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Abstract This paper considers adiabatic reduction in a model of stochas-
tic gene expression with bursting transcription considered as a jump Markov
process. In this model, the process of gene expression with auto-regulation
is described by fast/slow dynamics. The production of mRNA is assumed to
follow a compound Poisson process occurring at a rate depending on protein
levels (the phenomena called bursting in molecular biology) and the produc-
tion of protein is a linear function of mRNA numbers. When the dynamics of
mRNA is assumed to be a fast process (due to faster mRNA degradation than
that of protein) we prove that, with appropriate scalings in the burst rate,
jump size or translational rate, the bursting phenomena can be transmitted to
the slow variable. We show that, depending on the scaling, the reduced equa-
tion is either a stochastic differential equation with a jump Poisson process
or a deterministic ordinary differential equation. These results are significant
because adiabatic reduction techniques seem to have not been rigorously jus-
tified for a stochastic differential system containing a jump Markov process.
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We expect that the results can be generalized to adiabatic methods in more
general stochastic hybrid systems.
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1 Introduction

The adiabatic reduction technique is often used to reduce the dimension of a
dynamical system when known, or presumptive, fast and slow variables are
present. Adiabatic reduction results for deterministic systems of ordinary dif-
ferential equations have been available since the work of [7] and [28]. This
technique has been extended to stochastically perturbed systems when the
perturbation is a Gaussian distributed white noise, cf. [2], [9, Section 6.4], [25,
Chapter 4, Section 11.1], [29] and [31]. More recently, separation of time scales
in discrete pure jump Markov processes were performed, using a master equa-
tion formalism [22] or a stochastic equation formalism [12,5]. These papers
show that a fast stochastic process can be averaged in the slow time scale, or
can induce kicks to the slow variable. However, to the best of our knowledge,
this type of approximation has never been extended to the situation in which
the (fast) perturbation is a jump Markov process in a piecewise deterministic
Markov process.

Jump Markov processes are often used in modelling stochastic gene ex-
pressions with explicit bursting in either mRNA or proteins [8,10], and have
been employed as models for genetic networks [33] and in the context of ex-
citable membranes [3,18,21]. Biologically, the ‘bursting’ of mRNA or protein
is simply a process in which there is a production of several molecules within a
very short time. In the biological context of modelling stochastic gene expres-
sion, explicit models of bursting mRNA and/or protein production have been
analyzed recently, either using a discrete [24] or a continuous formalism [8,
14,16] as even more experimental evidence from single-molecule visualization
techniques has revealed the ubiquitous nature of this phenomenon [6,10,17,
19,20,26,32].

Traditional models of gene expression are often composed of at least two
variables (mRNA and protein, and sometimes the promoter state). The use of
a reduced one-dimensional model (protein concentration) has been justified so
far by an argument concerning the stationary distribution [24]. However, it is
clear that the two different models may have the same stationary distribution
but very different dynamic behavior (for an example, see [16]). The adiabatic
reduction technique has been used in many studies (cf. [11,16]) to simplify
the analysis of stochastic gene expression dynamics, but without a rigorous
mathematical justification.
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The present paper gives a theoretical justification of the use of adiabatic
reduction in a model of auto-regulation gene expression with a jump Markov
process in mRNA transcription. We adopt a formalism based on density evo-
lution (Fokker-Planck like) equations. Our results are of importance since they
offer a rigorous justification for the use of adiabatic reduction to jump Markov
processes. The model and mathematical results are presented in Sections 2.
Proof of the results are given in Section 3, with illustrative simulations in
Section 4.

2 Model and results

2.1 Continuous-state bursting model

A single round of expression consists of both mRNA transcription and the
translation of proteins from mRNA. The mRNA transcription occurs in a burst
like fashion depending on the promoter activity. In this study, we assume a
simple feedback between the end product (protein) which binds to its own
promoter to regulate the transcription activity.

Let X and Y denote the concentrations of mRNA and protein respectively.
A simple mathematical model of a single gene expression with feedback regu-
lation and bursting in transcription is given by

dX

dt
= −γ1X + N̊(h, ϕ(Y )), (1)

dY

dt
= −γ2Y + λ2X. (2)

Here γ1 and γ2 are degradation rates for mRNA and proteins respectively, λ2
is the translational rate, and N̊(h, ϕ(Y )) describes the transcriptional burst
that is assumed to be a compound Poisson white noise occurring at a rate ϕ
with a non-negative jump size ∆X distributed with density h.

