
HAL Id: hal-01136252
https://hal.science/hal-01136252

Submitted on 22 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for Composition, Verification and
Real-Time Performance of Multimedia Interactive

Scenarios
Jaime Arias, Myriam Desainte-Catherine, Camilo Rueda

To cite this version:
Jaime Arias, Myriam Desainte-Catherine, Camilo Rueda. A Framework for Composition, Verification
and Real-Time Performance of Multimedia Interactive Scenarios. 15th International Conference on
Application of Concurrency to System Design, Jun 2015, Brussels, Belgium. �10.1109/ACSD.2015.8�.
�hal-01136252�

https://hal.science/hal-01136252
https://hal.archives-ouvertes.fr

A Framework for Composition, Verification and Real-Time Performance of
Multimedia Interactive Scenarios

Jaime Arias, Myriam Desainte-Catherine
Univ. Bordeaux, LaBRI, CNRS UMR 5800

F-33400 Talence, France
email: {jarias,myriam}@labri.fr

Camilo Rueda
DECC, Pontificia Universidad Javeriana

Cali, Colombia
email: crueda@javerianacali.edu.co

Abstract—Interactive Scores (IS) is a formalism for compos-
ing and performing interactive multimedia scenarios. In IS, the
composer defines temporal relations (TRs) between temporal
objects (TOs) in order to specify the temporal organization
of the scenario. During execution, the performer may trigger
interaction points to modify the star/stop times of TOs, while
the system guarantees that all the TRs are satisfied. IS is
implemented in the tool I-SCORE and its semantics is formally
defined as a Hierarchical Time Stream Petri Net (HTSPN).
However, this model is not able to represent branching behav-
iors that are necessary to properly deal with applications such
as video games and museum installations. Moreover, HTSPN
does not provide tools for the automatic verification of critical
properties of scenarios. In this work we define a semantics for
IS based on Timed Automata (TA) and we show that such
model yields to a complete framework to compose, verify and
execute interactive scenarios. More precisely, we show that:
1) our model is able to deal with conditional statements in
IS; 2) efficient verification techniques can be now used to
reason about the written scenarios; and 3) our model allows
for a directly implementation on a reconfigurable device, thus
guaranteeing a real-time performance.

Keywords-formal semantics; formal verification; fpgas; inter-
active multimedia scenarios; timed automata; uppaal

I. INTRODUCTION

Interactive multimedia (e.g., live-performance arts and
interactive museum installations) deals with the computer-
based design of scenarios consisting of multimedia content
that interacts with both the performer’s and external ac-
tions. The multimedia content is structured in a spatial and
temporal order according to the author’s requirements. The
potentially high complexity of these scenarios requires ade-
quate specification languages for their complete description
and verification. Moreover, the performance of some sce-
narios achieving compute-intensive, data-intensive or real-
time tasks might not be performed properly by the standard
computers and the use of supercomputers is often unfeasible
due to their very high cost. Therefore, it is necessary the use
of new alternatives to achieve the performance level needed
for the execution of interactive multimedia scenarios.

Interactive Scores (IS) [1], [2] is a formalism for compos-
ing and performing interactive multimedia scenarios. In IS,
the performer has the possibility to influence the execution

of scenarios by triggering interaction points (IP). Hence,
the performer enjoys a certain freedom in choosing the
time of interaction (or whether it takes place) leaving the
system the task of maintaining the temporal constraints
defined by the composer. Scenarios are composed of textures
and structures. Textures represent the execution in time of
multimedia processes. Structures allow to design modular
scenarios and impose a hierarchical organization on them.
The temporal organization of the above temporal objects
(TOs) is defined by asserting temporal relations (TRs) those
objects should obey. The IS model combines two temporal
paradigms used in current multimedia tools [2]: time-line
and time-flow. The former is represented at composition time
when the composer defines multimedia processes by their
start and end times, as well as by TRs between them. The
latter is represented by the time at which the processes are
actually executed.

