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COMMON HYPERCYCLIC VECTORS FOR HIGH DIMENSIONAL FAMILIES OF OPERATORS

FRÉDÉRIC BAYART

ABSTRACT. Let (Tλ)λ∈Λ be a family of operators acting on a F -space X , where the parameter

space Λ is a subset of Rd . We give sufficient conditions on the family to yield the existence of

a vector x ∈ X such that, for any λ ∈ Λ, the set
{

T n
λ

x; n ≥ 1
}

is dense in X . We obtain results

valid for any value of d ≥ 1 whereas the previously known results where restricted to d = 1. Our

methods also shed new light on the one-dimensional case.

1. INTRODUCTION

Let X be a separable F -space (namely a separable topological vector space which carries a
complete translation-invariant metric), and let T ∈L (X ). We say that T is hypercyclic provided

there exists a vector x ∈ X such that its orbit O(x,T ) = {T n x; n ≥ 0} is dense in X . The vector

x is called a hypercyclic vector for T and the set of hypercyclic vectors for T will be denoted
by HC (T ). More generally, let (Tn) be a sequence of operators acting on X . We say that x is

hypercyclic for (Tn) if {Tn x; n ≥ 0} is dense in X and we denote by HC (Tn) the set of hypercyclic

vectors for (Tn).

Hypercyclic operators have been intensively studied in the last few decades (see [6] and [11]).
One of the most interesting problem in this field is to find, for a given family of hypercyclic

operators, a common hypercyclic vector. It turns out that, as soon as T is hypercyclic, HC (T ) is

a residual subset of X . Hence, for any countable set Λ, provided each Tλ, λ ∈Λ, is hypercyclic,
⋂

λ∈ΛHC (Tλ) is a residual subset of X and in particular is nonempty.

When Λ is uncountable, the situation is more difficult and has attracted the attention of many

mathematicians . In the litterature, we may find two kinds of results regarding common hyper-

cyclicity.

• algebraic results: these results were first obtained by Leon and Müller in [14] when they

showed that, for any operator T ∈ L (X ) and any θ ∈ R, HC (e iθT ) = HC (T ). This re-

sult was extended to C0-semigroup in [8] by Conejero, Müller and Peris: if (Tt )t>0 is a

strongly continuous group on X , then for any t > 0, HC (Tt ) = HC (T1).
• analytic results: the pioneering work in that direction is due to Abakumov and Gor-

don ([1]) who showed that
⋂

λ>1 HC (λB ) is nonempty, where B is the (unweighted)

backward shift on ℓ2. This was shortly later improved by Costakis and Sambarino in
[9] who showed that

⋂

λ>1 HC (λB ) is residual. Costakis and Sambarino gave a rather

general criterion for a family (Tλ)λ∈I indexed by an interval I to have a residual set

of common hypercyclic vectors. This criterion may be applied to many classical se-

quences of operators, like translation operators τa , a ∈C\{0}, which are defined on the
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2 FRÉDÉRIC BAYART

set of entire functions H (C) by τa ( f ) = f (·+a). More precisely, the criterion shows that
⋂

θ∈[0,2π] HC (τeiθ) is nonempty.

It turns out that both the algebraic results and the analytic results are one-dimensional re-

sults. They show that certain families indexed by a subset of R have a common hypercyclic

vector. Sometimes, we can combine the two methods to obtain two-dimensional results. For
instance, by the analytic method, you can show that

⋂

λ>1 HC (λB ) is residual and by the alge-

braic method, you can show that for any θ ∈R and any λ> 1, HC (e iθλB )= HC (λB ). This yields

the following two-dimensional result:
⋂

|λ|>1 HC (λB ) is residual. A similar argument is used to

prove that
⋂

a∈C\{0} HC (τa ) is a residual subset of H (C).
It was observed by Borichev (see [1]) that there are dimensional obstructions to the existence of

a common hypercyclic vector. Indeed, letΛ⊂ (1,+∞)2 and for λ= (s, t )∈Λ, define Tλ = sB⊕t B

acting on ℓ2 ⊕ ℓ2. Then each Tλ is hypercyclic but if
⋂

λ∈ΛHC (Tλ) is nonempty, then Λ has

Lebesgue measure zero. See also [17] for other limitations relative to the dimension of the
parameter space.

However, there are at least two seminal papers where two-dimensional results do appear. The
first one is due to Shkarin in [17] who has proved that

⋂

a,b∈C∗ HC (bτa) is a residual subset of

H (C). The proof combines a two-dimensional analytic result, precisely
⋂

b>0,a∈S1 HC (bτa) is

residual, with two successive applications of the algebraic results. The second one is due to
Tsirivas in [19] (see also [18]). Tsirivas shows that if (λn) is an increasing sequence of positive

real numbers tending to +∞ such that λn+1/λn goes to 1, then
⋂

a∈C\{0} HC (τλn a ) is a residual

subset of H (C). This is a two-dimensional analytic result, since we cannot apply the algebraic

results when λn 6= n.
Both results of Shkarin and Tsirivas are truely "tours de force" which seem specific to the trans-

lation operators on H (C) or at least to operators very similar to them. In particular, it is not

clear if their arguments may be adapted to higher-dimensional families or to operators acting

on a Banach space and not on a Fréchet space. In this paper, we provide a new approach which
allows us to prove common hypercyclic results for general high-dimensional families. The very

simple main idea is the following. The key point in Borichev’s example is the fact that if λnB n x

is close to y , then µnB n x cannot be close to y provided µ is far away from λ. Now, if you are
working with the group of translations (τa ), then f (x+na) and f (x+nb) can be simultaneously

close to g even if b is far away from a. Indeed, this just mean that f has to be close to g on the

balls centered in −na and in −nb, and these conditions are in some way independent. This will

allow us, in order to construct a common hypercyclic vector f , to use the same n for different
values of the parameter!

Here is our main result.

Theorem 1.1. Let (Ta)a∈Rd be a strongly continuous group on R
d with the uniform mixing prop-

erty. Then
⋂

a∈Rd \{0} HC (Ta) is a residual subset of X

We shall define later the uniform mixing property, but it is a rather natural condition which is

satisfied by many operator groups. By applying Theorem 1.1, we will get many new examples

of common hypercyclicity which are not reachable with the previously known arguments and

for high-dimensional families!
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We shall use two main ingredients in our proof. Firstly we translate the problem of finding a
common hypercyclic vector to the problem of finding a suitable covering of compact subsets

of Rd . Secondly we give a way to produce such coverings. It is based on a method to split

sequences of real numbers which are going to infinity but not too quickly, and in fact our state-

ment is more general than Theorem 1.1 since it covers sequences (Tλn a) and not only iterates
(Tna ).

Even for operator groups like the translation group, there are obstructions to the existence of

a common hypercyclic vector for the sequences of operators (τλn a ), a ∈ C\{0}, which is linked

to the growth of the sequence (λn). Indeed, Costakis, Tsirivas and Vlachou have shown in [10]
that, if liminfn→+∞

λn+1
λn

> 2, then
⋂

a∈C\{0} HC (τna ) is empty. This shows that, in some sense,

the result of Tsirivas quoted above is optimal, but leaves open the case λn = qn with q ∈ (1,2].

Using our covering argument, we are able to extend this result to the remaining case and to any

operator group!

Theorem 1.2. Let (Ta )a∈Rd be a strongly continuous operator group on X and let (λn) be an

increasing sequence of positive real numbers such that liminfn
λn+1
λn

> 1. Then
⋂

a∈Rd \{0} HC (Tλn a )

is empty.

When we add supplementary conditions, the method of Costakis and Sambarino is unefficient

to solve certain problems. This is the case if we consider frequent hypercyclicity, a notion in-
troduced in [5]. Recall that for a set A ⊂N, its lower density is defined by

dens(A) = liminf
N→+∞

#{n ≤ N ; n ∈ A}

N
,

where #B stands for the cardinal number of B . Given a sequence of operators (Tn) of X , we say
that x ∈ X is a frequently hypercyclic vector for (Tn) if for any U ⊂ X open and nonempty, the

set {n; Tn x ∈U } has positive lower density and we denote by F HC (Tn) the set of frequently hy-

percyclic vectors for (Tn). As before, for a single operator T , F HC (T ) will stand for F HC
(

(T n)
)

.
It was shown in [5] that, for any a ∈C\{0}, τa acting on H (C) is frequently hypercyclic. Moreover,

the algebraic method can be carried on frequent hypercyclicity. In particular, if (Tt )t>0 is a

strongly continuous semigroup on X , then for any t > 0, F HC (Tt ) = F HC (T1). This implies in

particular that we can find a common frequently hypercyclic vector for all operators (τa )a∈R\{0},
a result first obtained in [5].

The methods introduced in this paper allow us to go further and to prove the following natural

result.

Theorem 1.3. The set
⋂

a∈C∗ F HC (τa ) is nonempty.

As before, a more general version of Theorem 1.3 will be proved in Section 5. In particular, this

version can be applied to all the examples introduced in this paper and to high-dimensional

families, which is rather surprizing!

In the last two sections of this paper, we give related results. First, we study the existence of a
common hypercyclic vector for all multiples of operators living in a high-dimensional operator

group, leading to a multidimensional generalization of the above result of Shkarin. Second, we

emphasize on the algebraic method, showing that it is also helpful to obtain multidimensional

results.
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2. THE UNIFORM MIXING PROPERTY

2.1. The uniform mixing property and a covering argument. In this section, we introduce our

main condition for an operator group to admit a common hypercyclic vector. This condition is

an enhancement of the mixing property.

Definition 2.1. A group (Ta)a∈Rd acting on X has the uniform mixing property if, for any U ,V

nonempty open subsets of X , there exists C > 0 such that, for any p ≥ 1, for any a1, . . . , ap ∈ R
d

with ‖ai‖ ≥ C and ‖ai − a j‖ ≥ C for any i , j ∈ {1, . . . , p} with i 6= j , there exists f ∈ U such that

Ta j
f ∈V for any j = 1, . . . , p .

This property is weaker than the Runge property introduced by Shkarin in [17] (see also the

forthcoming Section 3.2). Moreover, as it is observed in [7] for a similar property, the Runge

property cannot be satisfied for an operator group defined on a Banach space. We shall see later
that there exist operator groups defined on Banach spaces and satisfying the uniform mixing

property.

Our first result says that the existence of a common hypercyclic vector for an operator group

can be deduced from the construction of a suitable covering of Rd . We shall see later (Theorem
4.3) that the converse is true.

Theorem 2.2. Let (Ta)a∈Rd be a strongly continous group on X with the uniform mixing prop-

erty. Let K be a compact subset of Rd \{0} and let (λn) be an increasing sequence of positive real

numbers. Assume that, for all ε> 0 and all C > 0, for all N ∈N, we can find M ≥ N and a finite

number (xn,k )N≤n≤M , 1≤k≤pn
of elements of K satisfying

(A) For any n,m,k , j with (n,k) 6= (m, j ), then

‖λn xn,k −λm xm, j‖≥C .

(B) For any x ∈ K , there exist n,m ∈ {N , . . . , M } and k ∈ {1, . . . , pn} such that

‖λm x −λn xn,k‖ < ε.

Then
⋂

a∈K HC (Tλn a) is a residual subset of X .

Proof. Let U ,V be nonempty open subsets of X . It is sufficient to show that

U ∩
{

f ∈ X ; ∀a ∈ K , ∃n ∈N, Tλn a f ∈V
}

is nonempty (see for instance [6, Proposition 7.4]). Let g ∈ V and let V ′ be a neighbourhood

of zero such that g +V ′+V ′ ⊂V . Since (Ta) is strongly continuous, the uniform boundedness

principle says that the map (a, f ) 7→ Ta f is continuous. In particular, there exist ε1 > 0 and W

a neighbourhood of zero such that Ta(W ) ⊂ V ′ for any a with ‖a‖ < ε1. Moreover, there exists
ε2 > 0 such that Ta (g )− g ∈V ′ provided ‖a‖< ε2. We set ε= min(ε1,ε2).

