j=1,...,N andi=0,...,N.

REMARK 3.5. The monotonicity in the general multidimensional case is a simple
extension of the two-dimensional case. Remark 3.4 can be extended as well for the
monotonicity with respect to any subset of the variables x1,...,xq.

4. Splines case. The aim of this section is to compare the method described
in this paper with existing algorithms. We focus on cubic spline interpolation with
inequality constraints.

4.1. Constrained Cubic Spline Interpolation. Cubic splines can be defined
as functions minimizing the following well-known criterion (linearized energy (LE)
measure, see e.g. [25]):

(4.1) By = / (" (6)° dt,

given the n observations (interpolation conditions) f(z®) = y;, i = 1,...,n. A
cubic spline is known to be a third-order polynomial function f; on each subinterval
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Fig. 8: The solution hy of the discretized optimization problem (Py) using Remark
3.4 (Figure 8a) and the associated contour levels (Figure 8b).

[z D] (k=1,...,n —1):
(4.2) fr(@) = ap(z — 2™)3 + bp(z — 2®)? + (2 — 2 W)y,

where ag, by, ¢, dj. are spline coefficients. It is also known to be linear on the first
subinterval [0, 2())] and the last subinterval [2("), 1]. Thus, the LE measure criterion
can be written in terms of spline coefficients as follows:

n)

B = [ @) e

(1)

n—1 gpk+D) n—1 g0+ )
= Z/ ( ,2'(30))2 de = Z/ (Gak(ac — )y 4 2bk) dz
= Jatw = Jow
n—1
(4.3) = > 1203 A@™)? + 12axbe A(x®))? + 457 Az V),
k=1

where Az®) = p(E+1) _ (k)

With additional inequality constraints (such as bound, monotonicity or convexity
constraints), the function minimizing the LE criterion is called a constrained cubic
spline. In the case of monotonicity constraints, this type of problem has been studied
so far (see e.g. [1], [10], [13] and [25]) and [7] for non-negativity, monotonicity and
convexity constraints.

First, let us show how we can adapt our method to this important case. The
problem (P) can be seen as

(4.4) min{/ol (W) dt, h e H mcm},



22 X. BAY, L. GRAMMONT AND H. MAATOUK

where H? is the Sobolev space {h € L*([0,1]) such that »’,h” € L?([0,1])}, I and
C are respectively the space of interpolation conditions and inequality constraints.
Notice that H? is continuously embedded in the space C!([0,1]) of continuously dif-
ferentiable functions on X = [0,1]. The LE criterion defines a semi-norm of kernel
R @ Rz. Now, H? can be decomposed as follows:

(4.5) H>*=RoRra H,

where H = {h € H? : h(0) = 0 and A/(0) = 0}. Indeed, for all h € H?, we have

h(x) = h(0)+zh'(0)+g(z), where g(z) := / (x—t)h" (t)dt. Furthermore, the Hilbert
0

1
space H equipped with the scalar product (hi,ho)y = / RY(t)hy (t)dt is a RKHS
0
with reproducing kernel K, (.) = K (., x) solution of
1
Ve e X, heH, h(z) = (h, Kp())g = / KI'(t)h" (t)dt.
0

By a straightforward calculation, one can easily check that

22z i < 7!
K(z,2') = 2/2(:8 3/) ifose
&-(r — %) elsewhere.

Using equation (4.5), the optimization problem (4.4) can be expressed as

1
i K (t))%dt = ||h|%.
min [ o=
a8z +h(z )=y,
a+pBz+h(z)eC

In that case, the discretized optimization problem (Pp) is formulated as

4.6 i hyl|?

(4.6) arg - omin_ Ay
a+Bz D thy (zD)=y;
a+Bz+hy(z)EC

Consequently and from Proposition 2.16, the solution of the finite optimization prob-
lem (4.6) is equal to

N
ilN (I) = Qopt + ﬁoptw + Z Bopt,j(pN,j(x)7

j=1
where (Qopt, Bopts Bopt,1s - - -+ Bopt, ~) T is the solution of the following quadratic opti-
mization problem
(4.7) arg min 7T,

@,B,8j, j=1,...N
otz D +hy (2D)=y;
a+Bz+hy(z)EC

Where h'N(m) = Z;\le ﬂj@N,j(CL'), v = (aaﬂaﬂla”-aﬁN)T € |RN+2 and (FN)i,j =
K(tni tnj) i,j=1,...,N.
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Table 1: Bound observation data on [0, 1].