Currently, the IS model is implemented in I-SCORE
(www.i-score.org), a tool that offers two different stages:
composition and performance. In the former, composers
place TOs on a horizontal time-line. Then, they add IPs
and connect TRs between the TOs in order to define the
temporal properties of the scenario. During the performance
stage, the performer can dynamically trigger the IPs while
the system maintains the temporal properties defined by
the composer (i.e., the TRs). In I-SCORE, the scenarios
are executed by an abstract machine, called ECO ma-
chine, that relies on a Hierarchical Time Stream Petri Net
(HTSPN) [3] to represent and execute the partially ordered
set of events [4]. Thus, each time a scenario is written or
modified, it must be translated into a HTSPN to be executed.

During the last few years, I-SCORE has been used in
applications such as video games, live-performance arts,
and interactive museum installations. However, these kind
of applications demand flexible control structures (i.e., con-
ditionals and loops) which are not supported in the current
formal model of IS. Several researchers have made many
efforts to extend IS with control structures (e.g., process
calculi, event structures, colored petri nets), but there is no
practical solution for the automatic verification and real-time
performance of scenarios [5]–[7].

In this paper, we present a timed automata (TA) [8] based
framework to address the challenges in the modelling, veri-
fication and real-time performance of multimedia interactive
scenarios. In the proposed framework, we model scenarios
as a network of TA. Moreover, we add conditions to IPs
allowing the specification of branching behaviors in IS. We
take advantage of the mature and efficient tools for TA to
simulate and verify automatically scenarios. Furthermore,
we implemented a tool to construct TA models automatically
from the intuitive composition environment of I-SCORE.
Once the scenario satisfies the author’s requirements, the
verified TA model is synthesized into a reconfigurable
hardware (i.e., FPGAS) in order to guarantee its real-time
execution.

The main contributions of our framework are: (1) a
novel model for the specification of interactive scenarios
with non-linear behaviors; (2) an automatic tool to construct
bottom-up TA models from scenarios written in I-SCORE,
allowing a friendly environment for composing; (3) an
automatic verification of scenarios using mature and efficient
algorithms of symbolic model checking (i.e., UPPAAL);
and (4) a real-time and low-latency performance of scenarios
by executing the verified model on FPGAS.

The rest of the paper is organized as follows. We start
by presenting the IS formalism in Section II. Also, we
briefly introduce the TA model and the tool UPPAAL. In
Section III, we develop the TA model for IS endowed with
conditionals. Next, in Section IV we introduce our tool to
automatically construct a TA model from I-SCORE. More-
over, we show the verification of some critical properties
of scenarios using UPPAAL and we discuss their real-
time performance on FPGAS. We conclude in Section V by
pointing out to related work and discussing on some ideas
for future work.

II. PRELIMINARIES

A. Interactive Multimedia Scenarios

Interactive Scores (IS) [1], [2] is a formalism for compos-
ing and performing interactive multimedia scenarios (e.g.,
live-performance arts) where the performer has the possi-
bility to influence their execution. Roughly, the composer
partially defines the temporal organization of the scenario by
means of temporal relations (TRs) between temporal objects
(TOs). In IS, the performer can modify, during performance,
the starting and the stopping of TOs by triggering interac-
tion points (IPs) while the system maintains the temporal
constrains defined by the composer. Therefore, a scenario
could have a set of possible interpretations that share the
same temporal properties.

As we mentioned above, composers partially define the
temporal organization of their scenarios by adding TRs
between TOs. TOs are classified into textures and structures.
Textures represent the execution in time of a given multi-
media process (e.g., a process changing the brightness of

a lamp). Structures allow to design modular scenarios (i.e.,
a hierarchical organization) and denote only the execution
of a group of TOs with their own temporal organization.
In this regard, a scenario can be seen as a structure that
contains the temporal organization of the TOs placed by
the composer. Each TO has associated a set of control
points that represent particular moments of its execution,
for example, the start and the end. The possibilities of
interaction are expressed by means of IPs that turn a control
point into a dynamic one. Therefore, a dynamic control
point must be explicitly triggered by the performer during
the execution while the other control points (i.e., the static
control points) are triggered by the system.

TRs define two qualitative relations between two con-
trol points: precedence and posteriority. These relations
are taken from point algebra and they are symmetrical.
Moreover, TRs are enhanced with quantitative constraints
by giving a range of possible durations in [0,∞]. Thus, the
composer must define a minimum duration (∆min) and a
maximum duration (∆max) for each TR. Depending on the
above values, TRs can be classified as: (1) rigid, if ∆min =
∆max > 0; (2) synchronization, if ∆min = ∆max = 0;
(3) flexible or supple, if ∆min = 0 and ∆max = ∞;
and (4) semi-flexible or semi-rigid, if ∆max 6= ∞ and
∆min 6= ∆max. For the sake of presentation, we shall
use the notation [x, y] to denote that the minimum and the
maximum duration of a TR are x and y, respectively.

