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We study the behavior of the solution of a generalized damped KdV equation ut + ux + uxxx + u p ux + Lγ(u) = 0. We first state results on the local well-posedness. Then when p ≥ 4, conditions on Lγ are given to prevent the blow-up of the solution. Finally, we numerically build such sequences of damping.

Introduction

The Korteweg-de Vries (KdV) equation is a model of one-way propagation of small amplitude, long wave [START_REF] Korteweg | Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. It is written as

u t + u x + u xxx + uu x = 0.
In [START_REF] Bona | The effect of dissipation on solutions of the generalized Korteweg-de Vries equation[END_REF], Bona et al. consider the initial-and periodic-boundary-value problem for the generalized Korteweg-de-Vries equation

u t + u xxx + u p u x = 0
and study the effect of a dissipative term on the global well-posedness of the solution. Actually, they consider two different dissipative terms, a Burgers-type one -δu xx and a zeroth-order term σu. For both these terms, they show that for p ≥ 4, there exist critical values δ c and σ c such that if δ > δ c or σ > σ c the solution is globally well-defined. However, the solution blows-up when the damping is too weak as for the KdV equation [START_REF] Martel | Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation[END_REF].The literature is full of work concerning the dampen KdV equation with p = 1 [ABS89, CR04, CS13b, CS13a, Ghi88, Ghi94, Gou00, GR02], but few are concerning more general nonlinearities.

In our paper, we consider a more general damping term denoted by L γ (u). Our purpose is to find similar results as above, both theorically and numerically. So the KdV equation becomes a damped KdV (dKdV) equation and is written

u t + u x + u xxx + u p u x + L γ (u) = 0.
The damping operator L γ (u) works on the frequencies. It is defined by its Fourier symbol L γ (u)(ξ) := γ(ξ)û(ξ).

Here û is the Fourier transform of u and γ a strictly positive function chosen such that

R u(x)L γ (u)dµ(x) = R γ(ξ)|û(ξ)| 2 dξ ≥ 0.
We notice than the two cases studied in [START_REF] Bona | The effect of dissipation on solutions of the generalized Korteweg-de Vries equation[END_REF] are present with this damping by taking γ(ξ) = δξ 2 and γ(ξ) = σ respectively.

The KdV equation has an infinite number of invariants such that the L 2 -norm. But, for the dKdV equation, the L 2 -norm decreases. Indeed, for all t ∈ R,

d dt u 2 L 2 = -|u| 2 γ
where the natural space of study is

H γ (R) := u ∈ L 2 (R) s.t. R γ(ξ) |û(ξ)| 2 dξ < +∞
and the associated norm is

|u| γ := R γ(ξ) |û(ξ)| 2 dξ.
An other property of the KdV equation is that the solution can blow-up as soon as p ≥ 4 . The blow-up is caracterized by lim

t→T u H 1 = +∞.
In this paper, we first establish the local well-posedness of the dKdV equation. Then we study the global well-posedness. More precisely, we focus on the behavior of the H 1 -norm with respect to p and we obtain conditions on γ so there is no blow-up. Finally, we illustrate the results using some numerical simulations. We first find a constant damping (γ(ξ) =constant) such that there is no blow-up and then the damping is weaken in such a way lim |ξ|→+∞ γ(ξ) = 0.

Preliminary results

Some results of injection concerning the space H γ (R) are given.

Proposition 1.1. Assume R 1 γ(ξ) < +∞ then there exists a constant C > 0 such that u ∞ ≤ C |u| γ , i.e., the injection H γ (R) → L ∞ (R) is continuous. Proof. Let u ∈ H γ (R). We notice that u(x) = R û(ξ)e iξx dξ. Then |u(x)| ≤ R |û(ξ)| = R 1 γ(ξ) γ(ξ)|û(ξ)|.
We assumed that γ(ξ) > 0. Hence, the Cauchy-Schwarz inequality involves for all x ∈ R :

|u(x)| ≤ R 1 γ(ξ) 1 2 R γ(ξ)|û(ξ)| 2 1 2 = R 1 γ(ξ) 1 2 |u| γ .
Proposition 1.2. Let γ and β be such that for all ξ ∈ R, γ(ξ) > β(ξ). We define

ρ(N ) := max ξ≥N β(ξ) γ(ξ)
.