Variables Values
T 0.1 0.15 0.5 0.7 0.95
f(x) -0.1 0.8 -1 0.9 0.1

Table 2: Non-negative observation data on [0, 1].

Variables Values
T 0.06 0.12 05 0.6 0.95
f(z) 0.1 0.8 1 04 0.02

4.2. Cubic spline interpolation with bound constraints. In this section,
we suppose that the function takes values between —1.2 and 1 (resp. is non-negative
on [0,1]) and is evaluated at some points given in Table 1 (resp. Table 2).

The convex set C' is the space of functions defined as
C={feco,1]) : —1.2< f(x) <1, z €[0,1]}.
In that case, the quadratic optimization problem (4.7) can be formulated as

arg fyTI‘;Vlfy.

min
@,B,8j, j=1,...N
otz D +hy (2D)=y;
—1.2 < atfty j+hn(tng) <1

The non-negativity constraint can be seen as bound constraints where the lower bound
is equal to 0 and the upper bound is equal to +o0o. Figure 9 shows the solution hy of
the discretized optimization problem (4.6) (red line) and the natural (unconstrained)
cubic spline (black line). Only the first one respects both interpolation conditions
and bound (resp. non-negativity) constraints in Figure 9a (resp. Figure 9b). Let us
mention that the nice result proved by Dontchev in [6] is checked in this numerical
example. This result states that the constrained cubic spline is a piecewise third-
order polynomial if we add new knots corresponding to saturated constraints (two
such knots corresponding to y = 1 in Figure 9a).

4.3. Monotone cubic spline interpolation. The aim of this last subsection
is to compare the proposed algorithm with existing algorithms for monotone cubic
splines interpolation. To do this, we consider a monotone example given in [10]
(Fritsch-Carlson (FC), RPN 15A data). These observation data are given in Table 3
and are used to compare different algorithms (for e.g. Akima [1], FC [10] and Hyman
13)).

In Figure 10a, we plot the monotone cubic spline using FC data for four methods:
the algorithm described in this paper (red line), Hyman’s algorithm (blue line), FC’s
alorithm (green line) and Akima’s algorithm (black line). Only the last one is not
monotone everywhere. Figure 10b shows the difference between ‘Hyman’ and ‘FC’
splines. To compare these two methods in terms of LE criterion, we plot in Figure
11b the function f”(x)?. Notice that LE criterion for “Hyman” is slightly smaller.
So, we compare the proposed algorithm with Hyman’s one. Apply equation (4.3)
to the analytical expression of the monotone cubic spline calculated in [13], we get
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Fig. 9: Bound (resp. non-negative) cubic spline interpolation (red line) using our
algorithm in Figure 9a (resp. Figure 9b) and the natural (unconstrained) cubic spline
(black line).

Table 3: RPN 15A Fritsch-Carlson’s data (LLL radiochemical calculations).

x f(=z)
7.99 0
8.09  2.76429e-5
8.19  4.37498e-2
8.7 0.169183
9.2 0.469428

10 0.943740

12 0.998636

15 0.999919

20 0.999994

Er, =9.35. Now, using equation (4.6), the equivalent LE measure of the approximate
function hy is defined by

1wl = ART R AN,

where An = (qopt, Bopts Bopt, 15 - - - » Bopt, ~) . Notice that this approximation converges
to the LE criterion of the optimal cubic spline with inequality constraints (see Theorem
2.15). Figure 1la shows the values of ||iALH%,N for different values of N. One can
conclude that these values are much smaller than Hyman’s LE measure (for instance
[h)|%,, =2 for N = 100).

Now, we consider Akima’s data [1] which are defined in Table 4. These monotone
data are also used in many papers to compare different methods (see e.g. [10], [13]
and [25]).