In the model equations (1)-(2), the stochastic transcriptional burst is char-
acterized by the two functions ϕ and h. We always assume these two functions
satisfy

ϕ ∈ C∞(R+,R+), ϕ and ϕ′ are bounded, i .e. ϕ ≤ ϕ, ϕ′ ≤ ϕ (3)

h ∈ C∞(R+,R+) and

∫

∞

0

xnh(x)dx <∞, ∀n ≥ 1. (4)

For a general density function h, the average burst size is given by

b =

∫

∞

0

xh(x)dx. (5)

Remark 1 Hill functions are often used to model self-regulation in gene ex-
pression, so that ϕ is given by

ϕ(y) = ϕ0
1 +Kyn

A+Byn
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where ϕ0, A,B,K and n are positive parameters (see [16] for more details).

An exponential distribution of the burst jump size is often used in mod-
elling gene expression, in agreement with experimental findings [32], so that
the density function h is given by

h(∆X) =
1

b
e−∆X/b,

where b is the average burst size.

The two functions ϕ and h here satisfy the assumptions (3)-(4).

2.2 Scalings

The equations (1)-(2) are nonlinear, coupled, and analytically not easy to
study. This paper provides an analytical understanding of the adiabatic re-
duction for (1)-(2) when mRNA degradation is a fast process, i.e., γ1 is “large
enough” (γ1 � γ2) but the average protein concentration remains normal.
Rapid mRNA degradation has been observed in E. coli (and other bacteria),
in which mRNA is typically degraded within minutes, whereas most proteins
have a lifetime longer than the cell cycle (≥ 30 minutes for E. coli) [27].

In (1)-(2), when γ1 is large, other parameters have to be adjusted ac-
cordingly to maintain a normal level of protein. When there is no feedback
regulation to the burst rate, the function ϕ is independent of Y (therefore ϕ
is a constant), and thus the average concentrations of mRNA and protein in
a stationary state are

Xeq := lim
t→∞

E[X(t)] =
bϕ

γ1
, (6)

Yeq := lim
t→∞

E[Y (t)] =
λ2
γ2
Xeq =

bϕλ2
γ1γ2

. (7)

From (7), when γ1 is large enough (γ1 � γ2) and Yeq remains at its normal
level, one of the three quantities, b, ϕ, or λ2 must be a large number as well.
This observation holds even when there is a feedback regulation of the burst
rate. Thus, in general, we have three possible scalings (as γ1 → ∞), each of
which is biologically observed:

(S1) Fast promoter activation/deactivation, so that the rate function ϕ is a large
number. In this case, if γ1 → ∞, we assume the ratio ϕ/γ1 is independent
of γ1.

(S2) Fast transcription, so that the average burst size b is a large number. From
(5), this scaling indicates that the density function h changes with the pa-
rameter γ1 in a form h(∆X) = 1

γ1

h0(
∆X
γ1

) with h0(·) independent of γ1.

(S3) Fast translation, so that the translational rate λ2 is a large number. In this
case, if γ1 → ∞, we assume the ratio λ2/γ1 is independent of γ1.
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These scalings are associated with different types of genes that display dif-
ferent types of kinetics (cf. [23,26]), and mathematically lead to different forms
of the reduced dynamics. In this paper we determine the effective reduced
equations for equations (1)-(2) for each of the scaling conditions (S1)-(S3).
Our main results are summarized below.

First, under the assumption (S1) (fast promoter activation/deactivation),
equations (1)-(2) can be approximated by a deterministic ordinary differential
equation

dY

dt
= −γ2Y + λ2ψ(Y ) (8)

where
ψ(Y ) = bϕ(Y )/γ1. (9)

Next, under the scaling relations (S2)(fast transcription) or (S3)(fast trans-
lation), equations (1)-(2) are reduced to a single stochastic differential equation

dY

dt
= −γ2Y + N̊(h̄(∆Y ), ϕ(Y )) (10)

containing a jump Markov process, and the density h̄ for the newly defined
process is given by h through

h̄(∆Y ) =

(

λ2
γ1

)

−1

h

(

(

λ2
γ1

)

−1

∆Y

)

. (11)

In particular, with the scaling (S2), we have

h̄(∆Y ) =
1

λ2
h0

(

∆Y

λ2

)