The continuous injection H

γ (R) → H β (R) is compact if and only if lim N →+∞ ρ(N ) = 0.
Proof. The condition is necessary. Indeed, if there exists α > 0 such that ρ(N ) > α, ∀N , then the norms |u| β and |u| γ are equivalent, the injection cannot be compact. Let us prove now that the condition is sufficient. First, we have for u ∈ H γ (R) :

|u| β = R β(ξ)|û(ξ)| 2 ≤ R γ(ξ)|û(ξ)| 2 = |u| γ .
This shows that the injection is continuous. Now we prove that the injection is compact. We use finite rank operators and we take the limit. Let I N be the orthogonal operator on the polynomials of frequencies ξ such that -N ≤ ξ ≤ N . We have

I N u = |ξ|≤N û(ξ)e iξx dξ.
Thus

|(Id -I N )u| 2 β = |ξ|>N β(ξ)|û(ξ)| 2 , ≤ |ξ|>N β(ξ) γ(ξ) γ(ξ)|û(ξ)| 2 , ≤ ρ(N ) |u| 2 γ -→ N →+∞ 0.
Therefore Id is a compact operator and consequently the injection is compact.

Proposition 1.3. Assume that u, v ∈ H γ (R) and there exists a constant C > 0 such that ∀ξ, η ∈ R we have

γ(ξ) ≤ C γ(ξ -η) + γ(η) .
Then we have

|uv| γ ≤ C |u| γ v L 1 + |v| γ û L 1 . Moreover if R 1 γ(ξ) < +∞ then H γ (R) is an algebra. Proof. Let u, v ∈ H γ (R).
We have

|uv| 2 γ = R γ(ξ)| uv(ξ)| 2 .
We remind that uv(ξ) = û * v(ξ). Using the inequality

γ(ξ) ≤ C γ(ξ -η) + γ(η) ,
we obtain for all ξ, η ∈ R

γ(ξ)| uv(ξ)| ≤ C R γ(ξ -η)|û(ξ -η)v(η)|dη + R γ(η)|û(ξ -η)v(η)|dη .
Hence

|uv| 2 γ ≤ C 2 R R γ(ξ -η)|û(ξ -η)v(η)|dη + R γ(η)|û(ξ -η)v(η)|dη 2 dξ, ≤ C 2 R R γ(ξ -η)|û(ξ -η)v(η)|dη 2 + R γ(η)|û(ξ -η)v(η)|dη 2 dξ, ≤ C 2 γ(ξ)|û| * |v| 2 L 2 + |û| * γ(ξ)|v| 2 L 2 .
However, for f ∈ L 1 and g ∈ L 2 , we have

|f | * |g| 2 L 2 ≤ g 2 L 2 f 2 L 1 . Thus |uv| 2 γ ≤ C |u| 2 γ v 2 L 1 + |v| 2 γ û 2 L 1 . From proposition 1.1, we know there exists a constant c > 0 such that û L 1 ≤ c|u| γ if R 1 γ(ξ) < +∞. Then, there exists C > 0 such that |uv| γ ≤ C|u| γ |v| γ .

Local well-posedness

We study the following Cauchy problem : ∀x ∈ R, ∀t > 0,

u t + u x + u xxx + u p u x + L γ (u) = 0, (1) u(x, t = 0) = u 0 (x). (2) 
The semi-group generated by the linear part is written as

S t u := R
e iξx e i(ξ 3 -ξ)t-γ(ξ)t û(ξ)dξ.

In the rest of the section, f (u) denotes the non-linear part of the equation, i.e., f (u) = u p u x . We first state a result of regularization.