We then set V0 = g +W and we apply the uniform mixing property with U and V0. We get a

positive real number C and we choose N such that λN‖a‖ > C for any a ∈ K . For these values

of ε,C , N , we get points (xn,k ) satisfying (A) and (B). Applying the uniform mixing property
with the sequence (λn xn,k ), we know that there exists f ∈ U such that Tλn xn,k f ∈ V0 for any

admissible choice of (n,k). Pick now x ∈ K . We may find m,n,k such that

‖λm x −λn xn,k‖ < ε.
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Now we write

Tλm x f − g = Tλm x f −Tλm x−λn xn,k g +Tλm x−λn xn,k g − g

= Tλm x−λn xn,k (Tλn,k xn,k f − g
︸ ︷︷ ︸

∈W

)

︸ ︷︷ ︸

∈V ′

+Tλm x−λn xn,k g − g
︸ ︷︷ ︸

∈V ′

.

Hence, Tλn x f belongs to V , which yields that
⋂

a∈K HC (Tλn a ) is a residual subset of X . �

We shall apply Theorem 2.2 under the following form.

Corollary 2.3. Let (Ta )a∈Rd be a strongly continous group on X with the uniform mixing prop-

erty. Let K be a compact subset of R
d \{0} and let (λn) be an increasing sequence of positive

real numbers. Assume that, for all ε > 0 and all C > 0, there exists γ > 0 such that, for all

N ∈N, for all compact subsets L of K with diam(L) < γ, we can find M ≥ N and a finite number

(xn,k )N≤n≤M , 1≤k≤pn
of elements of L satisfying

(A) For any n,m,k , j with (n,k) 6= (m, j ), then

‖λn xn,k −λm xm, j‖≥C .

(B) For any x ∈ L, there exist n,m ∈ {N , . . . , M } and k ∈ {1, . . . , pn} such that

‖λm x −λn xn,k‖ < ε.

Then
⋂

a∈K HC (Tλn a) is a residual subset of X .

Proof. Let ε,C > 0 and N ∈ N. We get some γ > 0 and we write K as a finite union of compact
subsets L1, . . . ,Lq with diam(Li ) < γ. We apply iteratively the construction for each Li with Ni

defined as follows:

• N1 = N ;
• if at Step i , we have constructed elements (xn,k ) until n ≤ Mi , we take Ni+1 > Mi any

positive integer n such that λn‖a‖ > λMi
‖b‖+C for any a,b ∈ K . This ensures that the

separation property (A) keeps beings true on the whole set of points (xn,k ).

Hence, the whole sequence (xn,k ), n = Ni , . . . , Mi , i = 1, . . . , q , satisfies the assumptions (A) and

(B) of Theorem 2.2 that we may apply. �

2.2. An efficient way to split sequences of positive real numbers. We need now to introduce a

condition on positive sequences of real numbers (λn) in order to ensure common hypercyclic-
ity of the family (Tλn a ). For the translation group on H (C), N. Tsirivas has introduced in [18] a

sufficient condition: it suffices that, for any M > 0, there exists a subsequence (µn) of (λn ) such

that µn+1 −µn ≥ M for any n and
∑

n≥1
1
µn

= +∞. This last condition was not very surprizing,

because it was the main property on the whole sequence of integers (n) which was used in the
Costakis-Sambarino criterion. For our purpose, we will weaken this condition in order to allow

sequences with faster growth.

Definition 2.4. We say that an increasing sequence (λn) has property (SG) if, for any B > 0,

there exist ρ > 1 and a subsequence (µn) of (λn) such that

• µn+1 ≥ ρµn;
• for any n0 ∈N,

∑+∞
n=n0+1

1
µn

> B
µn0

.
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We first show that many classical sequences have property (SG).

Proposition 2.5. Let (λn) be an increasing sequence of positive real numbers tending to+∞ such

that λn+1/λn → 1. Then (λn) has property (SG).

Proof. Let B > 0. There exists ρ0 > 1 such that
∑+∞

n=1ρ
−n
0 > B . We set ρ =p

ρ0. Let p ≥ 1 be such

that λn+1
λn

≤ ρ provided n ≥ p . We then set ψ(0) = p and we define ψ(n) for n ≥ 1 by induction
using the following formula:

ψ(n +1) = inf
{

m ≥ψ(n); λm ≥ρλψ(n)
}

.

Then λψ(n+1) ≥ ρλψ(n) and λψ(n+1) ≤ ρλψ(n+1)−1 ≤ ρ2λψ(n) = ρ0λψ(n). Setting µn = λψ(n), we

immediately get the conclusion. �

To be able to produce coverings in arbitrary large dimensions, we will need to be able to iterate

the property
∑+∞

n=n0+1
1
µn

> B
µn0

arbitrary many times. The precise statement that we need is

contained in the following technical lemma.

Lemma 2.6. Let d ≥ 1 and A > 0. There exists B := B (d , A) > 0 such that, if (µn) is an increasing

sequence of positive real numbers such that, for any n0 ∈N,
∑+∞

n=n0+1
1
µn

≥ B
µn0

, if s ≥ 1 is such that
∑s

n=1
1
µn

≥ B
µ0

, then we can find s1 ∈N, subsets Er of Nr−1 for r = 2, . . . ,d +1, maps sr : Er →N for

r = 2, . . . ,d and a one-to-one map φ : Ed+1 → {0, . . . , s} such that

• for any r = 2, . . . ,d +1,

Er =
{

(k1, . . . ,kr−1); k1 < s1, k2 < s2(k1), . . . ,kr−1 ≤ sr−1(k1, . . . ,kr−2)
}

.

• for any r = 1, . . . ,d, for any (k1, . . . ,kr−1) ∈ Er ,

sr (k1,...,kr−1)∑

j=1

1

µφ(k1,...,kr−1, j ,0,...,0)
≥

A

µφ(k1,...,kr−1,0,...,0)
.

• If (k1, . . . ,kd )> (k ′
1, . . . ,k ′

d
) in the lexicographical order, then

φ(k1, . . . ,kd )>φ(k ′
1, . . . ,k ′

d ).

Proof. We proceed by induction on d . The result is clear for d = 1, setting simply B = A, s1 = s

and φ(k)= k . Assume now that the result until step d −1 is known and let us prove it for step d .

Let A > 0 and let us set

B := B (d , A)= (A+2)B (d −1, A)+3.

Let (µn) be an increasing sequence of positive integers and s ≥ 1 be such that
s∑

n=1

1

µn
≥

B

µ0
and

+∞∑

n=n0+1

1

µn
≥

B

µn0

for any n0 ∈N.

We set φ(0, . . . ,0) = 0 and we define by induction φ( j +1,0, . . . ,0) as the smallest integer N such
that

N∑

k=φ( j ,0,...,0)+1

1

µk

≥
B (d −1, A)

µφ( j ,0,...,0)
.

In particular,

B (d −1, A)

µφ( j ,0,...,0)
≤

φ( j+1,0,...,0)∑

k=φ( j ,0,...,0)+1

1

µk

≤
B (d −1, A)+1

µφ( j ,0,...,0)
.(1)
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We stop when j +1 = s1 where s1 is the smallest integer t such that

φ(t ,0,...,0)∑

k=φ(0,...,0)+1

1

µk

≥
(A+1)B (d −1, A)+2

µφ(0,...,0)
.

In particular,

φ(s1,0,...,0)∑

k=φ(0,...,0)+1

1

µk

≤
(A+1)B (d −1, A)+2

µφ(0,...,0)
+

φ(s1,0,...,0)∑

k=φ(s1−1,0,...,0)+1

1

µk

≤
(A+2)B (d −1, A)+3

µφ(0,...,0)
.

We claim that φ(s1,0, . . . ,0) ≤ s. Indeed,

φ(s1,0,...,0)∑

k=φ(0,...,0)+1

1

µk

≤
(A+2)B (d −1, A)+3

µφ(0,...,0)
≤

B (d , A)

µφ(0,...,0)
≤

s∑

k=1

1

µk

.

We now apply the induction hypothesis for j = 0, . . . , s1 −1 by using the left part of (1). We get

maps φ j , sr, j . We just set φ( j ,k1, . . . ,kd ) = φ j (k2, . . . ,kd ), sr ( j ,k2, . . . ,kr−1) = sr−1, j (k2, . . . ,kr−1).
The only thing which remains to be done is to show that

s1∑

j=1

1

µφ( j ,0,...,0)
≥

A

µφ(0,...,0)
.

This can be done by observing that

s1∑

j=1

1

µφ( j ,0,...,0)
≥

1

B (d −1, A)+1

s1−1∑

j=1

φ( j+1,0,...,0)∑

k=φ( j ,0,...,0)+1

1

µk

≥
1

B (d −1, A)+1

φ(s1,0,...,0)∑

k=φ(1,0,...,0)+1

1

µk

≥
1

B (d −1, A)+1

(
φ(s1,0,...,0)∑

k=1

1

µk

−
φ(1,0,...,0)∑

k=1

1

µk

)

≥
1

B (d −1, A)+1

(
(A+1)B (d −1, A)+2−B (d −1, A)−1

µφ(0,...,0)

)

≥
A

µφ(0,...,0)
.

�

Lemma 2.6 can be applied for sequences (λn) having property (SG).

Corollary 2.7. Let (λn) be a sequence having property (SG). Then for all d ≥ 1 and all A > 0, there

exist ρ > 1 and a subsequence (µn) of (λn) such that µn+1 ≥ ρµn for any n ≥ 1 and, for all P > 0,

we can find s1 ∈N, subsets Er of Nr−1 for r = 2, . . . ,d +1, maps sr : Er →N for r = 2, . . . ,d and a

one-to-one map φ : Ed+1 →N such that

• for any r = 2, . . . ,d +1,

Er =
{

(k1, . . . ,kr−1); k1 < s1, k2 < s2(k1), . . . ,kr−1 ≤ sr−1(k1, . . . ,kr−2)
}

.
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• for any r = 1, . . . ,d, for any (k1, . . . ,kr−1) ∈ Er ,

sr (k1,...,kr−1)∑

j=1

1

µφ(k1,...,kr−1, j ,0,...,0)
≥

A

µφ(k1,...,kr−1,0,...,0)
.

• φ(0, . . . ,0) ≥P.

• If (k1, . . . ,kd )> (k ′
1, . . . ,k ′

d
) in the lexicographical order, then

φ(k1, . . . ,kd )>φ(k ′
1, . . . ,k ′

d ).

2.3. Common hypercyclic vectors. We are now ready to state and to prove the main result of

this section.

Theorem 2.8. Let (Ta )a∈Rd be a strongly continuous operator group on X which is uniformly

mixing and let (λn) be an increasing sequence of positive real numbers having property (SG).

Then
⋂

a∈Rd \{0} HC (Tλn a ) is a residual subset of X .

Proof. We first show that
⋂

a∈K HC (Tλn a) is a residual subset of X when K is a compact subset

of (0,+∞)d . We shall prove that the conditions of Corollary 2.3 are satisfied. Hence, let ε > 0

and C > 0. We then apply Corollary 2.7 to A = C /ε to get some ρ > 1 and some subsequence
(µn) of (λn) with µn+1 ≥ ρµn . Since K ⊂ (0,+∞)d , we may find γ > 0 such that, given any

a = (a1, . . . , ad ) ∈ K , ρai − ai −γ > 0 for all i = 1, . . . ,d . Let now L be a compact subset of K

with diameter less than γ and let N ∈ N. To simplify the notations, we shall assume that L =
∏d

i=1[bi ,bi +γ] with bi > 0. We apply the properties of the sequence (µn) given by Corollary 2.7

with P ≥ N such that

µP inf
i=1,...,d

(ρbi −bi −γ) ≥C .