Currently, the IS model is implemented in the software
called I-SCORE. This software provides two different stages:
composition and performance. During composition stage,
composers place TOs, represented as boxes, on a horizontal
time-line. Then, they add IPs and connect TRs between
the TOs in order to define the temporal properties of the
scenario. Fig. 1 shows a scenario designed in I-SCORE that
contains seven boxes: A, B, F and G are textures whereas
C and D are structures. We recall that the whole scenario is
also a structure. Lines between TOs represent TRs and lines
over TOs express their duration. Dotted lines symbolize
the interval of time in which the performer can trigger
the corresponding IP. Flags over boxes represent IPs. In
I-SCORE, a box with no explicit TRs defining its start time,
imposes an implicit TR with the starting of its parent (e.g.,
box F). In the case in which a box has an IP at the start
(e.g., box A), the added TR is flexible (i.e., its duration is
not bounded). For instance, the starting of boxes A and B is
define by an implicit TR between the starting of the scenario
and them.

Since during composition stage the computation time is
not critic, the scenario is viewed as a Constraint Satisfaction
Problem (CSP). Thus, when the composer changes the
characteristics of a TO (i.e., the start time and duration),
a constraint solver propagates the new constraints, which
leads the TOs to automatically move or stretch in order to
keep the temporal properties imposed by the composer.

time (s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Texture B

Texture A

Structure C

Structure D

Texture F

Texture G

Figure 1. Example of an interactive scenario. Boxes A, B, F and G are
textures, whereas C and D are structures.

On the other side, during performance the performer
can dynamically trigger the IPs while the static control
points are triggered by the system. In I-SCORE, multimedia
processes are executed by external applications such as
MAX/MSP (http://cycling74.com) or PURE DATA (http:
//puredata.info). Then, it uses multimedia protocols like
OSC (http://opensoundcontrol.org/introduction-osc) to send
the messages defined by the composer to specific applica-
tions. IPs are also triggered by specific messages that are
asynchronously sent by the performer during performance. It
is important to note that the system will refuse the triggering
of an IP if its message is sent outside of the interval of
time defined by the composer. However, the system will
automatically trigger the IP when the maximum duration of
the interval has elapsed and it has not been triggered yet.
In this way, the system maintains the temporal properties
imposed by the composer. Now, let us show an example of
an interactive scenario to better understand the notions that
we have introduced so far.

Example 1. Assume that the scenario in Fig. 1 specifies
a fragment of a theatrical installation. The scenario aims
to reproduce the atmosphere of a cloudy and dark forest.
Imagine that texture B controls a machine that produces
white smoke in order to create the cloudy atmosphere. Once
the amount of smoke is enough, the performer can trigger the
IP of B to stop the machine. As constraints, B must start at
3160 ms and stop only when the performer decides it (i.e., its
duration is not bounded). On the other hand, the aim of the
texture A is to spread the smoke over the scene by controlling
a collection of fans. The performer can start A, by triggering
its IP, from the beginning of the act (i.e., the starting time
of A is not bounded). Moreover, the composer knows that
3014 ms are necessary to obtain the desired result (i.e., the
duration of A). Once the cloudy atmosphere is recreated, the
howl of a wolf (i.e., texture F) sounds for 2832 ms, and while

this happens, a beam of a yellow light (i.e., texture G) pierces
the cloudy forest during 1184 ms giving the impression
that a car is approaching. The composer knows that the
effect created by the smoke and fans lasts a time before
it disappears. Then, he/she "encapsulates" F and G within
the structure C and adds two TRs to ensure that the content
of C is executed after the atmosphere is well created and
before it disappears. The first TR is between A and C and
its duration is [1200, 2560] ms. The second TR is between
B and C and its duration is [1136, 2784] ms. The performer
can only start C within the interval of time in which these
TRs are satisfied.