Lemma 2.1. Assume that s, r ∈ R + . Then there exists a constant C r > 0, depending only on r, such that ∀u ∈ H γ s (R) and ∀t > 0 we have

|S t u| 2 γ s+r ≤ C r t r |u| 2 γ s .
Proof. Let r ∈ R + , u ∈ H γ s (R) and t > 0. Then we have

|S t u| 2 γ s+r = R γ(ξ) s+r e -γ(ξ)t û(ξ) 2 dξ ≤ sup ξ∈R γ(ξ) r e -2γ(ξ)t |u| 2 γ s . But ∀ξ ∈ R γ(ξ) r e -2γ(ξ)t ≤ r 2 r e -r t r = C r t r . Thus |S t u| 2 γ s+r ≤ C r t r |u| 2 γ s .
Theorem 2.2. Assume that there exists r ∈]0, 2[ and for all ξ ∈ R, γ(ξ) ≥ ξ 2 r . We also assume that R 1 γ(ξ) s < +∞ and there exists a constant C > 0 such that ∀ξ, η ∈ R and s ∈ R + we have

γ(ξ) s ≤ C γ(ξ -η) s + γ(η) s .
Then there exists a unique solution in

C ([-T, T ], H γ s (R)) of the Cauchy problem (1)-(2).
Moreover, for all M > 0 with |u 0 | γ s ≤ M and |v 0 | γ s ≤ M , there exists a constant C 1 > 0 such that the solution u and v, associated with the initial data u 0 and v 0 respectively, satisfy for

all t ≤ 1 C 0 M p 2 r |u(•, t) -v(•, t)| γ s ≤ C 1 |u 0 -v 0 | γ s .
Proof. Thanks to Duhamel's formula, Φ(u) is solution of the Cauchy problem, where

Φ(u) = S t u 0 - t 0 S t-τ f (u(τ ))dτ.
Let show that u is the unique fixed-point of Φ. We introduce the closed ball B(T ) defined for

T > 0 by B(T ) := u ∈ C ([0, T ]; H γ s (R)) s.t. |u(t) -u 0 (t)| γ s ≤ 3 |u 0 | γ s .
We apply the Picard fixed-point theorem. We first show that Φ B(T ) ⊂ B(T ). Let us take u ∈ B(T ) and show that Φ(u(t)) ∈ B(T ). We have

|Φ(u(t))| γ s ≤ |S t u 0 | γ s + t 0 |S t-τ f (u(τ ))| γ s .
On the one hand, we have

|S t u 0 | 2 γ s = R γ(ξ) s S t u 0 2 ≤ R γ(ξ) s | û0 | 2 ≤ |u 0 | 2 γ s .
On the other hand, we apply Lemma 2.1

|S t-τ f (u(τ ))| γ s = |S t-τ f (u(τ ))| γ s-r+r ≤ C r (t -τ ) r 2 |f (u(τ ))| γ s-r . But |f (u(τ ))| 2 γ s-r = 1 (p + 1) 2 R ξ 2 γ(ξ) r γ(ξ) s u p+1 2 dξ ≤ 1 (p + 1) 2 u p+1 2 γ s because γ(ξ) > ξ 2 r
, and H γ s (R) beeing an algebra, we have

|f (u(τ ))| γ s-r ≤ C |u| p+1 γ s .
Consequently

|Φ(u)| γ s ≤ |u 0 | γ s + t 0 C (t -τ ) r 2 |u| p+1 γ s dτ ≤ |u 0 | γ s + C sup t∈[0,T ] |u| p+1 γ s t 0 1 (t -τ ) r 2 dτ ≤ |u 0 | γ s + C 1 -r 2 T 1-r 2 sup t∈[0,T ] |u| p+1 γ s . But u ∈ B(T ), then we have |u(t)| γ s -|u 0 | γ s ≤ |u(t) -u 0 | γ s ≤ 3 |u 0 | γ s . That involves |u(t)| γ s ≤ 4 |u 0 | γ s ,
and

sup t∈[0,T ] |u| p+1 γ s ≤ sup t∈[0,T ] |u| γ s p+1 ≤ 4 p+1 |u 0 | p+1 γ s .
We have Φ(u(t)) ∈ B(T ) if the inequality