We get maps s1, . . . , sd and φ. We may now define our covering of L. We set

n0 = min
(k1,...,kd )

φ(k1, . . . ,kd ), m0 = max
(k1,...,kd )

φ(k1, . . . ,kd )

and let n ∈ {n0, . . . ,m0}. Then either n is not a φ(k1, . . . ,kd ) and we do nothing. Or n is equal to

φ(k1, . . . ,kd ) for a (necessarily) unique (k1, . . . ,kd ). We then define the set {xn,k }1≤k≤pn
as

L∩
{(

b1 +
α1C

µφ(0,...,0)
+

ε

µφ(1,0,...,0)
+·· ·+

ε

µφ(k1,0,...,0)
,

b2 +
α2C

µφ(k1,0,...,0)
+

ε

µφ(k1,1,0,...,0)
+·· ·+

ε

µφ(k1,k2,...,0)
,

...

bd +
αdC

µφ(k1,...,kd−1,0)
+

ε

µφ(k1,...,kd−1,1)
+·· ·+

ε

µφ(k1,...,kd )

)

; α1, . . . ,αd ≥ 0

}

.

We also set ωn = µφ(k1,...,kd ) and we claim that (A) and (B) of Corollary 2.3 are satisfied with ωn

instead of λn (but ωn is of course some λm and it would be sufficient to renumber everything).

Indeed, let (n,k) 6= (m, j ). We distinguish two cases:

• either n 6= m, for instance n < m. In that case,

‖ωm xm, j −ωn xn,k‖ ≥ωmb1 −ωn (b1 +γ) ≥µP (ρb1 −b1 −γ) ≥C .(2)
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• or n = m = φ(k1, . . . ,kd ). We write xn,k and xn, j as before, with respectively the se-
quences (α1, . . . ,αd ) and (β1, . . . ,βd ). Since k 6= j , at least one βi differs from αi . Now,

looking at this coordinate, we get

‖ωn xn,k −ωn xn, j‖≥
µφ(k1,...,kd )

µφ(k1,...,ki−1,0,...,0)
C ≥C .

Let us now prove (B): let x ∈ L. There exists α1 > 0 such that

b1 +
α1C

µφ(0,...,0)
≤ x1 ≤ b1 +

(α1 +1)C

µφ(0,...,0)
.

Now, by construction of φ, using Corollary 2.7 (recall that A = C /ε), there exists k1 < s1 such

that

b1 +
α1C

µφ(0,...,0)
+

ε

µφ(1,0,...,0)
+·· ·+

ε

µφ(k1,0,...,0)
≤ x1 ≤

b1 +
α1C

µφ(0,...,0)
+

ε

µφ(1,0,...,0)
+·· ·+

ε

µφ(k1+1,0,...,0)
.

This k1 being fixed, there exists α2 ≥ 0 such that

b2 +
α2C

µφ(k1,0,...,0)
≤ x2 ≤ b2 +

(α2 +1)C

µφ(k1,0,...,0)
.

Iterating this construction, we find α1, . . . ,αd ≥ 0 and k1, . . . ,kd such that, for all i = 1, . . . ,d ,

bi +
αi C

µφ(k1,...,ki−1,0,...,0)
+

ε

µφ(k1,...,ki−1,1,0,...,0)
+·· ·+

ε

µφ(k1,...,ki−1,ki ,0,...,0)
≤ xi ≤

bi +
αi C

µφ(k1,...,ki−1,0,...,0)
+

ε

µφ(k1,...,ki−1,1,0,...,0)
+·· ·+

ε

µφ(k1,...,ki−1,ki+1,0,...,0)
.

Let n = φ(k1, . . . ,kd ) and let xn,k corresponding to this value of α1, . . . ,αd . Then, for any i =
1, . . . ,d ,

‖ωn x −ωn xn,k‖ ≤µφ(k1,...,kd ) × sup
i=1,...,d

ε

µφ(k1,...,ki+1,0,...,0)
≤ ε.

Hence, by Corollary 2.3,
⋂

a∈K HC (Tλn a ) is a residual subset of X . This works for any compact
set K ⊂ (0,+∞)d or, more generally, for any compact set K contained in some open orthant of

R
d \{0}. Now, assume that K = {0}d−e ×K ′ where K ′ is a compact set of (0,+∞)e and define, for

b ∈R
e , Sb =T(0,b). Then (Sb)b∈Re has the uniform mixing property and thus

⋂

a∈K

HC (Tλn a) =
⋂

b∈K ′
HC (Sλnb)

is a residual subset of X .
To conclude, let Pe (d ) be the subsets of {1, . . . ,d } with cardinal number equal to e . For n ≥ 1,

ε=±1 and S ∈Pe (d ), define

Ki ,n,ε(S)=
{

{0} if i ∉ S
[
ε
n ,εn

]

if i ∈ S.

Then, writing R
d \{0} as the countable union

⋃

e=1,...,d
⋃

n≥1
⋃

ε∈{−1,1}d

⋃

S∈Pe (d)
∏d

i=1 Ki ,n,εi
(S), we

easily get the conclusion. �
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Remark 2.9. In property (SG), the condition µn+1 ≥ ρµn is rather unpleasant. It is necessary
to separate sufficiently µn xn,k and µm xm,k when n 6= m. If we just looked at

⋂

‖a‖=1 HC (Tλn a ),

we could replace it by the more pleasant condition µn+1 −µn ≥ B : see the section devoted to

frequent hypercyclicity and in particular compare (2) above and (5).

3. EXAMPLES

3.1. A sufficient condition. We now give examples of operator groups having the uniform mix-

ing property. We first begin by a criterion which can be seen as a strong form of the hypercyclic-
ity criterion.

Proposition 3.1. Let (Ta)a∈Rd be an operator group on X and let ‖·‖ be an F -norm on X . Assume

that there exists a dense set D ⊂ X such that, for any f ∈ D and any ε > 0, there exists C > 0

such that, for any N ≥ 1, for any a1, . . . , aN ∈ R
d with ‖ai − a j‖ ≥ C if i 6= j and ‖ai‖ ≥ C , then

∥
∥
∑N

i=1 Tai
f
∥
∥< ε. Then (Ta )a∈Rd has the uniform mixing property.

Observe that the hypercyclicity criterion shares the same assumptions restricted to N = 1. For
the definition of an F -norm, we refer to [11].

Proof. Let U ,V be nonempty open subsets of X . There exist g ,h ∈ D, ε> 0 such that B (g ,ε) ⊂U

and B (h,ε) ⊂ V . Applying the assumptions with (g ,ε/2) and with (h,ε/2), we get two positive

Cg and Ch . We set C = max(Cg ,Ch). Let us consider N ≥ 1 and a1, . . . , aN ∈R
d with ‖ai −a j‖≥C

and ‖a j‖ ≥C . We define

f = g −
N∑

i=1
T−ai

h.

Clearly, ‖ f − g‖ < ε/2 < ε. Moreover, let j ∈ {1, . . . , N }. Then

Ta j
f = Ta j

g −
∑

i 6= j

Ta j−ai
h +h.

Setting bi = a j −ai , then ‖bi‖ ≥C and ‖bi −bl‖ = ‖ai −al‖ ≥C provided i 6= l . Hence, ‖Ta j
f −

h‖< ε and Ta j
f ∈V . �

Example 3.2. Let w : Rd → R be a positive bounded and continuous function such that x 7→
w(x+a)

w(x) is bounded for each a ∈ R
d . For a ∈ R

d and p ≥ 1, let τa be the translation operator

defined on X = Lp (Rd , w (x)d x) by τa f (x) = f (x +a). Assume moreover that
∫

Rd w (x)d x <+∞.
Then

⋂

a∈Rd \{0} HC (τa ) is a residual subset of X .

Proof. Let D ⊂ X be the dense set of compactly supported continuous functions. Let f ∈ D,

ε> 0 and let A > 0 be such that the support of f is contained in B (0, A). There exists some C > 0

such that

• for any a,b ∈R
d with ‖a −b‖≥C , Ta f and Tb f have disjoint support.

•
∫

‖x‖≥C−A w (x)d x ≤ εp

‖ f ‖p
∞

.

Let N ≥ 1 and a1, . . . , aN ∈R
d with ‖ai −a j‖≥C and ‖ai‖ ≥C provided i 6= j . Then

∥
∥
∥
∥
∥

N∑

i=1
Tai

f

∥
∥
∥
∥
∥

p

≤
∫

‖x‖≥C−A
‖ f ‖p

∞w (x)d x ≤ εp

so that (τa )a∈Rd has the uniform mixing property. �
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This improves (even when d = 1) Example 7.20 of [6].

We can also deduce from Proposition 3.1 a useful corollary to get common hypercyclicity.

Corollary 3.3. Let (Ta )a∈Rd be an operator group acting on X and let ‖ · ‖ be an F -norm on X .

Assume that there exist a dense set D ⊂ X and p > d such that, for any f ∈ D, there exists A > 0

such that

‖Ta f ‖≤
A

‖a‖p

for any a ∈R
d with ‖a‖≥ 1. Then (Ta)a∈Rd has the uniform mixing property.

Proof. We shall see that the assumptions of Proposition 3.1 are satisfied. The key point is to

observe that, if (ai ) is any sequence in R
d such that ‖ai − a j‖ ≥ 1 for any i 6= j , there exists

κd > 0 such that, for any k ≥ 1,

#
{

i ; 2k ≤ ‖ai‖< 2k+1}≤ κd 2kd .

Let now f ∈ D, ε > 0 and C ≥ 1. Let a1, . . . , aN ∈ R
d with ‖ai − a j‖ ≥ 1 if i 6= j and ‖ai‖ ≥ C for

any i . Then
∥
∥
∥
∥
∥

N∑

i=1
Tai

f

∥
∥
∥
∥
∥

≤
∑

k ; 2k≥C

∑

i ; 2k≤‖ai‖<2k+1

∥
∥Tai

f
∥
∥

≤ A
∑

k ; 2k≥C

∑

i ; 2k≤‖ai‖<2k+1

1

2kp

≤ Aκd

∑

k ; 2k≥C

1

2k(p−d)

and this is less than ε provided C is large enough. �

3.2. The Runge property. Our second example deals with groups having the Runge property
introduced in [17]. The name "Runge property" is reminiscent for the method of proof of the

hypercyclicity of τa on H (C), a 6= 0.

Definition 3.4. Let (Ta )a∈Rd be an operator group on X . We say that (Ta )a∈Rd has the Runge
property if for any continuous seminorm ‖ · ‖ on X , there exists C > 0 such that, for any N ≥ 1,

for any b1, . . . ,bN ∈ R
d with ‖bi −b j‖ ≥ C for i 6= j , for any g1, . . . , gN ∈ X , for any ε > 0, there

exists f ∈ X such that ‖Tbi
f − gi ‖< ε for each i = 1, . . . , N .

Proposition 3.5. An operator group having the Runge property has the uniform mixing property.

Proof. Let U ,V be nonempty open subsets of X , let g ,h ∈ X , let ‖·‖ be a continuous seminorm

on X such that { f ∈ X ; ‖ f −h‖ < 1} ⊂U and { f ∈ X ; ‖ f − g‖ < 1} ⊂ V . For this seminorm ‖ · ‖
and for ε = 1, applying the definition of the Runge property, we find some C > 0. Let N ≥ 1
and a1, . . . , aN ∈ R

d with ‖ai −a j‖ ≥C and ‖ai‖ ≥C for any i 6= j . Define b0 = 0 and bi = ai for

i = 1, . . . , N . Then there exists f ∈ X such that ‖Tb0 f −h‖ < 1 and ‖Tbi
f − g‖ < 1 for i = 1, . . . , N .