. (12)

These results can be understood with the following simple arguments.
When γ1 → ∞, applying a standard quasi-equilibrium assumption we have

dX

dt
≈ 0,

which yields

X(t) ≈
1

γ1
N̊(h, ϕ(Y )). (13)

In the case of the scaling (S1), the jumps occur with high frequency and an
average burst size b. Thus, X(t) approaches the statistical average (X(t) ≈

bϕ(Y )/γ1) for a given value Y , which gives (8). Under scalings (S2) or (S3),
substituting (13) into (2) yields

dY

dt
≈ −γ2Y +

λ2
γ1
N̊(h, ϕ(Y ))

≈ −γ2Y + N̊
(

h̄, ϕ(Y )
)

.

Exact statements for the results and their mathematical proofs are given be-
low.
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2.3 Density evolution equations and main results

The main results are based on the density evolution equations, and show that
the evolution equations obtained from equations (1)-(2) and those from (8)
or (10) are consistent with each other when γ1 → +∞ under the appropriate
scaling. The existence of densities for such processes has been studied in [15,
30].

Let u(t, x, y) be the density function of (X(t), Y (t)) at time t obtained
from the solutions of equation (1)-(2). The evolution of the density u(t, x, y)
is governed by (cf. [15])

∂u(t, x, y)

∂t
=

∂

∂x
[γ1xu(t, x, y)]−

∂

∂y
[(λ2x− γ2y)u(t, x, y)]

+

∫ x

0

ϕ(y)u(t, z, y)h(x− z)dz − ϕ(y)u(t, x, y)
(14)

when (t, x, y) ∈ R
+ ×R

+ ×R
+. The corresponding density function of Y (t) is

given by

u0(t, y) =

∫

∞

0

u(t, x, y)dx. (15)

In this paper, we prove that when γ1 → ∞ the density function u0(t, y)
approaches the density v(t, y) for solutions of either the deterministic equa-
tion (8) or the stochastic differential equation (10) depending on the scaling.
Evolution of the density function for equation (8) is given by [13]

∂v(t, y)

∂t
= −

∂

∂y
[−γ2yv(t, y) + λ2ψ(y)v(t, y)], (16)

where

ψ(y) = bϕ(y)/γ1. (17)

Evolution of the density function for equation (10) is given by

∂v(t, y)

∂t
=
∂

∂y
[γ2yv(t, y)] +

∫ y

0

ϕ(z)v(t, z)h̄(y − z)dz − ϕ(y)v(t, y). (18)

Here h̄ is related to h through

h̄(y) =
γ1
λ2
h

(

γ1
λ2
y

)

. (19)

We note that when ϕ and h satisfy (3)-(4), existence of the above densities
has been proved in [15] and [30]. In particular, for a given initial density
function

u(0, x, y) = p(x, y), 0 < x, y < +∞ (20)

that satisfies

p(x, y) ≥ 0,

∫

∞

0

∫

∞

0

p(x, y)dxdy = 1, (21)
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there is a unique solution u(t, x, y) of (14) that satisfies the initial condition
(20) and

u(t, x, y) ≥ 0,

∫

∞

0

∫

∞

0

u(t, x, y)dxdy = 1 (22)

for all t ∈ R
+.

We can rewrite the equations (16) and (18) in the form

∂v(t, y)

∂t
= T v(t, y), (23)

where T is a linear operator defined by the right hand side of (16) or (18).

Definition 1 A smooth function f : R
+ → R

+ is a test function if f(y)
has compact support and f (k)(0) = 0 for any k = 0, 1, 2, · · · . An integrable
function v(t, y) : R+ × R

+ 7→ R
+ is said to be a weak solution of (23) if for

any test function f(y),
∫

∞

0

(

∂v(t, y)

∂y
− T v(t, y)

)

f(y)dy = 0, ∀t > 0. (24)

Remark 2 It is obvious that any classical solution of (23) is also a weak solu-
tion.

The main result of this section, given below, shows that when γ1 is large
enough, the marginal density of Y (t), u0(t, y; γ1), as defined below in (26),
gives an approximation of a weak solution of (16) or (18).