|Φ(u(t)) -u 0 | γ s ≤ 2 |u 0 | γ s + C r T 1-r 2 4 p+1 |u 0 | p+1 γ s ≤ 3 |u 0 | γ s is true i.e. if 0 < T 1-r 2 ≤ 1 4 p+1 C r |u 0 | p γ s . Now let us show that Φ is a strictly contracting map. Let u, v ∈ B(T ), we prove that ∀t ∈ [0, T ], sup t∈[0,T ] |Φ(u(t)) -Φ(v(t))| γ s ≤ k sup t∈[0,T ] |u -v| γ s with k ∈ [0, 1[. As previously, we have |Φ(u(t)) -Φ(v(t))| γ s = t 0 S t-τ (f (u(τ )) -f (v(τ ))) dτ γ s ≤ t 0 C 0 (t -τ ) r 2 u p+1 -v p+1 γ s .
Using the equality

u p+1 -v p+1 = (u -v) i+j=p u i v j
and the injection results, we obtain

u p+1 -v p+1 γ s ≤ C 1 |u -v| γ s i+j=p u i v j γ s ≤ C 2 |u -v| γ s i+j=p |u| i γ s |v| j γ s ≤ C 3 |u -v| γ s |u 0 | p γ s . Then we have sup t∈[0,T ] |Φ(u(t)) -Φ(v(t))| γ s ≤ C |u 0 | p γ s t 0 |u -v| γ s (t -τ ) r 2 dτ ≤ C |u 0 | p γ s T 1-r 2 sup t∈[0,T ] |u -v| γ s .
The map Φ is strictly contracting if

T 1-r 2 < 1 C |u 0 | p γ s .
It remains to prove the continuity with respect to the initial data. Duhamel's formula gives

for t ∈ [0, T ], T 1-r 2 ≤ 1 C 0 M p |u -v| γ s ≤ |u 0 -v 0 | γ s + t 0 |f (u) -f (v)| γ s dτ |u 0 -v 0 | γ s + C T 1-r 2   i+j=p |u 0 | i γ s |v 0 | j γ s   |u -v| γ s |u 0 -v 0 | γ s + C T 1-r 2   i+j=p |u 0 | i γ s |v 0 | j γ s   sup t∈[0,T ] |u -v| γ s . It involves |u -v| γ s ≤ C 1 |u 0 -v 0 | γ s .
Remark 2.3. Actually we can proove the local well-posedness for every γ using a parabolic regularisation

u t + u x + u xxx + u p u x + L γ (u) -u xx = 0.
Using lemma 2.1 with γ(ξ) = ξ 2 , the same computations as theorem 2.2 and taking the limit → 0 give the result [START_REF] Iório | BO and friends in weighted Sobolev spaces[END_REF][START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF].

Global well-posedness

We work here under the hypothesis of the local theorem and study the global well-posedness of the damped KdV equation. We use here an energy method [BS75 

N (u) = R u 2 dx = u 2 L 2 , E(u) = 1 2 R u 2 x dx - 1 (p + 1)(p + 2) R u p+2 dx = 1 2 u x 2 L 2 - 1 (p + 1)(p + 2) u p+2 L p +2 .
We first multiply (1) by u and we integrate with respect to x. Then we have 1 2

d dt R u 2 dx + R L γ (u)udx = 0.
Integrating with respect to time, we obtain

R u 2 dx + 2 t 0 R L γ (u)udx dτ = R u 2 0 dx.
Which can also be written as

N (u) + 2 t 0 |u| 2 γ dτ = N (u 0 ).
We deduce from that expression that N (u) is a decreasing function and t 0 |u| 2 γ dτ is bounded independently of t by N (u 0 ). Now, we multiply (1) by u xx + u p+1 p+1 and we integrate with respect to x. Then we have

d dt R - u 2 x 2 + u p+2 (p + 1)(p + 2) dx - R L γ (u x )u x dx + R L γ (u) u p+1 p + 1 dx = 0.
Integrating with respect to time, we obtain

E(u) + t 0 |u x | 2 γ dτ - t 0 R L γ (u) u p+1 p + 1 dx dτ = E(u 0 ).
From this expression, we have