In particular, f ∈U and Tai
f ∈ V for any i = 1, . . . , N , so that (Ta)a∈Rd has the uniform mixing

property. �

In [17], it is shown that the translation group (τa )a∈C acting on H (C) has the Runge property. In

several complex variables, the situation is less clear due to the lack of Runge theorem. However,

this remains true if we restrict ourselves to translations by vectors in R
d .
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Example 3.6. The operator group (τa )a∈Rd acting on H (Cd ) has the Runge property.

Proof. By a result of Khudaiberganov [13], the union of a finite union of disjoint balls in C
d

with centers in R
d is polynomially convex. By the Oka-Weil theorem (see for instance [15]),

any function holomorphic in a neighbourhood of a compact polynomially convex set K ⊂ C
d

can be uniformly approximated by holomorphic polynomials. Hence, let ‖ · ‖ be a continuous

seminorm on H (Cd ). There exists A > 0 such that, for any f ∈ H (Cd ),

‖ f ‖≤ ‖ f ‖A := A sup
‖z‖≤A

| f (z)|.

We set C = 4A and we consider a finite set of points b1, . . . ,bN in R
d and a finite set of holo-

morphic functions g1, . . . , gN such that ‖bi −b j‖ ≥ C provided i 6= j . Let Bi be the closed ball

Bi = {z ∈ C
d ; ‖z −bi‖ ≤ A}. Since these balls are pairwise disjoint, K = B1 ∪·· ·∪BN is polyno-

mially convex. Thus, there is a polynomial f such that supz∈Bi
| f (z)− gi (z +bi )| < ε/A for any

i = 1, . . . , N . We obtain immediately that ‖Tbi
f − gi‖< ε for any i = 1, . . . , N . �

It is also very easy to show that the translation group (τa )a∈Rd acting on the Fréchet space
Cc (Rd ) of continous functions f : Rd → R with the topology of uniform convergence on com-

pact sets satisfies the Runge property.

3.3. Heisenberg translations. We now give an example of a group which is not a translation

group. Let d ≥ 2 and let X = H 2(Bd ) be the Hardy space on the (euclidean) unit ball of Cd

denoted by Bd . Let φ be an automorphism of Bd . Then the composition operator Cφ defined

by Cφ( f ) = f ◦φ is a bounded operator on H 2(Bd ). When φ has no fixed points in Bd , it has be

shown in [12] that Cφ is hypercyclic.

A class of automorphisms plays a crucial role in the study of composition operators and of
linear fractional maps of the ball, the class of Heisenberg translations (see [2] or [3]). To under-

stand these automorphisms, it is better to move on the Siegel upper half-space

Hd =
{

Z = (z,w) ∈C×C
d−1; ℑm(z) > |w|2

}

.

The Siegel half-space is biholomorphic to Bd via the Cayley map ω defined by

ω(z,w) =
(

i
1+ z

1− z
,

i w

1− z

)

, ω−1(z,w)=
(

z − i

z + i
,

2w

z + i

)

.

The Cayley transform extends to a homeomorphism of Bd onto Hd ∪∂Hd ∪ {∞}, the one-point
compactification of Hd . The image of H 2(Bd ) by the Cayley transform is denoted by H

2(Hd ) :

H
2(Hd ) =

{

F :Hd →C holomorphic; F ◦ω−1 ∈ H 2(Bd )
}

.

As one easily sees by computing the jacobian of ω, H2(Hd ) is endowed with the norm

‖F‖2
H 2 =κ2

∫

∂Hd

|F (z,w)|2

|z + i |2d
dσ∂Hd

,

where κ is a constant that we will not try to compute.

For γ ∈C
d−1\{0}, the Heisenberg translation with symbol γ is defined by

Hγ(z,w)= (z +2i 〈w,γ〉+ i |γ|2,w+γ).

Hγ is an automorphism of Hd fixing ∞ only and, as already mentioned, CHγ
is hypercyclic on

H
2(Hd ). It is also easy to check that (CHγ

)γ∈Cd−1 is a strongly continous group on H
2(Hd ).
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Theorem 3.7.
⋂

γ∈Cd−1\{0} HC (CHγ
) is a residual subset of H

2(Hd ).

Before to prove this theorem, we need a couple of lemmas.

Lemma 3.8. Let p ≥ 1. The functions (z1−1)p g (z), where g runs over the ball algebra A(Bd ), are

dense in H 2(Bd ).

Proof. Let h ∈ A(Bd ) and define

fk (z) = h(z)

(

1−
(

1+ z1

2

)k
)p

= gk (z)(1− z1)p

with gk ∈ A(Bd ). Lebesgue’s theorem implies that fk tends to h in H 2(Bd ). We conclude by

density of A(Bd ) in H 2(Bd ). �

Lemma 3.9. Let p ≥ 1 and let

Dp =
{

F ∈ A(Hd ); there exists C > 0 s.t. ∀(z,w) ∈Hd , |F (z,w)| ≤
C

|z + i |p

}

.

Then Dp is dense in H
2(Hd ).

Proof. This follows immediately from the previous lemma and the definition of the Cayley map,

since ∣
∣
∣
∣

z − i

z + i
−1

∣
∣
∣
∣=

2

|z + i |
.

�

Lemma 3.10. There exists a dense set D ⊂ H
2(Hd ) such that, for any F ∈ D, there exists A > 0

such that, for any γ ∈C
d−1\{0}, |γ| ≥ 1,

‖CHγ
F‖H 2 ≤

A

|γ|2d− 3
2

.(3)

Proof. We shall see that, provided p is large enough, Dp satisfies the conclusions of the lemma.
Precisely, let ε ∈ (0,1) be such that (2d −1)−ε(d −1) ≥ 2d − 3

2 . We then adjust p so that 2εp ≥
2d− 3

2 and we pick F ∈ Dp , γ ∈C
d−1 with |γ| ≥ 1. To simplify the notations, we shall write during

this proof that u . v provided there exists C > 0 such that u ≤C v where C does not depend on

γ (it may depend on F , p or ε). Then

‖CHγ
F‖2

H 2 .

∫

w∈Cd−1

∫

x∈R

|F (x + i |w|2 +2i 〈w,γ〉+ i |γ|2,w+γ)|2

|x + i |w|2 + i |2d
d xdw

.

∫

w∈Cd−1

∫

x∈R

1

(1+|x|+ |w|2)2d (|x −2ℑm〈w,γ〉|+ |γ+w|2 +1)p
d xdw

.

∫

w∈Cd−1

∫

x∈R

1

(1+|x|+ |w|2)2d (1+|γ+w|2)2p
d xdw.

We split the integral following the value of |γ+w|. Assume first that |γ+w| ≤ γε. Then, writing

1

(1+|x|+ |w|2)2d
×

1

(1+|γ+w|2)2p
.

1

(1+|x|+ |γ|2)2d
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and observing that the ball B (−γ,γε) in C
d−1 has volume comparable to |γ|2ε(d−1), we get

∫

|w+γ|≤γε

∫

x∈R

1

(1+|x|+ |w|2)2d (1+|γ+w|2)2p
d xdw.

|γ|2ε(d−1)

(1+|γ|2)2d−1
.

1

|γ|2
(

2d− 3
2

) .

When |γ+w| ≥ |γ|ε, we now write

1

(1+|x|+ |w|2)2d
×

1

(1+|γ+w|2)2p
.

1

(1+|x|+ |w|2)2d
×

1

(1+|γ|2ε)2p
.

We integrate this over Cd−1 ×R. Taking into account the inegalities satisfied by ε and p , we get
the result of the lemma. �

Proof of Theorem 3.7. Theorem 3.7 follows immediately from Corollary 3.3 and Lemma 3.10.

�

4. OBSTRUCTIONS TO COMMON HYPERCYCLICITY

4.1. A converse to the covering property. In this section, we now show that, even if a group

(Ta)a∈Rd has the uniform mixing property, we cannot expect that
⋂

a∈Rd \{0} HC (Tλn a ) is non-

empty provided (λn) grows too fast. We need a condition on the group saying that it is not too
quickly mixing.

Definition 4.1. We say that an operator group (Ta )a∈Rd is locally separating if, for any A > δ> 0,

there exists a nonempty open set U such that TaU ∩U =∅ provided δ≤‖a‖≤ A.

It turns out, that under this condition, the existence of a common hypercyclic vector implies a
covering property similar to that of Section 2.1.

Lemma 4.2. Let K be a compact subset of Rd \{0}, let (λn)n be an increasing sequence of positive

real numbers going to infinity and let (Ta )a∈Rd be a strongly continuous operator group on X

which is locally separating. Assume that
⋂

a∈K HC (Tλn a ) is nonempty. Then, for all A >δ> 0, for

all N ∈N, we can find M ≥ N and a finite number (yn,k )N≤n≤M ,1≤k≤qn
of elements of K satisfying

(A) for any n,m,k , j , either ‖λn yn,k −λm ym, j‖< δ or ‖λn yn,k −λm ym, j‖> A.

(B) K ⊂⋃M
n=N

⋃qn

k=1 B
(

yn,k , δ
λn

)

.

Proof. Let f ∈
⋂

a∈K HC (Tλn a) and let, for n ≥ N ,

Vn =
{

a ∈ K ; Tλn a f ∈U
}

where the open set U is given by the local separation property. Then each Vn is an open subset

of K and K is contained in
⋃

n≥N Vn . By the compactness of K , there exists M ≥ N such that K ⊂
⋃M

n=N Vn . Let us now consider x ∈ K and let n(x) be the smallest integer n ≥ N such that x ∈Vn .

Then K is contained in
⋃

x∈K B
(

x, δ
λn(x)

)

. By the compactness of K again, we can extract a finite

sequence (yn,k )N≤n≤M such that each yn,k belongs to Vn and K is contained in
⋃

n,k B
(

yn,k , δ
λn

)

.

Moreover, since Tλn yn,k f ∈ U and Tλm ym, j
f ∈ U , it is plain that Tλn yn,k−λm ym, j

U ∩U 6=∅, which
implies (A) by the definition of U . �

When (Ta)a∈Rd has the uniform mixing property, we can close the circle and show that the

converse of Theorem 2.2 is true!
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Theorem 4.3. Let (Ta)a∈Rd be a strongly continous group on X with the uniform mixing prop-

erty. Let K be a compact subset of Rd \{0} and let (λn) be an increasing sequence of positive real

numbers. Then the following assertions are equivalent :

(1)
⋂

a∈K HC (Tλn a ) is a residual subset of X .

(2) For all ε > 0 and all C > 0, for all N ∈ N, we can find M ≥ N and a finite number

(xn,k )N≤n≤M , 1≤k≤pn
of elements of K satisfying

(A) For any n,m,k , j with (n,k) 6= (m, j ), then

‖λn xn,k −λm xm, j‖≥C .

(B) For any x ∈ K , there exist n,m ∈ {N , . . . , M } and k ∈ {1, . . . , pn} such that

‖λm x −λn xn,k‖ < ε.