Figure 12 shows the monotone cubic splines for four different methods: the ap-
proximation spline described in this paper (red line), Hyman’s spline (blue line), FC’s
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Fig. 10: Monotone cubic spline interpolation for four different methods (Figure 10a).
The difference between FC and Hyman splines (Figure 10b).

f(x)? for Hyman and FC splines
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Fig. 11: Approximate LE criterion for the algorithm described in this paper using
FC’s data (Figure 11a). Comparison between “Hyman” and “FC” splines (Figure
11b).

spline (green line) and Akima’s spline (black line). As Fritsch and Carlson [10] wrote
in their paper, Akima’s method eliminates the “bump” but the interpolant is not
monotone on the interval (12,14). The three other functions are monotone (non-
decreasing) everywhere. A comparison between ‘Hyman’ and ‘FC’ splines in terms
of LE criterion is shown in Figure 13b. Using equation (4.3), the LE criterion for
Hyman’s method is equal to 8939.78. In Figure 13a, we plot ||iz||%{N using Akima’s
data. Notice again that the values are much smaller than Hyman’s algorithm.
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Table 4: Akima’s data used to compare different methods.

Variables Values
x 0 2 3 5 6 8 9 11 12 14 15
f(z) 10 10 10 10 10 10 105 15 50 60 85
2 -
2
— approximation
— hyman
— monoH.FC

akima

40

Fig. 12: Monotone cubic splines interpolation for four different methods using Akima’s
data.

f(x)? for Hyman and FC splines
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Fig. 13: Approximate LE measure for the algorithm described in this paper using
Akima’s data. Comparison between “Hyman” and “FC” splines (Figure 11b).
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Finally, we consider the monotone Wolberg’s data used in [25] and [26]. These

data are given in Table 5 and used to compare our method with seven different
algorithms (not described in this paper).

Table 5: Wolberg’s data used to compare different methods.

Variables Values
T 0.00 1.00 1.50 2.05 2.90
f(x) 0.00 350.00 354.65 428.00 650.00

25

0.04
|

— approximation
— hyman

-0.02 0.00 0.02
1 L

-0.04

(a) (b)

Fig. 14: Monotone cubic splines using Wolberg’s data: Hyman’s method (blue line)

and approximation hy with N = 1000 (red line) . The difference can be seen in
Figure 14b.

In Figure 14a, we plot the monotone cubic splines using the method described in
this paper (red line) and Hyman’s method (blue line). The difference between these
two functions is given in Figure 14b. In Figure 15, we plot ||fl|\%{N and compare with
the best LE value in Table 6 (see [25]). Values in Table 6 are taken from Wolberg’s
paper ([25]) except for our approximation and Hyman methods.

5. Conclusion. In this work, we consider smoothing and interpolating with in-
equality constraints as a general convex optimization problem in a Reproducing Kernel
Hilbert Space H (RKHS). We assume H continuously embedded in a Banach space
FE of continuous functions on a compact set X.

A discretized optimization problem in a finite-dimensional Hilbert space Hp is
proposed to approximate the optimal constrained interpolating function lying in H.
By construction, the corresponding sequence of minimizers in the nested set of spaces
H satisfy the interpolation conditions and the inequality constraints as functions of
the space FE.

The main result of this paper is to prove the convergence (with the dimension of
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Table 6: Linearized energy measure using Worlberg’s data.

Method Eyp,
our approximation  131.68
Hyman 133.19
CSE 132.91
FE 131.68
LE 131.68
SDDE 223.55
MDE 131.71
FB 236.30
g
—
8 J
—
&
- — LE
-- LE=131.68
&
L I N CS— N
T T T T T
0 500 1000 1500 2000
N

Fig. 15: Approximate LE measure for the algorithm described in this paper using
Wolberg’s data.

Hy) of this approximation method in the space E (uniform convergence). Further-
more, the discretized optimization problem is shown to be equivalent to a quadratic
program in two standard situations of bound and monotonicity type constraints. Some
numerical examples in one and two dimensions are given to show the easy applica-
bility of the method. A first step is to discretize the norm of H (the smoothing
criterion) by using explicitly the analytical form of its reproducing kernel. A second
important step is to consider approximation spaces Hy such that the (infinite) set
of inequality constraints can be reduced to a finite set of inequality constraints in Hy.

Many open problem are left. At first, this paper considers only the simple case of
approximation spaces spanned by piecewise linear continuous functions or P1-elements
by analogy with the Finite Element Method (for solving PDE). The problem of using
other approximation spaces is posed in relation with the regularity of the functions in
H (or the reproducing kernel) and the nature of the (inequality) constraints. In the
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same way, this paper does not study the order of convergence of the method in relation
with the discretization of the domain X (or mesh). At last, a challenging problem is
to state the correspondence between this method and a statistical Bayesian approach
using the well-known correspondence between splines and Bayesian estimation (see
[14]).
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