Theorem 1 Let u(0, x, y) = p(x, y) ∈ C∞(R+2
) and assume that p(x, y) sat-

isfies
∫

∞

0

xnp(x, y)dx < +∞, y > 0, n = 0, 1, 2, · · · . (25)

For any γ1 > 0, let u(t, x, y; γ1) be the associated solution of (14), and define

u0(t, y; γ1) =

∫

∞

0

u(t, x, y; γ1)dx. (26)

Similarly,

p0(y) =

∫

∞

0

p(x, y)dx.

(1) Under the scaling (S1), when γ1 → ∞, u0(t, y; γ1) approaches a weak so-
lution of (16) v(t, y) with initial condition v(0, y) = p0(y).

(2) Under the scaling (S2) or (S3), when γ1 → ∞, u0(t, y; γ1) approaches a
weak solution of (18) v(t, y) with initial condition v(0, y) = p0(y).

From Definition 1, Theorem 1 means that for any test function f(y),

lim
γ1→∞

∫

∞

0

(

∂u0(t, y; γ1)

∂t
− T u0(t, y; γ1)

)

f(y)dy = 0, ∀t > 0. (27)

In the next section, we prove (27) for the three scalings respectively.
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3 Proof of the main results

Before proving Theorem 1, we first examine the marginal moments under
different scalings.

3.1 Scaling of the marginal moment

Proposition 1 Let (X(t), Y (t)) be the solutions of (1)-(2), µk(t) = E
[

X(t)k
]

and νk(t) = E
[

Y (t)X(t)k
]

. Suppose µk(0) < ∞ and νk(0) < ∞, then µk(t) <
∞ and νk(t) <∞ for all t. Moreover, for any fixed t > 0:

1. If the scaling (S1) holds, both µk(t) and νk(t) are uniformly bounded above
and below when γ1 is large enough.

2. If the scaling (S2) holds, when γ1 is large enough, for k ≥ 1,

µk(t) ∼ γk−1
1 , νk(t) ∼ γk−1

1 , (28)

and ν0(t) is uniformly bounded above and below.
3. If the scaling (S3) holds, when γ1 is large enough, for k ≥ 1,

µk(t) ∼ γ−1
1 , νk(t) ∼ γ−1

1 , (29)

and ν0(t) is uniformly bounded above and below.

Proof For the two-dimensional stochastic differential equation (1)-(2), the as-
sociated infinitesimal generator A is defined as [4, Theorem 5.5]

Ag(x, y) = −γ1x
∂g

∂x
+ (λ2x− γ2y)

∂g

∂y
(30)

+ ϕ(y)

(

∫

∞

x

h(z − x)g(z, y)dz − g(x, y)

)

for any g ∈ C1(R+×R
+). The operator A is the adjoint of the operator acting

on the right hand side of the evolution equation of the density (14). Moreover,
for any g ∈ C1(R+ × R

+), we have

d

dt
Eg(Xt, Yt) = EA(g(Xt, Yt)), (31)

provided both terms on the right hand side of (30) are finite. The proposition
is proved through calculations of (31).

To obtain estimations for µk, a straightforward calculation from (30) yields

Axk = −γ1kx
k + ϕ(y)

(

∫

∞

x

h(z − x)(z − x+ x)kdz − xk

)

= −γ1kx
k + ϕ(y)

k−1
∑

i=0

(

k

i

)

xi
∫

∞

x

h(z − x)(z − x)k−idz

= −γ1kx
k + ϕ(y)

k−1
∑

i=0

(

k

i

)

xiEk−ih,
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where

E
jh =

∫

∞

0

xjh(x)dx.

Thus, (31) yields

dµk(t)

dt
= −γ1kµk(t) +

k−1
∑

i=0

(

k

i

)

E
[

ϕ(Yt)X(t)i
]

E
k−1h. (32)

We then obtain, with the assumption (3),

ϕ

k−1
∑

i=0

(

k

i

)

µi(t)E
k−ih ≤ µ̇k(t) + γ1kµk(t) ≤ ϕ

k−1
∑

i=0

(

k

i

)

µi(t)E
k−ih. (33)

Now, we can obtain estimations of µk for different scalings from (33)
1. Assume the scaling (S1) so that both ϕ/γ1 and ϕ/γ1 are independent of

γ1 when γ1 is large enough. Applying Gronwall’s inequality to equation (33)
with k = 1 yields, for all t > 0,

ϕ b

γ1
+

[

µ1(0)−
ϕ b

γ1

]

e−γ1t ≤ µ1(t) ≤
ϕ b

γ1
+

[

µ1(0)−
ϕ b

γ1

]

e−γ1t.