Proof. That (2) implies (1) has already been proved in Theorem 2.2. Assume now that (1) is
satisfied. We first observe that the uniform mixing property implies the local separation prop-

erty. Indeed, let A > δ> 0. By the uniform mixing property and Theorem 1.1,
⋂

a∈Rd \{0} HC (Ta)

is nonempty. Pick f ∈
⋂

a∈Rd \{0} HC (Ta). Then Ta f 6= f for any a ∈ R
d \{0}; otherwise, the set

{Tt f ; t > 0} would be compact, hence nondense. By continuity of the map f 7→ Ta f and by

compactness of the corona {a ∈ R
d ; δ ≤ ‖a‖ ≤ A}, there exists a neighbourhood U of f such

that TaU ∩U =∅ for any a ∈ R
d with δ ≤ ‖a‖ ≤ A. Hence, we may apply Lemma 4.2 and we

are lead to show that the conditions of this lemma imply (2). Let C ,ε> 0 and N ∈N. We apply
Lemma 4.2 with A =C and δ = ε/2 to get M and (yn,k ). We order N2 using the lexicographical

order. We construct by induction sequences (y ′
j
) and (λ′

j
) by setting y ′

1 = yN ,1, λ′
1 = λN and,

provided y ′
1, . . . , y ′

j
,λ′

1, . . . ,λ′
j

have been constructed with y ′
j
= yn,k and λ′

j
=λn , we set

y ′
j+1 = inf

{

(m,ℓ) ≥ (n,k); ∀p ≤ j , ‖λm ym,ℓ−λ′
p y ′

p‖≥ A
}

and λ′
j+1 is the corresponding λm . If (m,ℓ) does not exist, then we stop the construction. We

then rename (y ′
j
) as (xn,k ): for a given n in {N , . . . , M }, we set {xn,k } = {y ′

j
; λ′

j
= λn}. The con-

struction of the sequence (xn,k ) immediately implies that (2)(A) is satisfied. Moreover, let x ∈ K .

We know that there exists (n,k) with ‖λn x −λn yn,k‖ < δ. By construction, there exists (m,ℓ)
with m ≤n such that ‖λn yn,k −λm xm,ℓ‖< A. But since xm,ℓ is itself an element of the sequence

(yp,u ), we have ‖λn yn,k −λm xm,ℓ‖ < δ. This implies ‖λn x −λm xm,ℓ‖ < 2δ = ε, so that (2)(B) is

satisfied.

�

4.2. Obstructions. We may now state the main theorem of this section, which is the desired ex-

tension of the result of Costakis, Tsirivas and Vlachou. We say that an interval in R
d is nontrivial

if it contains at least two points.

Theorem 4.4. Let I be a nontrival compact interval in R
d \{0} and let (Ta )a∈Rd be a strongly con-

tinuous operator group on X which is locally separating. Let also (λn) be an increasing sequence

of positive real numbers such that liminfn λn+1/λn > 1. Then
⋂

a∈I HC (Tλn a ) =∅.

The proof of this theorem will depend heavily on the following easy lemma on intervals of R.

Lemma 4.5. Let I , J1, . . . , Jp be intervals of R. Then I \(J1∪ J2∪·· ·∪ Jp ) is the reunion of s disjoint

intervals E1, . . . ,Es with s ≤ p +1 and |E1|+ · · ·+ |Es | ≥ |I |− |J1|− · · ·− |Jp |.
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Proof. We proceed by induction on p , the result being trivial for p = 0. Let E1, . . . ,Es , s ≤ p +1
be disjoint intervals such that I \(J1 ∪ J2 ∪·· ·∪ Jp ) = E1 ∪·· ·∪Es . Renumbering the intervals Ei

if necessary, we assume that maxEi ≤ minEi+1. We divide the proof into several cases:

• if there exists some j such that Jp+1 ⊂ E j , then set E j \Jp+1 =: E ′
j
∪E ′′

j
where E ′

j
and E ′′

j

are intervals. In that case,

I \(J1 ∪ J2 ∪·· ·∪ Jp ) = E1 ∪·· ·∪E j−1 ∪E ′
j ∪E ′′

j ∪E j+1 ∪·· ·∪Es .

• if there exist j < k such that min Jp+1 ∈ E j and max Jp+1 ∈ Ek , then E j \Jp+1 := E ′
j
,

Ek \Jp+1 := E ′
k

where E ′
j
,E ′

k
are intervals. In that case,

I \(J1 ∪ J2 ∪·· ·∪ Jp ) =E1 ∪·· ·∪E j−1∪E ′
j ∪E ′

k ∪Ek+1 ∪·· ·∪Es .

• if min(Jp+1) does not belong to E1∪·· ·∪Es or max(Jp+1) does not belong to E1∪·· ·∪Es ,
the proof is similar and even simpler.

�

We will use Lemma 4.5 under the form of the following corollary.

Corollary 4.6. Let I , J1, . . . , Jp be intervals of R such that |I | >
∑p

j=1 |Jp |. Then I \(J1∪ J2∪·· ·∪ Jp )

contains an interval of length at least 1
p+1

(

|I |−
∑p

j=1 |Jp |
)

.

We are now ready for the

Proof of Theorem 4.4. Let q > 1 be such that, for any j ≥ 1,
λ j+1

λ j
≥ q . Let us observe that if

(µn) is an increasing sequence of positive real numbers such that {λn ; n ≥ 1} is contained in

{µn ; n ≥ 1}, then
⋂

a∈I HC (Tλn a) ⊂
⋂

a∈I HC (Tµn a). Then, adding some terms to the sequence
(λn) if necessary, we may always assume that, for any j ≥ 1,

q ≤
λ j+1

λ j
≤ q2.

We argue by contradiction and we assume that
⋂

a∈I HC (Tλn a ) 6=∅. To simplify the notations,

we shall assume that I ⊂ R. Let m ≥ 1 be such that qm ≥ 2(m +1) and let δ, A > 0 and N ∈N be

such that 





δ

(

1+
1

q
+·· ·+

1

qm−1

)

<
1

8

A−4δ

q2(m−1)
> 1

1

λN
≤ |I |.

By Lemma 4.2, there exist M ≥ N and a finite sequence (yn,k )N≤n≤M , 1≤k≤qn
such that (A) and

(B) are satisfied. For n > M , we set qn = 0. Let n ≥ N be fixed. We set un = 0 if qn = 0. Otherwise,

we construct intervals Jn,k and J ′
n,k as follows. We set k1 = 1 and

Jn,1 =
(

yn,k1 −
2δ

λn
, yn,k1 +

2δ

λn

)

, J ′n,1 =
(

yn,k1 −
δ

λn
, yn,k1 +

δ

λn

)

.

Let k2 be the first integer k > k1 such that yn,k ∉ J ′n,1. Then by (A) |λn(yn,k2 − yn,k1 )| > A. We

then set Jn,2 =
(

yn,k2 −
2δ
λn

, yn,k2 +
2δ
λn

)

and J ′n,2 =
(

yn,k2 −
δ
λn

, yn,k2 +
δ
λn

)

. We continue this process

a finite number of times (until this is impossible). At step s, we require that ks is the smallest
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integer k > ks−1 such that yn,k ∉ J ′
n, j

, 1 ≤ j ≤ s −1. We denote by un the numbers of intervals
constructed in this way.

For any n ≥ N , we have thus constructed a finite number of intervals (Jn, j )1≤ j≤un
of length

4δ/λn such that

dist(Jn, j , Jn,k ) >
A−4δ

λn
provided j 6= k

qn⋃

k=1

(

yn,k −
δ

λn
, yn,k +

δ

λn

)

⊂ Jn,1 ∪·· ·∪ Jn,un
.(4)

We finally set IN = I and, for j ≥ 0, IN+ j+1 = IN+ j \
⋃uN+ j

k=1 JN+ j ,k . By (B) and (4), IM+1 is empty.

But we will contradict this fact by showing by induction on j ≥ 1 that IN+m j contains an interval

of length at least 1
λN+m j

. This property is true for m = 0 and assume that it is true at rank j . Let

J ⊂ IN+m j be an interval of length 1
λN+m j

. We claim that, for any n in {N+m j , . . . , N+m( j+1)−1},

at most one interval Jn,k can intersect J . Indeed, for k 6= ℓ,

dist(Jn,k , Jn,ℓ) >
A−4δ

λn
=

A−4δ

λN+m j
×
λN+m j

λn
≥

A−4δ

λN+m j
×

1

q2(m−1)
> |J |.

For n ∈ {N +m j , . . . , N +m( j +1)−1}, let Kn =∅ if no interval Jn,k intersect J and let Kn = Jn,k

if Jn,k is the unique interval Jn,ℓ intersecting J . Then

IN+m( j+1) ⊃ J\(KN+m j ∪·· ·∪KN+m( j+1)−1).

We apply Corollary 4.6: IN+m( j+1) contains an interval of length greater than

1

m +1

(

|J |− |KN+m j |− · · ·− |Kn+m( j+1)−1|
)

≥
1

m +1

(
1

λN+m j
−

4δ

λN+m j
−·· ·−

4δ

λN+m( j+1)−1

)

≥
1

(m +1)λN+m j

(

1−4δ

(

1+
1

q
+·· ·+

1

qm−1

))

≥
1

2(m +1)λN+m j

≥
1

λN+m( j+1)
.

This concludes the proof of Theorem 4.4. �

Remark 4.7. Theorem 4.4 remains true if we replace the condition liminfλn+1/λn > 1 by the
following one: there exists p ≥ 1 such that liminfλn+p /λn > 1.

Since the uniform mixing property implies the local separation property, we get a kind of du-

ality for an operator group with the uniform mixing property. If the sequence (λn) does not

increase too quickly, then
⋂

a∈Rd \{0} HC (Tλn a) is nonempty. If the sequence (λn) does increase
very quickly, then even for any nontrivial compact interval I in R

d \{0},
⋂

a∈I HC (Tλn a ) =∅.

When the compact interval I is “radial” (namely, when it is contained in a line passing through

0), then we can dispense with the local separation property in the statement of Theorem 4.4.

Corollary 4.8. Let I be a nontrivial compact interval in R
d \{0} which is contained in a line pass-

ing through 0 and let (Ta )a∈Rd be any strongly continuous operator group on X . Let also (λn)

be an increasing sequence of positive real numbers such that liminfn λn+1/λn > 1. Then the set
⋂

a∈I HC (Tλn a ) is empty.
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Of course, this corollary immediately implies Theorem 1.2.

Proof. Let b ∈R
d \{0} and κ> 1 be such that I = [b,κb]. Then consider the group (St )t∈R defined

by St = Tκb . Then
⋂

µ∈[1,κ] HC (Sλnµ) = ⋂

a∈I HC (Tλn a ). Now, a hypercyclic group defined on

R has automatically the local separation property. Indeed, pick f ∈ X such that {St f ; t ∈ R}

is dense in X . Then, for any t ∈ [δ, A] ∪ [−A,−δ], St f 6= f ; otherwise {St f ; t ∈ R} would be
compact. It is then easy to find by a compactness argument a neighbourhood U of f such that

StU ∩U =∅ for any t ∈R with δ≤ |t | ≤ A. �

Question 4.9. Does Theorem 4.4 remains true if we do not assume that (Ta)a∈Rd is locally sepa-

rating?

Question 4.10. Let K be a compact subset of (0,+∞) and let (λn) = (qn), q > 1. Assume that
⋂

a∈K HC (Tλn a) is nonempty. Can we link q and the Hausdorff dimension of K ?

5. COMMON FREQUENT HYPERCYCLICITY

5.1. A covering of the unit sphere with control. In this section, we study the existence of com-
mon frequently hypercyclic vectors for operator groups, proving in particular Theorem 1.3. Our

first main argument is a way to divide sequences of integers like in Corollary 2.7, but now with

a control on the growth of the function φ (in order to obtain frequent hypercyclicity). We need

to introduce a definition.

Definition 5.1. We say that an increasing sequence (λn ) has property (FHCSG) if

• for any n ≥ 1, λn+1 −λn ≥ 1;

• for any C > 0, there exists p ∈N such that, for any N ≥ 1,

N+p∑

n=N+1

1

λn
≥

C

λN
.

The main difference with property (SG) is that the number of terms of the sum appearing in the

last displayed inequality does not depend on N .
When a sequence satisfies property (FHCSG), we have the following improved version of Corol-

lary 2.7.