In order to execute the written scenarios, an abstract
machine, called ECO machine, is used [4]. This machine is
responsible of: (1) triggering the static control points (i.e.,
the starting/stopping of TOs with no IPs); (2) controlling, in
real-time, the triggering of the dynamic control points (i.e.,
IPs); and (3) maintaining the temporal organization of the
scenario. The operation of the machine is described in terms
of state transitions that are synchronized with a global clock.
This machine relies on a Hierarchical Time Stream Petri Net
(HTSPN) [3] to represent and execute the partially ordered
set of events. Therefore, each time a scenario is written or
modified, it must be translated into a HTSPN to be executed.
The method to construct the HTSPN model from a scenario
is the following [4]: each control point is turned into a
transition. If a temporal constraint imposes the simultaneity
of different control points, their transitions are merged. If a
precedence relation is specified between two control points,
a sequence arc/place/arc is added between the transitions
that represent them. The range of time that represents the
duration of a TR is defined over each arc and it represents
the possible durations of the relation. Furthermore, the firing
of a transition that represents a dynamic control point is
conditioned by receiving an external control message. It
is important to note that each ingoing arc of this kind of
transition has minimum and maximum duration values that
correspond with the range of time decided by the compositor.
The minimum value corresponds to the minimum time at
which the transition can be crossed whereas the maximum
value corresponds to the time at which the transition will be
automatically crossed.

B. Timed Automata and UPPAAL

Timed Automata (TA) [8] is a formalism for modelling
and verification of real-time systems. Intuitively, a timed
automaton is a finite-state machine extended with non-
negative real-valued variables that model the logical clocks
of the system. Clocks are initialized with zero when the
system is started, and then increase synchronously with the
same rate. The behavior of the automaton is restricted by
imposing clock constraints on transitions (i.e., edges). Thus,
a transition can be taken when the clocks values satisfy its

guard. An associated action is executed when a transition
is taken. Moreover, a set of clocks may be reset. Locations
(i.e., states) have invariants that are predicates over clocks.
Thus, a timed automaton can stay at a state as long as its
invariant is satisfied.

Next, we present the formal definition of timed au-
tomata [8]. Let C be a finite set of real-valued variables
denoting the set of all clocks, and B(C) the set of con-
junctive formulas of atomic clock constraints of the form
x ./ n or x − y ./ n where, n ∈ N0, x, y ∈ C and
./∈ {≤, <,=, >,≥}.

Definition 1 (Timed Automaton). A timed automaton A is
a tuple 〈L, l0,Σ, C,E, I〉 where L is a finite set of locations,
l0 ∈ L is the initial location, Σ is a finite alphabet denoting
actions, C is a finite set of clocks, E ∈ L×B(C)×Σ×2C×L
is the set of edges between locations, and I : L → B(C)
assigns invariants to locations.

UPPAAL [9] is an integrated tool environment for
modeling, validation and verification of real-time systems
modeled as networks of timed automata, extended with
features to facilitate the modelling tasks, such as bounded
global/local integer variables, structured data types, channel
synchronization, committed/urgent locations and priorities.
A network of TA is the parallel composition A1| . . . |An of
a set of TA A1, . . . , An, called processes, combined into a
single system by the CCS parallel composition operator [10]
with all external actions hidden. On one hand, synchronous
communication between automata is carried out by hand-
shake synchronization using input and output actions. To
model hand-shake, the action alphabet of TA is assumed to
consist of symbols for input actions denoted as a?, output
actions denoted as a!, and internal actions represented by
the distinct symbol τ . On the other hand, asynchronous
communication is carried out by shared variables.

As said before, UPPAAL considers integer bounded
variables. Predicates over them can be used as guards on the
edges and their values can be updated using resets on the
edges. In our model, global variables are used to represent
the asynchronous message passing between the environment
and the system. Variables are highly necessary to model
conditionals and multimedia processes in IS. Additionally,
UPPAAL allows to model atomic sequences of actions
using committed locations where no delay is allowed. That
means that, if any process is in a committed location
then only action transitions starting from such a committed
location are allowed. Moreover, time is not allowed to pass
when the system is in an urgent location. Finally, broadcast
channels allow one process to synchronize with multiple
processes.