Thus, µ1(t) is uniformly bounded above and below when γ1 is large enough.
Iteratively, for all t > 0 and k > 1, there are constants c̄k, ck > 0 indepen-

dent of γ1 such that

ϕ ck
kγ1

+

[

µk(0)−
ϕ ck
kγ1

]

e−kγ1t ≤ µk(t) ≤
ϕ ck
kγ1

+

[

µk(0)−
ϕ ck
kγ1

]

e−kγ1t,

and hence µk(t) is uniformly bounded above and below when γ1 is large
enough.

2. Assume the scaling (S2) so that Ek−ih ∼ γk−i
1 when γ1 is large enough.

We note µ0(t) = 1, and therefore inductively, for any t and k ≥ 1,

ϕE
kh

kγ1
+ O(γk−2

1 ) ≤ µk(t) ≤
ϕE

kh

kγ1
+O(γk−2

1 ).

Thus, we have µk(t) ∼ γk−1
1 when γ1 is large enough.

3. Assume the scaling (S3) so that λ2/γ1 is independent of γ1 when γ1 is
large enough. Calculations similar to those in case (S1) gives µk(t) ∼ γ−1

1 .
Analogous results for νk(t) are obtained with similar calculations with

g(x, y) = xky in (30). Namely, we have

Axky = −(γ1k + γ2)x
ky + λ2x

k+1 + ϕ(y)

k−1
∑

i=0

(

k

i

)

xiyEk−ih.

Thus, when k = 0, we have

ν̇0 = −γ2ν0 + λ2µ1,
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and for k ≥ 1,

−(γ1k + γ2)νk(t) + λ2µk+1 + ϕ

k−1
∑

i=0

(

k

i

)

νi(t)E
k−ih

≤ ν̇k(t) ≤ −(γ1k + γ2)νk(t) + λ2µk+1 + ϕ

k−1
∑

i=0

(

k

i

)

νi(t)E
k−ih.

Then ν0 is uniformly bounded for each scaling (S1), (S2), and (S3). Then,
iteratively using the inequalities for ν̇k, the scaling of µk+1 and Gronwall’s
inequality yields the desired result for each scaling.

Remark 3 Define the marginal moments

uk(t, y) =

∫

∞

0

xku(t, x, y)dx, (34)

then

µk(t) =

∫

∞

0

uk(t, y)dy.

Hence the integrals
∫

∞

0 uk(t, y)dy satisfy the same scaling as µk(t) when γ1 →

∞.

Remark 4 From (33), when γ1 → ∞ the moments µ̇k(t) have the same scaling

as µk(t). Moreover, the same scalings are valid for the integrals

∫

∞

0

∂uk(t, y)

∂t
dy.

3.2 Proof of Theorem 1

Proof Throughout the proof, we omit γ1 in the solution u(t, x, y; γ1) and in
the marginal density u0(t, y; γ1), and keep in mind that they are dependent
on the parameter γ1 through equation (14).

First, from Section 3.1 and (25), the marginal moments

un(t, y) =

∫

∞

0

xnu(t, x, y)dx, (35)

are well defined for t > 0, y > 0 and n ≥ 0. Hence

lim
x→∞

xnu(t, x, y) = 0, ∀t, y, n > 0.

lim
x→0

xnu(t, x, y) = 0, ∀t, y, n ≥ 1.
(36)

From (14), we multiply by xn and integrate on both sides. By (36), we have

∂un
∂t

= −nγ1un − λ2
∂un+1

∂y
+ γ2

∂(yun)

∂y

+

∫

∞

0

∫ x

0

ϕ(y)xnu(t, z, y)h(x− z)dzdx− ϕ(y)un.
(37)
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Since
∫

∞

0

∫ x

0

ϕ(y)xnu(t, z, y)h(x− z)dzdx =
n
∑

j=0

(

n

j

)

ϕ(y)un−jE
jh,

we have

∂un
∂t

= −nγ1un − λ2
∂un+1

∂y
+ γ2

∂(yun)

∂y
+ ϕ(y)

n
∑

j=1

(

n

j

)

un−jE
jh. (38)

In particular, when n = 0,

∂u0
∂t

= −λ2
∂u1
∂y

+ γ2
∂(yu0)

∂y
, (39)

and when n ≥ 1,

1

γ1

∂un
∂t

= −nun −
λ2
γ1

∂un+1

∂y
+
γ2
γ1

∂(yun)

∂y
+

1

γ1
ϕ(y)

n
∑

j=1

(

n

j

)

un−jE
jh. (40)

Thus, for any n ≥ 1,

un = −
λ2
nγ1

∂un+1

∂y
+

γ2
nγ1

∂(yun)

∂y
(41)

+
1

nγ1
ϕ(y)

n
∑

j=1

(

n

j

)

un−jE
jh−

1

nγ1

∂un
∂t

.