R u 2 x dx = E(u) + R u p+2 (p + 1)(p + 2) ≤ E(u 0 ) + R u p+2 (p + 1)(p + 2) + t 0 R L γ (u) u p+1 p + 1 dx dτ ≤ E(u 0 ) + 1 (p + 1)(p + 2) u p L ∞ u 2 L 2 + sup 0≤τ ≤t u p L ∞ 1 p + 1 t 0 R L γ (u)udx dτ. Using the inequality u 2 L ∞ ≤ 2 u L 2 u x L 2 and because R |L γ (u)u| = R L γ (u)u, R u 2 x dx ≤ E(u 0 ) + 2 p 2 (p + 1)(p + 2) u 2+ p 2 L 2 u x p 2 L 2 + sup 0≤τ ≤t 2 p 2 u p 2 L 2 u x p 2 L 2 t 0 |u| 2 γ dτ. Since u L 2 ≤ u 0 L 2 R u 2 x dx ≤ C 0 + C 1 u x p 2 L 2 + C 2 sup 0≤τ ≤t u x p 2 L 2 .
Then sup

0≤τ ≤t u x 2 L 2 -C sup 0≤τ ≤t u x p 2 L 2 ≤ C 0 . ( 3 
)
If there exists T > 0 such that lim

t→T u x L 2 = +∞ then u x 2 L 2 -C u x p 2
L 2 → +∞ since p < 4 and this is impossible because of (3). Consequently, u x L 2 is bounded for all t and so is the H 1 -norm.

Case p ≥ 4:

We estimate the L 2 -norm of u xx . We multiply (1) with u xxxx and we integrate with respect to x. Then we have 1 2

d dt R u 2 xx dx + R L (u)u xxxx dx = - R u p u x u xxxx dx. ( 4 
)
Using two integrations by part, we have

R L (u)u xxxx dx = R L (u xx )u xx dx.
Let us work on the last term. Using integrations by part, we have

- R u p u x u xxxx dx = - 5p 2 R u p-1 u x u 2 xx dx -p(p -1) R u p-2 u 3 x u xx dx. It follows that - R u p u x u xxxx dx ≤ 5p 2 u p-1 ∞ u x ∞ u xx 2 L 2 + p(p -1) u p-2 ∞ u x 2 ∞ R |u x u xx |dx.
But, from the Cauchy-Schwarz inequality

R |u x u xx |dx ≤ u x L 2 u xx L 2 .
Then we have

- R u p u x u xxxx dx ≤ 5p 2 u p-1 ∞ u x ∞ u xx 2 L 2 + p(p -1) u p-2 ∞ u x 2 ∞ u x L 2 u xx L 2 . Using the inequalty u 2 ∞ ≤ 2 u L 2 u x L 2 , we obtain - R u p u x u xxxx dx ≤ 5p 2 2 u 3 2 L 2 u xx 1 2 L 2 p-1 2 u 1 4 L 2 u x x 3 4 L 2 +p(p -1) 2 u 3 2 L 2 u xx 1 2 L 2 p-2 2 u L 2 u xx L 2 u xx 2 L 2 . =: Ω ( u L 2 , u xx L 2 ) u xx 2 L 2 .
From (4), it leads to the inequality 1 2

d dt u xx L 2 + R L γ (u xx )u xx -Ωu 2 xx dx ≤ 0. But R L γ (u xx )u xx -Ωu 2 xx dx = R L γ (u x x) u xx -Ω u xx u xx dξ = R (γ(ξ) -Ω) | u xx | 2 dξ.
The function Ω is increasing for its two arguments. We previously notice that u(•, t) L 2 is an decreasing function with respect to the time. Then, if γ(ξ)

-Ω| t=0 ≥ 0, u xx (•, t) L 2 does not increase for t ≥ 0. Particularly, if γ(ξ) ≥ Ω ( u 0 L 2 , u 0xx L 2 ) =: θ, the semi-norm u xx (•, t) L 2
is bounded by its values at t = 0.

Remark 3.2. This result is also true on the torus T(0, L) where the operator L γ is defined by its Fourier symbol

L γ (u)(k) := γ k ûk .
Here ûk is the k-th Fourier coefficient of u and (γ k ) k∈Z are positive real numbers chosen such that

T u(x)L γ (u)dµ(x) = k∈Z γ k |û k | 2 ≥ 0.

Numerical results

In this part, we illustrate the theorem 3.1 numerically. Our purpose is first to find similar results as in [START_REF] Bona | The effect of dissipation on solutions of the generalized Korteweg-de Vries equation[END_REF] i.e. find a γ k constant such that the solution does not blow up. Then build a sequence of γ k , still preventing the blow-up, such that lim |k|→+∞ γ k = 0. Since dKdV is a low frequencies problem, we do not need to damp all the frequencies.