III. TIMED AUTOMATA SEMANTICS FOR IS

In this section we present a formal semantics of IS using
TA. Our model follows the modelling patterns described

in [11] in order to design a clear and structured model.
Intuitively, a scenario can be seen as several processes

(i.e., TOs and TRs) running in parallel and whose starting
and stopping dates depend on the behavior of the others.
For instance, a process controlling the brightness of a lamp
(texture L) starts five seconds after the stopping (relation
r) of a process playing a sound (texture s). Hence, we can
model a scenario as a network of TA in which both TOs and
TRs are modelled as TA processes. The starting and stop-
ping of each timed automaton (i.e., the temporal organization
of the scenario) is defined by its synchronization with the
others. We use broadcast channels for the communication
since a timed automaton can synchronize with more than
one simultaneously.

Let us now present in more detail our TA model by
defining the timed automaton of a TR and a TO. We
shall also present the timed automaton modelling an IP and
a mechanism to handle the temporal constraints imposed
by TRs. We shall see that our model allows to represent
conditionals that are not supported by the current HTSPN
model of IS. Moreover, we can automatically verify some
essential properties of scenarios using the model checker
provided by UPPAAL.

A. Modelling Temporal Relations

As we explained before, a TR can be classified depending
on its duration (see Section II-A). Intuitively, a TR whose
duration is completely defined (i.e., a rigid relation) can be
seen as a simple delay between two TOs. A TR whose
duration is partly defined (i.e., a semi-flexible or flexible
relation) can be seen as a delay whose duration is an interval
of time (i.e., it has a maximum and a minimum duration).
Next, we present the TA model for the above types of TR.
A model for the synchronization relation is not necessary
because we can synchronize the starting/stopping of two
TOs by means of events.
Rigid temporal relations. A rigid TR is defined as the
timed automaton in Fig. 2. It begins in the state idle and
remains on it until the event event_s is emitted. This event
starts the execution of the TR. Once this occurs, the timed
automaton stays in the state wait until the duration dur

elapses. Observe that this state models the delay generated
by the TR. Once the delay finishes, the timed automaton
moves to the state finished and emits the events event_e1

and event_e2 representing the elapsing of the minimum and
maximum duration of the TR, respectively. These events
may define the starting or the stopping of other TA.

Let us explain the remaining states of the above timed
automaton through an example. Imagine that a TR is inside
of a structure that is stopped by an IP while the TR is
executing. In that case, the TR is killed (we use the term
kill to denote the sudden stopping of a TR as a result of the
stopping of its parent) by the event kill_p that is emitted by
its parent (i.e., the stopped structure). Moreover, the timed

Figure 2. Timed automaton modelling a rigid TR.

automaton emits, at the same time, the event kill in order
to stop other TA. Later, we shall introduce the events skip_p

and skip.
Flexible and semi-flexible temporal relations. We present
in Fig. 3 the timed automaton modelling both a flexible and
a semi-flexible TR. We recall that the difference between
these two types of TR is that the maximum duration of a
flexible TR is not bounded (i.e., infinity).

Figure 3. Timed automaton modelling a flexible and a semi-flexible TR.

Similar to the above model, the timed automaton starts
in the state idle and moves to the state wait_min when the
event event_s is emitted. Then, it stays in the state wait_min

until the minimum duration (dmin) elapses. Once this occurs,
the timed automaton emits the event event_e1 and goes
to the state flexible if the maximum duration (dmax) is
infinity, otherwise it goes to the state semi_flexible. The
event event_e1 synchronizes with TA that are waiting for
the elapsing of the minimum duration of the TR.

In the case of a semi-flexible TR, the timed automaton
waits for either the elapsing of the maximum duration or
the emitting of the event event_i to stop the TR (state
semi_flexible). In the case of a flexible TR, it only waits
for the event event_i to stop (state flexible). The event
event_e2, that represents the stopping of the TR, is emitted
once the TR finishes. As explained below, the event event_i
represents either the triggering of an IP or the stopping of
other TR. The remaining events and states of the timed
automaton specify the same behavior explained in the TA
model of a rigid TR.

Handling temporal relations. Composers usually define the
starting time of TOs by means of one or more TRs. For
instance, in our running example (scenario in Fig. 1) the
starting of structure C is defined by two semi-flexible TRs.
Before defining the TA to handle this complex behavior, let
us present an operational intuition of using two or more TRs
to define a temporal constraint.