Lemma 5.2. Let (λn) be a sequence having property (FHCSG). Then for all d ≥ 1 and all A > 0,

there exists Q ∈N such that, for any N ∈N, we can find s1 ∈N, subsets Er ofNr−1 for r = 2, . . . ,d+1,

maps sr : Er →N for r = 2, . . . ,d and a one-to-one map φ : Ed+1 →N such that

• for any r = 2, . . . ,d +1,

Er =
{

(k1, . . . ,kr−1); k1 < s1, k2 < s2(k1), . . . ,kr−1 ≤ sr−1(k1, . . . ,kr−2)
}

.

• for any r = 1, . . . ,d, for any (k1, . . . ,kr−1) ∈ Er ,

sr (k1,...,kr−1)∑

j=1

1

λφ(k1,...,kr−1, j ,0,...,0)
≥

A

λφ(k1,...,kr−1,0,...,0)
.

• For any (k1, . . . ,kd ), (l1, . . . , ld ) ∈ Ed+1 with (k1, . . . ,kd ) 6= (l1, . . . , ld ), then

|φ(k1, . . . ,kd )−φ(l1, . . . , ld )| ≥ A

N ≤φ(k1, . . . ,kd ) ≤ N +Q −1.
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Proof. We first observe that there exists ρ > 1 such that, for any n ∈ N, λn+1 ≤ ρλn . Indeed,
there exists p ∈N such that, for any N ∈N,

N+p∑

n=N+1

1

λn
≥

1

λN
.

This yields p

λN+1
≥ 1

λN
. Let now d ≥ 1 and A > 0. Let κ ∈ N with κ > A and let B := B (d , A) be

given by Lemma 2.6. We apply property (FHCSG) with C > 0 such that

C

κ

(

1+·· ·+
1

ρκ−1

)

≥ B (d , A).

This gives some p ∈N. Let N ∈N and define (µn) by setting µn = λN+nκ. Let s > 0 be such that

sκ≥ p . Then for any r ≥ 0,

r+s∑

n=r+1

1

µn
≥

1

κ

(

1+·· ·+
1

ρκ−1

) r+s∑

n=r+1

(
1

λN+nκ
+

1

λN+nκ−1
+·· ·+

1

λN+nκ−(κ−1)

)

≥
1

κ

(

1+·· ·+
1

ρκ−1

) p∑

u=1

1

λN+rκ+u

≥
1

κ

(

1+·· ·+
1

ρκ−1

)

×
C

λN+rκ

≥
B (d , A)

µr
.

Hence, we may apply Lemma 2.6 to the sequence (µn) and to s. We get sr , Er and φ. We finally
set ψ(k1, . . . ,kd ) = N +κφ(k1, . . . ,kd ). It remains to observe that N ≤ψ(k1, . . . ,kd ) ≤ N +κs to get

that the conclusions of Lemma 5.2 are satisfied, with ψ instead of φ and Q = κs +1. �

We deduce from this lemma a covering lemma for the unit sphere of Rd with control of the size

of the covering.

Lemma 5.3. Let (λn) be an increasing sequence of positive real numbers satisfying property

(FHCSG). Then, for any d ≥ 1, for any δ > 0, for any B > 0, there exists q > 0 such that, for

any N ∈N, there exists a finite number of elements (xn,k )n=N ,...,N+q−1 of Sd−1 such that

(A) Sd−1 ⊂⋃N+q−1
n=N

⋃

k B
(

xn,k , δ
λn

)

;

(B) If (n,k) 6= (m, j ), then ‖λn xn,k −λm xm, j‖≥ B.

The main difference with the coverings used when we applied Theorem 2.2 is that now we use

at most q values of the sequence (λn ), whereas this size was not controlled before.

Proof. We first observe that Sd−1 can be covered by a finite union of sets K1, . . . ,Ku such that,

for each j = 1, . . . ,u, there exists a surjective map γ j : [0,1]d−1 → K j which is bilipschitz: ∃c > 0
such that, for any y, z ∈ [0,1]d−1,

c−1‖y − z‖≤ ‖γ j (y)−γ j (z)‖ ≤ c‖y − z‖.

Of course, c may be chosen to be independent of j . We apply Lemma 5.2 to d −1 and to A =
max

(
c2B
δ

,B
)

to get some Q ≥ 0. Let N ∈N and let us first show how to cover K1. The sets Er , the

maps sr ,φ are defined by Lemma 5.2 and let n ∈ {N , . . . , N +Q −1}. Then either n is not equal
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to some φ(k1, . . . ,kd−1) and we do nothing or n = φ(k1, . . . ,kd−1) for a unique (k1, . . . ,kd−1). We
then define the set {yn,k } as

[0,1]d−1 ∩
{(

α1cB

λφ(0,...,0)
+

δ/c

λφ(1,0,...,0)
+·· ·+

δ/c

λφ(k1,0,...,0)
,

α2cB

λφ(k1,0,...,0)
+

δ/c

λφ(k1,1,0,...,0)
+·· ·+

δ/c

λφ(k1,k2,...,0)
,

...
αd−1cB

λφ(k1,...,kd−2,0)
+

δ/c

λφ(k1,...,kd−2,1)
+·· ·+

δ/c

λφ(k1,...,kd−2,kd−1)

)

; α1, . . . ,αd−1 ≥ 0

}

.

We set, for any n = N , . . . , N +Q −1 and any k , xn,k = γ1(yn,k ) and let x ∈ K1, x = γ1(y). Arguing

exactly as in the proof of Theorem 2.8 and since A ≥ c2B/δ, we find some (n,k) such that

‖y − yn,k‖≤
δ

cλn

which implies

‖x −xn,k‖ ≤
δ

λn
.

Moreover, consider xn,k and xm, j with (n,k) 6= (m,ℓ). Then either n 6=m and by construction of

φ,

‖λn xn,k −λm xm,ℓ‖≥ |λn −λm | ≥ |n −m| ≥ A ≥ B.(5)

Or n = m and in that case, as in the proof of Theorem 2.8, ‖λn yn,k −λn yn,ℓ‖ ≥ cB which im-
mediately yields ‖λn xn,k −λn xn,ℓ‖ ≥ B. Thus, we have produced a good covering of K1. We

produce a similar covering of K2 but starting from N +Q+κ and thus stopping at N +2Q−1+κ

where κ ∈ N is such that κ ≥ B . More generally, we do the same for each K j , j = 1, . . . ,u,
starting at N + ( j − 1)(Q +κ) and stopping at N + ( j − 1)(Q +κ)+Q − 1. We finally get a net

(xn,k )N≤n≤N+(u−1)(Q+κ)+Q−1 of Sd−1 satisfying (A) with q = (u −1)(Q +κ)+Q −1. Moreover, (B)

is also satisfied since, if xn,k belongs to the covering of K j and xm,ℓ belongs to the covering of

Kℓ for ℓ 6= k , then |n −m| ≥ κ so that ‖λn xn,k −λm xm,ℓ‖ ≥ B. �

We now combine the previous covering argument with the production of sets with positive
lower density.

Lemma 5.4. Let (λn) be an increasing sequence of positive real numbers satisfying property

(FHCSG). Let (Bp ) and (δp ) be two sequences of positive real numbers. Then there exist a se-

quence (qp ) of positive integers, a sequence (Np ) of subsets of N such that

(1) for any p ≥ 1, for any N ∈ Np , there exists a finite number (xn,k )N≤n≤N+qp −1 of elements

of Sd−1 such that

• Sd−1 ⊂
⋃N+qp−1

n=N

⋃

k B
(

xn,k ,
δp

λn

)

.

• if (n,k) 6= (m,ℓ), N ≤n,m ≤ N +qp −1, ‖λn xn,k −λm xm,ℓ‖≥ Bp .

(2) Each set Np has positive lower density.

(3) For any p,r ≥ 1 and any (N , M )∈ Np ×Nr with N 6= M,

|N −M | ≥ (Bp +Br +qp +qr ).

(4) For any p ≥ 1, min(Np ) ≥Bp .
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Proof. For a fixed value of p (and thus of Bp and δp ), let qp > 0 be given by Lemma 5.3. We
then apply [6, Lemma 6.19] to the sequence (Np ) defined by Np = Bp + qp . This provides a

sequence (Np ) of pairwise disjoint subsets of N such that each Np has positive upper density,

min(Np ) ≥ Np and |N −M | ≥ Np +Nr whenever N 6= M and (N , M )∈ Np ×Nr . Finally, condition

(1) follows by applying Lemma 5.3 for any N ∈ Np . �

5.2. The uniform frequent hypercyclicity criterion. We now give a criterion for an operator
group to have a common frequently hypercyclic vector. It is not very surprizing that this crite-

rion is a strenghtened version of the frequent hypercyclicity criterion.

Definition 5.5. Let (Ta)a∈Rd be an operator group on X and let ‖·‖ be an F -norm on X . We say
that (Ta) satisfies the uniform frequent hypercyclicity criterion if there exists D ⊂ X dense such

that, for any f ∈ D,

(1)
∑

Tai
f converges for any sequence (ai ) ⊂R

d with ‖ai −a j‖≥ 1 for any i 6= j .

(2) sup
∥
∥
∑

Tai
f
∥
∥ tends to zero as C goes to infinity, where the supremum is taken over the

sequences (ai ) ⊂R
d such that ‖ai −a j‖ ≥ 1 for any i 6= j and ‖ai‖ ≥C for any i .

We need a very last lemma on sets with positive lower density.

Lemma 5.6. Let E ⊂N with positive lower density and let q ∈N. Let F ⊂N be such that, for any

n ∈ E, [n,n +q)∩F is nonempty. Then F has positive lower density.

Proof. Write E as an increasing sequence (nk ). For all k ≥ 1, there exists at least one element of
F in [nkq ,n(k+1)q ). Hence

dens(F ) ≥ dens
(

(nkq )
)

≥
1

q
dens(E ) > 0.

�

Theorem 5.7. Let (Ta )a∈Rd be a strongly continuous operator group on X satisfying the uniform

frequent hypercyclicity criterion. Let (λn) be an increasing sequence of positive integers satisfying

property (FHCSG). Then
⋂

a∈Sd−1 F HC (Tλn a) is nonempty.

Proof. Let ( fp ) ⊂ D be a dense sequence in X . For any p ≥ 1, let δp > 0 be such that ‖Ta fp− fp‖<
2−p provided ‖a‖< δp . We then consider a sequence (Bp )p≥1 where Bp ≥ 1 is such that, for any
sequence (ai ) ⊂ R

d with ‖ai‖ ≥ Bp −1 and ‖ai −a j‖ ≥ 1 whenever i 6= j , then
∥
∥
∑

i Tai
fk

∥
∥ < 2−p

for any k ≤ p . We then apply Lemma 5.3 to these sequences (Bp ) and (δp ). For all p ≥ 1, we

define the set {ai (p)} as the set of all theλnxn,k for N describing Np and N ≤ n ≤ N+qp−1. Then

we may observe that, for any i ≥ 1, ‖ai (p)‖ ≥ |λn | ≥ Bp and for i 6= j , ‖ai (p)−a j (p)‖ ≥ 1. This
comes trivially from the lemma if ai (p)=λn xn,k and a j (p) =λm xm,ℓ with N ≤ n,m ≤ N +qp−1

and N ∈ Np (observe that there exists at most one N in Np such that N ≤ n ≤ N + qp − 1).

Otherwise,

‖ai (p)−a j (p)‖≥ |λn −λm ≥ |n −m| ≥ inf{|N −M |; M , N ∈ Np , M 6= N }−qp ≥ Bp ≥ 1.