Computation of the damping

In order to find the suitable damping, one may use the dichotomy. We remind that our goal is to prevent the blow-up, i.e., avoid that lim t→+∞ u H 1 = +∞. Let us begin finding a constant damping L γ (u) = γu as weak as possible. We mean by weak that γ has to be as lower as possible to prevents the blow up. Let γ a respectively γ e be the damping which prevents the explosion and which does not respectively. To initialize the dichotomy, we give a value to γ and we determine the initial values of γ a and γ e . Then from these two initial values, we bring them closer by using dichotomy. The method is detailed in algorithm 1 and illustrated in Figures 1 and2.

Algorithm 1 γ a and γ e using dichotomy optimal γ a optimal γ e Figure 2 -Dichotomy W extend the method to frequencies bands in order to build sequencies γ k decreasing with respect to |k| and tending to 0 when |k| tends to the infinity. So we begin by defining the frequencies bands (N 1 < N 2 < . . .) and we proceed as previously but only on the frequencies |k| ≥ N i . The method is described in algorithm 2 and illustrated in Figure 3 and4. 

Numerical scheme

Numerous schemes were introduced in [CheSad]. Here we chose a Sanz-Serna scheme for the discretisation in time. In space, we use the FFT. Actually, the scheme is written, for all k, as

1 + ∆t 2 (ik -ik 3 + γ k ) u (n+1) (k) = 1 - ∆t 2 (ik -ik 3 + γ k ) u (n) (k) - ik∆t p + 1 F   u (n+1) + u (n) 2 p+1   (k).
We find u (n+1) k with a fixed-point method. In order to have a good look of the blow-up, we also use an adaptative time step.

Simulations

We consider the domain [-L, L] where L = 50. We take as initial datum a disturbed soliton, written as

u 0 (x) = 1.01 × (p + 1)(p + 2)(c -1) 2 1 p cosh -2 p   ± p(c -1) 4 (x -ct -d)   ,
where p = 5, c = 1.5 and d = 0.2L. We discretise the space in 2 11 points. The Figure 5 shows the solution whithout damping, i.e., γ k = 0, ∀k. We observe that the L 2 -norm of u x increases strongly and the solution tends to a wavefront (as in [START_REF] Bona | The effect of dissipation on solutions of the generalized Korteweg-de Vries equation[END_REF]). Using the methods introduced previously, we first find two optimal constant dampings γ e = 0.0025 and γ a = 0.0027. As we can see in Figure 6, γ e does not prevent the blow up. In the opposite in Figure 7 γ a does. And we also notice that the two dampings are quite close. Considering more general sequences, particularly such that lim |k|→+∞ γ k = 0. Using algorithm 2, Figure 8 shows that the sequence (γ a ) as a frontier between the dampings which prevent the blow up and the other which do not. To illustrate this, we take two dampings written as gaussians. The first (denoted by γ 1 ) is build to be always above the sequence γ a and the second (denoted by γ 2 ) to be always below. In Figures 9 and 10 we observe the damping γ = γ 1 prevents the blow up. But if we take γ = γ 2 , the solution blows-up. 

Conclusion

We studied the behavior of the damped generalized KdV equation. If p < 4, the solution does not blow-up whereas if p ≥ 4, it can. To prevent the blow-up, the term γ defining the damping has to be large enough. In particular, we build a sequence of γ which vanishes for high frequencies. This frequential approach for the damping seems useful for low frequencies problem.
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 5 Figure 5 -At left, solution at different times t = 0, 2, 4, 4.9925 and 5.3303. At right, H 1 -norm and L 2 -norm evolution without damping and a perturbed soliton as initial datum. Here p = 5.
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 67 Figure 6 -At left, solution at different times t = 0, 2, 5, 10, 11 and 11.3253. At right, H 1 -norm and L 2 -norm evolution with γ k = 0.0025 and a perturbed soliton as initial datum. Here p = 5.
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 8910 Figure 8 -Example of a build damping. Here the initial datum is the perturbed soliton. Here p = 5.
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