Now, we are ready to prove the results for the three scalings by iteratively
calculating u1 from (41).

For the scaling (S1) so ϕ(y) ∼ γ1, and (here b = Eh)

u1 =
bϕ(y)

γ1
u0 +

1

γ1

[

∂

∂y
(γ2yu1 − λ2u2)−

∂u1
∂t

]

. (42)

Substituting (42) into (39), we obtain

∂u0
∂t

=
∂

∂y
[γ2yu0 − λ2ψ(y)u0]−

λ2
γ1

∂

∂y

[

∂

∂y
(γ2yu1 − λ2u2)−

∂u1
∂t

]

, (43)

where ψ(y) = bϕ(y)/γ1. Now, we only need to show that for any test function
f(y),

lim
γ1→∞

λ2
γ1

∫

∞

0

f(y)
∂

∂y

[

∂

∂y
(γ2yu1 − λ2u2)−

∂u1
∂t

]

dy = 0, ∀t > 0. (44)

We note that the integral
∫

∞

0

f(y)
∂

∂y

[

∂

∂y
(γ2yu1 − λ2u2)−

∂u1
∂t

]

dy = −

∫

∞

0

f ′(y)
∂u1
∂t

dy

+

∫

∞

0

f ′′(y)(γ2yu1 − λ2u2)dy
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is uniformly bounded when γ1 is large enough, (44) is straightforward from the
Remarks 3 and 4. Thus, we conclude that u0(t, y) approaches a weak solution
of (16) and (1) of Theorem 1 is proved.

For the scaling (S2) so that Ejh ∼ γj1 when γ1 → ∞, let

bj = γ−j
1 E

jh, (j = 0, 1, · · · ) (45)

which are independent of γ1 when γ1 → ∞. Hence, from (41) and Proposition
1, we have

γ
−(n−1)
1 un = −

λ2
n

∂(γ−n
1 un+1)

∂y
+

γ2
nγ1

∂(yγ
−(n−1)
1 un)

∂y
+

1

n
ϕ(y)u0bn

+
1

nγ1
ϕ(y)

n−1
∑

j=1

(

n

j

)

γ
−(n−j−1)
1 un−jbj −

1

nγ1

∂(γ
−(n−1)
1 un)

∂t

=
1

n
bnϕ(y)u0 −

λ2
n

∂(γ−n
1 un+1)

∂y
+

1

nγ1
Cn(t, y),

where

Cn(t, y) = γ2
∂(yγ

−(n−1)
1 un)

∂y
+ϕ(y)

n−1
∑

j=1

(

n

j

)

γ
−(n−j−1)
1 un−jbj−

∂(γ
−(n−1)
1 un)

∂t
.

Therefore,

u1 = b1ϕ(y)u0 − λ2
∂

∂y
[γ−1

1 u2] +
1

γ1
C1(t, y)

= b1ϕ(y)u0 − λ2
∂

∂y

[

1

2
b2ϕ(y)u0 −

λ2
2

∂(γ−2
1 u3)

∂y
+

1

2γ1
C2(t, y)

]

+
1

γ1
C1(t, y)

= b1ϕ(y)u0 − b2
λ2
2!

∂

∂y
(ϕ(y)u0) +

λ22
2!

∂2

∂y2

[

1

3
b3ϕ(y)u0 −

λ2
3

∂(γ−3
1 u4)

∂y
+

1

3γ1
C3(t, y)

]

+
1

γ1
C1(t, y)−

λ2
2!γ1

∂

∂y
C2(t, y)

· · · · · · · · · · · ·

=

∞
∑

k=1

(−λ2)
k−1

k!
bk
∂k−1

∂yk−1
(ϕ(y)u0) +

1

γ1

∞
∑

k=1

(−λ2)
k−1

k!