The same proof shows that, if p 6= r , then for any i , j ,

‖ai (p)−a j (r )‖≥ Bp +Br .
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By definition of Bp , we know that for each p ≥ 1, the series
∑

i≥1 T−ai (p) fp converges and that
∥
∥
∑

i≥1 T−ai (p) fp

∥
∥≤ 2−p . We finally set

f =
∑

p≥1

∑

i≥1
T−ai (p) fp

and we claim that f ∈
⋂

a∈Sd−1 F HC (Tλn a). Indeed, let a ∈ Sd−1, g ∈ X and let ε > 0. There

exists p ≥ 1 such that ‖ fp − g‖ < 2−p and 2−p (p +3) < ε. Moreover, for any N ∈ Np , there exists
n ∈ {N , . . . , N +qp−1} such that ‖λn a−λn xn,k‖ <δp . Let i ≥ 1 be such that ai (p) =λn xn,k . Then

Tλn a f − g =
∑

r<p

∑

j

Tλn a−a j (r ) fr +
∑

j 6=i

Tλn a−a j (p) fp +
(

Tλn a−ai (p) fp − fp

)

+
(

fp − g
)

+
∑

r>p

∑

j

Tλn a−a j (r ) fr .

Let us set, for any r, j , b j (r ) =λn a −a j (r ). Then ‖b j (r )−bk (r )‖ ≥ 1 for any r ≥ 1 and any k 6= j .

Moreover, if r 6= p , then

‖b j (r )‖ ≥ ‖ai (p)−a j (r )‖−‖ai (p)−λn a‖≥ Bmax(r,p) −1

and this inequality is also true for r = p and j 6= i . By definition of (Br ) and δp we then get
∥
∥Tλn a f − g

∥
∥ ≤ (p −1)2−p +2−p +2−p +2−p +

∑

r>p

2−r ≤ (p +3)2−p < ε.

Lemma 5.6 then achieves the proof that f is a frequently hypercyclic vector for Ta . �

Wehre (λn) is the whole sequence of integers, we can combine this with an algebraic result of

[8] to obtain:

Theorem 5.8. Let (Ta )a∈Rd be a strongly continuous operator group satisfying the uniform fre-

quent hypercyclicity criterion. Then
⋂

a∈Rd \{0} F HC (Ta) is nonempty.

We now give examples where the previous theorems may be applied.

Corollary 5.9. Let (Ta )a∈Rd be an operator group acting on X and let ‖ · ‖ be an F -norm on X .

Assume that there exist a dense set D ⊂ X and p > d such that, for any f ∈ D, there exists A > 0

such that

‖Ta f ‖≤
A

‖a‖p

for any a ∈R
d with ‖a‖≥ 1. Then

⋂

a∈Rd \{0} F HC (Ta) is nonempty.

Proof. The proof of Corollary 3.3 shows that, under the above assumptions, (Ta)a∈Rd satisfies
the uniform frequent hypercyclicity criterion. �

Corollary 5.10. Let w : Rd → R be a positive bounded and continuous function such that x 7→
w(x+a)

w(x) is bounded for each a ∈ R
d . For a ∈ R

d , let τa be the translation operator defined by

τa f (x) = f (x + a) defined on X = Lp (Rd , w (x)d x), p ≥ 1. Assume moreover that
∫

Rd w (x)d x <
+∞. Then

⋂

a∈Rd \{0} F HC (τa) is nonempty.

Proof. Let D ⊂ X be the dense set of compactly supported continuous functions. Let f ∈ D

and let A > 0 be such that the support of f is contained in B (0, A). Let (ai ) ⊂ R
d be such that

‖ai − a j‖ ≥ 1 for any i 6= j . Then it is easy to check that there exists κ > 0 which just depends

on the dimension d and of A (and not of the particular choice of the sequence (ai )) such that,



COMMON HYPERCYCLIC VECTORS FOR HIGH DIMENSIONAL FAMILIES OF OPERATORS 23

for any x ∈R
d , ‖x −ai‖≤ A for at most κ different ai . This implies that, for all x ∈R

d , the series
∑

i f (x + ai ) is convergent (the sum is finite) and that
∣
∣
∑

i f (x +ai )
∣
∣ ≤ κ‖ f ‖∞. Therefore, if we

assume moreover that infi ‖ai‖≥C , then
∥
∥
∥
∥
∥

∑

i

Tai
f

∥
∥
∥
∥
∥

p

≤ κp‖ f ‖p
∞

∫

‖x‖≥C−A
w (x)d x

and this goes to zero as C goes to +∞. Hence, the sequence (τa )a∈Rd satisfies the uniform

frequent hypercyclicity criterion. �

Corollary 5.11. The composition operators on H
2(Hd ) induced by a Heisenberg translation ad-

mit a common frequently hypercyclic vector.

Proof. As for Theorem 3.7, we may apply directly Corollary 5.9. �

5.3. Uniformly Runge transitive operators groups. We now turn to the case of the translation

group on H (Cd ). The translation operators τa , a ∈ C
∗, acting on H (C), have very special dy-

namical properties due to the strongness of Runge theorem. An abstract framework to mimic

what is useful in Runge theorem has been done in linear dynamics for at least two problems:

• the problem of common hypercyclicity of the whole operator group, like in [17] or in

this paper. The natural generalization here seems the Runge property.

• the problem of frequent hypercyclicity; this leads the authors of [7] to introduce the
notion of a Runge transitive operator.

Since we want a common frequently hypercyclic vector, the right concept seems to be a mixing

of these two properties.

Definition 5.12. Let (Ta )a∈Rd be an operator group acting on a Fréchet space X . We say that

(Ta)a∈Rd is uniformly Runge transitive if there is an increasing sequence (‖ · ‖p ) of seminorms

defining the topology of X and positive integers Ap,s , Cp for p, s ∈N such that

(i) for all p, s ∈N, f ∈ X and a ∈R
d with ‖a‖≤ s,

‖Ta f ‖p ≤ Ap,s‖ f ‖s+Cp
.

(ii) for all p, s ∈ N with s > Cp , for all g ,h ∈ X , ε > 0 and for all finite sets (zi ) ⊂ R
d with

‖zi − z j‖≥Cp and ‖zi‖ ≥ s whenever i 6= j , there exists f ∈ X such that

‖ f − g‖s−Cp
< ε and ‖Tzi

f −h‖p < ε for all i .

Theorem 5.13. Let (λn) be an increasing sequence of positive real numbers satisfying property

(FHCSG) and let (Ta)a∈Rd be a strongly continuous operator group which is uniformly Runge

transitive. Then
⋂

a∈Sd−1 F HC (Tλn a ) is nonempty. In particular,
⋂

a∈Rd \{0} F HC (Ta) 6=∅.

Proof. We first fix a dense sequence (hp ) in X and a sequence (εp ) of positive real numbers

going to 0. Let (‖ · ‖p ) be the sequence of seminorms defining the topology of X coming from
the definition of the uniform Runge transitivity. We then consider a decreasing sequence (δp )

of positive real numbers and a sequence (Mp ) of integers such that, for any p ≥ 1,

• ‖Tahp −hp‖p < εp provided ‖a‖< δp ;

• ‖Ta f ‖p < εp provided ‖ f ‖Mp
< δp and ‖a‖< δp .
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Since (Ta )a∈Rd is uniformly Runge transitive, there exist sequences (Ap,s ) and (Cp ) such that (be
careful! We have slightly changed the notations of Definition 5.12 to adapt them to our present

context. More precisely, ‖ ·‖p is replaced by ‖ ·‖Mp
and s is replaces by λs .)

(i) for all p, s ∈N, f ∈ X and a ∈R
d with ‖a‖≤λs ,

‖Ta f ‖Mp
≤ Ap,s‖ f ‖λs+Cp

.

(ii) for all p, s ∈N with λs >Cp , for all g ,h ∈ X , all ε> 0, all finite sequences (zi ) ⊂ R
d with

‖zi − z j‖≥Cp and ‖zi‖ ≥λs whenever i 6= j , there exists f ∈ X with

‖ f − g‖λs−Cp
< ε and ‖Tzi

f −h‖Mp
< ε for all i .

We apply Lemma 5.4 with Bp =Cp +p and δp fixed above. We get the sequences (Np ) and (qp )

and we write
⋃

p≥1 Np as an increasing sequence (n j ). For any j ≥ 1, there is a unique p j such

that n j ∈ Np j
. Moreover, λn j

≥ n j ≥ Bp j
>Cp j

and n j ≥ Bp j
≥ p j . We then define by induction

on j a sequence ( f j )⊂ X by setting f0 = 0 and f j is such that

‖ f j − f j−1‖λn j
−Cp j

≤
ηn j

1+max(Apt ,n ; t ≤ j , n ≤ nt +qpt
)

(6)

‖Tλn xn,k f j −hp j
‖Mp j

< ηn j
for all n in {n j , . . . ,n j +qp j

−1}

and all possible k

where (η j ) is a sequence of positive real numbers such that
∑

j≥k η j ≤ δk for any k . It is possible

to find such an f j because ‖λn xn,k −λm xm,ℓ‖ ≥Cp j
if (n,k) 6= (m,ℓ) and ‖λn xn,k‖ ≥ λn j

for all
n = n j , . . . ,n j +q j −1 and all k . The choice of Bp ensures that (λn j

−Cp j
) tends to +∞ as j tends

to +∞. Therefore, (6) implies that ( f j ) converges to some f ∈ X . Let us now fix j ≥ 1 and ℓ≥ j .

Then, for all n ∈ {n j , . . . ,n j +qp j
−1} and all possible k ,

‖Tλn xn,k ( fℓ+1 − fℓ)‖Mp j
≤ Ap j ,n j +qp j

‖ fℓ+1 − fℓ‖λn j +qp j
+Cp j

.

Now, λnℓ+1 −Cpℓ+1 ≥λn j
+qp j

+Cp j
since λnℓ+1 −λn j

≥ nℓ+1 −n j ≥Cpℓ+1 +Cp j
+qp j

. Hence,
∥
∥Tλn xn,k ( fℓ+1 − fℓ)

∥
∥

Mp j

≤ Ap j ,n j+qp j
‖ fℓ+1 − fℓ‖λnℓ+1

−Cpℓ+1

≤ ηnℓ+1 by (6).

Summing these inequalities, we have then shown that
∥
∥Tλn xn,k f −hp j

∥
∥

Mp j

≤
∑

l≥ j

ηnl
≤ δn j

≤ δp j
.(7)

Let us now show that f ∈⋂

a∈Sd−1 F HC (Tλn a ). Indeed, let a ∈ Sd−1, let p ∈N and N ∈ Np . There

exist n ∈ {N , . . . , N +qp −1} and k such that ‖λn a −λn xn,k‖< δp . Then
∥
∥Tλn a f −hp

∥
∥

p
≤

∥
∥Tλn a−λn xn,k

(

Tλn xn,k f −hp

)∥
∥

p
+

∥
∥Tλn a−λn xn,k hp −hp

∥
∥

p

≤ 2εp

where the last inequality comes from (7) and from the definitions of δp and Mp . We now con-

clude exactly as in the proof of Theorem 5.7 that f ∈
⋂

a∈Sd−1 F HC (Tλn a ). �

Example 5.14. The group of translations (τa )a∈C acting on H (C) is uniformly Runge transitive.
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Proof. Let δ ∈ (0,1) and set ‖ f ‖n = sup|z|≤n−δ | f (z)|. We have, for all p, s ∈ N, f ∈ X and a ∈ C

with |a| ≤ s,

‖Ta f ‖p = sup
|z−a|≤p−δ

| f (z)| ≤ sup
|z|≤s+p−δ

| f (z)| = ‖ f ‖s+p

and, if (zi ) is a finite sequence with ‖zi−z j‖≥ p and ‖zi‖ ≥ s with s > p , the disks D(zi , p−δ) are

disjoint and disjoint from the disk D(0, s −p −δ). Hence, Runge’s theorem immediately yields
the existence of f ∈ X with

sup
|z|<s−p−δ

| f (z)− g (z)| < ε and sup
|z−zi |<p−δ

| f (z)−h(z − zi )| < ε.