∂k−1

∂yk−1
Ck(t, y).

Thus, denote

C(t, y) = −λ2
∂

∂y

[

∞
∑

k=1

(−λ2)
k−1

k!

∂k−1

∂yk−1
Ck(t, y)

]

=
∞
∑

k=1

(−λ2)
k

k!

∂k

∂yk
Ck(t, y)
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and from (45), we have

− λ2
∂u1
∂y

=

∞
∑

k=1

(−λ2)
k

k!
(γ−k

1 E
kh)

∂k

∂yk
(ϕ(y)u0) +

1

γ1
C(t, y)

=
∞
∑

k=1

1

k!

(

−
λ2
γ1

)k (∫ ∞

0

xkh(x)dx

)

∂k

∂yk
(ϕ(y)u0) +

1

γ1
C(t, y)

=

∫

∞

0

h̄(x)

[

∞
∑

k=1

1

k!
(−x)k

∂k

∂yk
(ϕ(y)u0)

]

dx+
1

γ1
C(t, y)

=

∫

∞

0

h̄(x)(ϕ(y − x)u0(t, y − x)− ϕ(y)u0(t, y))dx+
1

γ1
C(t, y)

=

∫

∞

0

h̄(x)ϕ(y − x)u0(t, y − x)dx − ϕ(y)u0(t, y) +
1

γ1
C(t, y)

= −

∫

−∞

y

h̄(y − z)ϕ(z)u0(t, z)dz − ϕ(y)u0(t, y) +
1

γ1
C(t, y)

=

∫ y

0

h̄(y − z)ϕ(z)u0(t, z)dz − ϕ(y)u0(t, y) +
1

γ1
C(t, y). (46)

Here we note ϕ(z) = 0 when z < 0.
For any test function f(y), similar to the argument in the scaling (S1), the

integral
∫

∞

0

C(t, y)f(y)dy

is uniformly bounded when γ1 is large enough, and hence

lim
γ1→∞

1

γ1

∫

∞

0

C(t, y)f(y)dy = 0, ∀t > 0.

Therefore, from (39) and (46), when γ1 → ∞, u0 approaches a weak solution
of (18), and (2) in Theorem 1 is proved.

Now, we consider the scaling (S3) so λ2/γ1 is independent of γ1 when
γ1 → ∞. From (41) and Proposition 1, we have

un = −
1

n

λ2
γ1

∂un+1

∂y
+

γ2
nγ1

∂(yun)

∂y
+

1

nγ1
ϕ(y)u0E

nh

+
1

nγ1
ϕ(y)

n−1
∑

j=1

(

n

j

)

un−jE
jh−

1

nγ1

∂un
∂t

=
1

nγ1
ϕ(y)u0E

nh−
1

n

λ2
γ1

∂un+1

∂y
+

1

nγ1
Rn(t, y),

where

Rn(t, y) = γ2
∂(yun)

∂y
+ ϕ(y)

n−1
∑

j=1

(

n

j

)

un−jE
jh−

∂un
∂t

.
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Therefore,

u1 =
1

γ1
ϕ(y)u0E

1h−
λ2
γ1

∂

∂y
u2 +

1

γ1
R1(t, y)

=
1

γ1
ϕ(y)u0E

1h−
λ2
γ1

∂

∂y

[

1

2γ1
ϕ(y)u0E

2h−
1

2

λ2
γ1

∂

∂y
u3 +

1

2γ1
R2(t, y)

]

+
1

γ1
R1(t, y)

=
1

γ1
ϕ(y)u0E

1h−
1

2!

λ2
γ21

E
2h

∂

∂y
[ϕ(y)u0]

+
1

2!
(
λ2
γ1

)2
∂

∂y

[

1

3γ1
ϕ(y)u0E

3h−
1

3

λ2
γ1

∂

∂u4

]

+
1

γ1

3
∑

k=1

1

k!
(−
λ2
γ1

)k−1 ∂
k−1

∂yk−1
Rk(t, y)

· · · · · · · · ·

= −
1

λ2

∞
∑

k=1

1

k!
(−
λ2
γ1

)kEkh
∂k−1

∂yk−1
[ϕ(y)u0]

+
1

γ1

∞
∑

k=1

1

k!
(−
λ2
γ1

)k−1 ∂
k−1

∂yk−1
Rk(t, y).