�

In the particular case of the translation group on H (C), the proof of Theorem 5.13 could be

slightly simplified by using Arakelian’s theorem of approximation of holomorphic functions on

closed sets. However, our general theorem may be applied in other contexts, like the translation

group on C (Rd ) or on H (Cd ), if we restrict ourselves to translations by an element of Rd .

6. MULTIPLES OF A SEMIGROUP

In this section, we show that we can get a common hypercyclic vector if we consider the multi-

ples of an operator group having the Runge property. As usual, we first need a covering lemma.

Lemma 6.1. Let d ≥ 1, δ> 0, B > 0 and I be a compact interval of R. Then there exist an integer

r ≥ 0, elements (y j ) j=1,...,r of Sd−1, elements (α j ) j=1,...,r of I and integers (n j ) j=1,...,r such that

• for all α ∈ I and all y ∈ Sd−1, there exists j ∈ {1, . . . ,r } with

|α−α j | <
δ

n j
and ‖y − y j‖≤

δ

n j
.

• for all j 6= l in {1, . . . ,r }, ‖n j y j −nl yl‖ ≥B.
• for all j ∈ {1, . . . ,r }, n j ≥B.

Proof. We combine the Costakis-Sambarino method and the methods of the present paper to

obtain the right covering. We begin by applying Lemma 5.3 to the whole sequence of integers;

we get some q ∈ N. Without loss of generality, we may assume that B ∈ N. We then define a
sequence (βm)m≥1 by setting β1 = min(I ) and βm+1 = βm + δ

(m+1)(B+q) . Let s ≥ 1 be the biggest

integer m such that βm ≤ max(I ). For each m = 1, . . . , s, we then apply Lemma 5.3 with N =
Nm := m(B +q). We get elements (xn,k (m)) of Sd−1 for Nm ≤ n ≤ Nm +q −1, k ≤ω(n). We then

rename the xn,k (m) by defining
{

y j ; j = 1, . . . ,r
}

:=
{

xn,k (m); 1 ≤m ≤ s, Nm ≤ n ≤ Nm +q −1, k ≤ω(n)
}

.

For any j in {1, . . . ,r }, there exists a unique (m,n,k) such that y j = xn,k (m). We then set n j = n

and α j =βm .

We now verify that the conclusions of Lemma 6.1 are satisfied. Pick (α, y) ∈ I×Sd−1. There exists

m ∈ {1, . . . , s} such that |α−βm | ≤ δ
(m+1)(B+q) . This m being fixed, there exist n ∈ {Nm , . . . , Nm +

q −1} and k ≤ ω(n) such that ‖y − xn,k (m)‖ ≤ δ
n . Let j ∈ {1, . . . ,r } be such that y j = xn,k (m) so

that n j = n and α j =βm . Since n ≤ (m+1)(B +q), the first part of the conclusions of the lemma

is verified.
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Suppose now that j 6= l are living in {1, . . . ,r }. If y j = xk ,n(m) and yl = xn′,k ′(m) for the same
m, then the inequality ‖n j y j −nl yk‖ ≥ B follows directly from the corresponding inequality of

Lemma 5.3. Otherwise, we simply write

‖n j y j −nl yl‖≥ |n j −nl | ≥B.

Finally, for any j in {1, . . . ,r }, n j ≥ B from the very definition of (Nm). �

We need a second lemma related to the continuity of (λ, a) 7→ λTa . It is [17, Lemma 3.5] where

it is formulated for d = 2, but the proof is unchanged for greater values of d . We now assume

that X is a Fréchet space.

Lemma 6.2. Let (Ta )a∈Rd be a strongly operator group on X , let g ∈ X and let ‖·‖ be a continuous

seminorm on X . Then there exist a continous seminorm |||·||| on X and δ > 0 such that ‖ · ‖ ≤
|||·||| and, for any α ∈ R, x ∈ Sd−1, n ∈ N and f ∈ X satisfying |||g − eαnTnx f ||| < 1, we have ‖g −
eβnTny f ‖< 1 whenever β ∈R and y ∈ Sd−1 are such that |α−β| < δ

n
and ‖y −x‖< δ

n
.

We can now give our multidimensional analogue of Shkarin’s result.

Theorem 6.3. Let (Ta)a∈Rd be a strongly operator group on X with the Runge property. Then
⋂

λ∈C∗, a∈Rd \{0} HC (λTa) is a residual subset of X .

Proof. First of all, as we have already done previously, we apply the algebraic results of Leon

and Müller and of Conejero, Müller and Peris. They give that HC (λTa) = HC (µTb) provided
|λ| = |µ| and a = θb for θ > 0. Hence, it is sufficient to show that, for any compact set I ⊂R, the

family of operators {eαTa ; α ∈ I , a ∈ Sd−1} shares a common hypercyclic vector. For this, we

argue as in the proof of Theorem 2.2 by picking two nonempty open subsets U and V of X and
by showing that

U ∩
{

f ∈ X ; ∀α ∈ I , ∀a ∈ Sd−1, ∃n ∈N,enαTna f ∈V
}

6=∅.

Let g ,h ∈ X , ‖ · ‖ be a continuous seminorm on X such that { f ∈ X ; ‖ f −h‖ < 1} ⊂U and { f ∈
X ; ‖ f − g‖ < 1} ⊂ V . Let δ > 0 and let |||·||| be a seminorm on X satisfying the conclusions of

Lemma 6.2. Let also C > 0 be given by the Runge property for this last seminorm |||·|||. We apply
Lemma 6.1 with I , δ > 0 and B = C to get finite sequences (α j ), (y j ) and (n j ). By the Runge

property, there exists f ∈ X such that

• ||| f −h||| < 1;
• for any j = 1, . . . ,r , |||en j α j Tn j y j

f − g ||| < 1.

Then f ∈ U . Moreover, for any (α, a) ∈ I × Sd−1, there exists j such that |α−α j | < δ/n j and

‖a − y j‖ < δ/n j . By the choice of δ and |||·|||, this yields ‖en jαTn j a f − g‖ < 1, which concludes
the proof of Theorem 6.3. �

By considering multiples of a semigroup, we cannot go much further; in particular, we cannot
get a common frequently hypercyclic vector for the family

{

λTa ; λ > 0, a ∈ Sd−1
}

. In fact, this

cannot be the case even for an uncountable family of multiples of a single operator, as the

following proposition points out. It should be noticed that it improves [5, Theorem 4.5] where

T was equal to B the backward shift. However, the proof remains almost identical.
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Proposition 6.4. Let T be a continuous operator acting on the F -space X and let Λ be an un-

countable subset of (0,+∞). Then the set of common frequently hypercyclic vectors for the family

(λT )λ∈Λ is empty.

Proof. Let x∗ be a nonzero linear functional on X and assume by contradiction that x is a com-

mon frequently hypercyclic vector for all operators λT , λ ∈Λ, whereΛ is uncountable. Let, for
any λ∈Λ,

Nλ =
{

n ∈N; x∗(λnT n x) ∈ (1/2,3/2)
}

, δλ = dens(Nλ).

For all λ ∈ Λ, δλ > 0. Since Λ is uncountable, this implies that there exist λ 6= µ in Λ such

that Nλ∩Nµ is infinite (see [5] for details). Now, if n belongs to Nλ∩Nµ, then λn(T ∗)n x∗(x) ∈
(1/2,3/2) and µn(T ∗)n x∗(x) ∈ (1/2,3/2). This yields (λ/µ)n ∈ (1/3,3), which is a contradiction

since n may be chosen as large as we want. �

Our argument in this section is really specific to operators groups having the Runge property. In

view of [17, Corollary 1.10] and of the other results of the present paper, the following question

seems natural.

Question 6.5. Let (Ta)a∈Rd be a strongly continuous operator group. Assume that there exist

δ ∈ (0,1) and D ⊂ X a dense subset of X such that, for any f ∈ D, ‖Ta f ‖ ≤C f δ
‖a‖(d−1). Does there

exist a common hypercyclic vector for the family
{

λTa ; δ< |λ| < 1/δ, a ∈R
d \{0}

}

?

7. A NEW LIGHT ON THE ALGEBRAIC METHOD

7.1. Yet another criterion. We now show how the algebraic method can also lead to common

hypercyclic results in high dimension.

Theorem 7.1. Let G be a compact topological group, let (Tn,g )(n,g )∈N×G be a strongly continuous

operator semigroup on X . Then for any g ∈G, HC (T1,g ) = HC (T1,1G
).

Proof. Let u ∈ HC (T1,1G
), let v ∈ X and let g ∈ G . By [4, Theorem 2.2] (which is itself a conse-

quence of results of [16]), there exists a sequence (nk ) of integers such that

(T1,1G
)nk u → v and g nk → 1G .

Then

(T1,g )nk u −v = Tnk ,g nk u −T0,g nk v +T0,g nk v −v

= T0,g nk (Tnk ,1G
u −v)+T0,g nk v −v.

Now, since (Tn,g )(n,g )∈N×G is strongly continuous, the map (h, w )∈G×X 7→ T0,h w is continuous
by the uniform boundedness principle. We easily deduce that (T1,g )nk u tends to v .

Conversely, let g ∈G , u ∈ HC (T1,g ) and v ∈ X . Let (nk ) be a sequence of integers such that

(T1,g )nk u → v and g−nk → 1G .

Then we get that T
nk

1,1G
u tends to v by writing

T
nk

1,1G
u −v = T0,g−nk (Tnk ,g nk u −v)+T0,g−nk v −v.

�
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This theorem may be applied with G = T the unit circle and Tn,ξ = ξT n with T any operator
on X . It gives back the Leon-Müller theorem. However, as we have promised, it also leads to

interesting multidimensional results.

7.2. Hyperbolic automorphisms of the ball. We come back to our discussion on composition

operators on the Hardy space of the Siegel upper half-space Hd . Let U ∈ C
(d−1)×(d−1) be a uni-

tary matrix, let λ> 1 and define

φλ,U (z,w) = (λz,U w).

The maps φλ,U are automorphisms of Hd (now hyperbolic automorphisms) and it has been

shown in [12] that, for any λ > 1 and any U ∈ U(Cd−1) (the set of unitary matrices over Cd−1),
the composition operator Cφλ,U is hypercyclic on H

2(Hd ).

Theorem 7.2. The set
⋂

λ>1, U∈U(Cd−1) HC (Cφλ,U ) is a residual subset of H
2(Hd ).

Proof. The proof is divided into two parts, the multidimensional part and the one-dimensional

part. For the multidimensional part, we fix λ> 1, we set G =U(Cd−1) and we write Tn,U =Cφλn ,U
.

This is clearly a strongly continuous semigroup on H
2(Hd ). Hence we may apply Theorem 7.2

and we know that HC (Cφλ,U ) = HC (Cφλ,I ) for any U ∈U(Cd−1).

It is now sufficient to show that, for any λ> 1, HC (Cφλ,I ) = HC (Cφe,I ). This is also due to a semi-

group argument! Indeed, define, for a > 0, Ta = Cφea ,I
. Then (Ta)a>0 is a strongly continuous

semigroup hence by the Conejero-Müller-Peris theorem, HC (Ta) = HC (T1) for any a > 0. �

The previous result and Theorem 3.7 suggest the following natural question.

Question 7.3. Let A the set of all automorphisms of Hd with +∞ as attractive fixed point. Is
⋂

φ∈A HC (Cφ) nonempty?
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