Denote

R(t, y) =

∞
∑

k=1

1

k!
(−
λ2
γ1

)k
∂k

∂yk
Rk(t, y),

and in a manner similar to the above argument, we have

− λ2
∂u1
∂y

=

∞
∑

k=1

1

k!
(−
λ2
γ1

)kEkh
∂k

∂yk
[ϕ(y)u0] +R(t, y)

=

∫ y

0

h̄(y − z)ϕ(z)u0(t, z)dz − ϕ(y)u0(t, y) +R(t, y). (47)

Finally, we note µk(t) ∼ γ−1
1 in the scaling (S3), hence for any test function

f(y),

lim
γ1→∞

∫

∞

0

R(t, y)f(y) = 0.

Thus, from (39) and (47), when γ1 → ∞, u0 approaches to a weak solution of
(18), and (3) in Theorem 1 is proved.

4 Illustration

We performed numerical simulations on (1)-(2) to illustrate the results in
previous sections. In our simulations, we took parameter values so that γ1
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Fig. 1 Adiabatic reduction with the scaling (S2). Upper panels show the histograms for
the first variable X. Bottom panels show the histograms for the second variable Y . Dashed
lines are obtained from the one-dimensional equation (18). Functions ϕ(Y ) and h(∆Y ) are
given by Remark 1, and parameters used are ϕ0 = 5, γ2 = 1, λ2 = 2, K = 1, A = 4, B = 1,
n = 4, b = γ1/2 and, from left to right, γ1 = 0.1, 1, 10, 100.

increases with the scaling (S2). As the intensity of the jumps is bounded, we
used an accept/reject numerical scheme to simulate jump times, and used the
exact solution of (1)-(2) between the jumps (the equations are linear between
jumps). For a given set of parameters, we simulate a trajectory for a sufficiently
long time (a bound on the convergence rate can be obtained by the coupling
method, see [1]) so that the stochastic process reaches its stationary state.
We then computed its equilibrium density (as well as the first and second
moments) by sampling a large number of values (106) of the stochastic process
at random times. Finally, we compare the marginal density for Y (t) with
the analytic steady-state solution of the one-dimensional equation (18). To
quantify the differences, we used the L1, L2 and L∞ norms (the parameter
values are taken such that the asymptotic density is bounded).

Results are shown in Figures 1-2. First, Figure 1 shows that as γ1 increased,
the marginal steady-state distribution approaches the analytical limit. Differ-
ences between the distributions are quantified in Figure 2, where we show
norm differences between the numerical and analytic distributions. We also
show the behaviour of the moments. Notice that the marginal moment of Y
approaches the analytic moment of the one-dimensional stochastic process as
γ1 → ∞. Also, we verify the predicted behaviour of the moment involving the
first variable X , µk and νk for k = 1, 2, as in Proposition 1. Results show good
agreement with our theoretical predictions.
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Fig. 2 Adiabatic reduction with the scaling (S2). (A) The norm differences between the
numerical marginal density of Y (t) and the analytic steady-state solution of the one-
dimensional equation (18). Results for classical L1, L2 and L∞ norms are shown, as in-
dicated in the legend. (B) Asymptotic moment values of the second variable Y , as indicated
on the legend. Dashed lines are obtained by the analytical asymptotic moment values ob-
tained from the one-dimensional equation (18). (C) The moments µ1 and µ2 as functions of
γ1. (D) The moments ν1 and ν2 as functions of γ1. In (C) and (D), the dashed lines have a
slope of +1. Parameters used are same as in Figure 1.

5 Summary

We have considered adiabatic reduction in a model of single gene expression
with auto-regulation that is mathematically described by a jump Markov pro-
cess (1)-(2). If mRNA degradation is a fast process, i.e., γ1 � γ2, we derived
reduced forms of the governing equations under the three scaling situations
so that the stationary protein level remains fixed when γ1 → ∞: (1) If the
promoter activation/deactivation is also a fast process, then the protein con-
centration dynamics can be approximated by a deterministic ordinary differ-
ential equation (8), and the mRNA concentration is approximately given by
X = bϕ(Y )/γ1. (2) If either the transcription or the translation is a fast pro-
cess, then the protein concentration dynamics can be approximated by a sin-
gle stochastic differential equation with Markov jump process (10). We expect
that these results may be generalized to justify adiabatic reduction methods in
more general stochastic hybrid systems of gene regulation network dynamics.
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