Roughly, all TRs are held when the minimum duration
of all TRs have already elapsed and no TR has reached its
maximum duration. Assume that the two TRs defining the
starting of a TO are those presented in Fig. 4. Hence, the
TO can start between 10 and 13 s by triggering an IP. It is
important to note that in IS, the TO will start automatically
at 13 s if the IP is not triggered within the above interval
of time.

temporal relation 1

temporal relation 2

equivalent temporal relation

min max

min max

min max

interaction point
enabled

time (s)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 4. Operational intuition of two TRs. They are held when all TRs
have reached their minimum duration and no TR has reached its maximum
duration.

We can now introduce the timed automaton (see Fig. 5)
for handling complex temporal properties defined by means
of n number of TRs. The timed automaton starts in the
state idle and waits for either the elapsing of the minimum
duration (event event_s1) or the stopping (event event_s2)
of a TR. The timed automaton stops (state finished) once
all TRs have reached their minimum duration (i.e., counter
= n). Moreover, it emits the event event_e allowing the
synchronization with other TA modelling, for example, an
IP or the starting of a TO. Nevertheless, an error is produced
(state error) when a TR stops before all TRs have reached
their minimum duration (i.e., the temporal property defined
by the composer cannot be satisfied). The local variables
counter and skip_v are initialized with values 0 and true,
respectively. The event kill_p models the same behavior as
we have already explained.
Interaction points. Roughly, IPs are events asynchronously
triggered by the performer during the execution of the
scenario while the TRs are maintained by the system. In our
model, we take advantage of the shared variables supported
by UPPAAL to model the asynchronous communication
between the user and the scenario. Moreover, they will allow
us to enhance the current model of IS with conditionals.

Figure 5. Timed automaton for handling TRs.

In the proposed model, we extend IPs with conditions
(conditioned IPs). Let us explain this notion through the
following example. Assume that the IP for starting the
structure C of our running example can only be triggered if
the sending event (e.g., the temperature of the environment)
has a value greater than 30◦C . However, if this event is
not sent or its value does not satisfy the condition during
the interval of time defined by the composer, he or she
must define whether the IP must be triggered automatically
(urgent behavior) or not. The urgent behavior corresponds
to the normal execution of IPs in the current model of IS.
In the second case, the execution of the following TOs and
TRs (i.e., the branch) will be omitted. For example, if the
texture A of our running example has a conditioned IP at
the start and it is not triggered, then the texture A and its
following TR with structure C will not be executed. Hence,
the starting of structure C is only defined by the TR with
the texture B.

Now we are ready to present the timed automaton mod-
elling a conditioned IP (see Fig. 6). The timed automaton be-
gins in the state idle and waits for the event event_s to start
listening the events sent by the performer (state enabled).
The event event_s is emitted when all TRs have reached
their minimum duration. The automaton remains listening
for the event until either (1) the IP is enabled (explained
above) and the event event_e is emitted (state timeout) or (2)
its value satisfies the condition (state cond_true). We defined
the function condition() to verify whether the value of the
sent message satisfies or not the condition of the IP. The
event event_e is emitted when the maximum duration of a
TR elapses. Note that the case (2) represents the scenario in
which the IP is not triggered or its value does not satisfy the
condition within the valid interval of time. Thus, depending
on the behavior defined by the composer (parameter urg), the
IP will be triggered automatically (i.e., event event_t) or the
execution of the branch will be omitted (i.e., event skip). In
the case (1), the IP is triggered (i.e., event event_t) since the
condition is satisfied. Moreover, the event event_e is emitted
in order to stop the TRs that are still waiting for the elapsing

Figure 6. Timed automaton modelling a conditioned IP that allows to
describe branching behavior in IS.

of their maximum duration. Once an IP is triggered, the TRs
defining the temporal property of the corresponding TO are
no more relevant during the performance of the scenario.

The event kill_p specifies the same behavior as we
have already explained. The remaining states are introduced
through the following example. Assume that two new tex-
tures A and B control the playing of two different videos
whose performing depends on the room lightning (i.e., light
or dark). Thus, each texture has a conditioned IP listening
the same event during the same interval of time. However,
the defined conditions are mutually exclusive thus only one
IP will be triggered and the execution of the other branch
will be omitted. In this regard, we use the shared variable en

as a global flag that allows to stop the IPs whose condition is
not satisfied (state skipped) once the other IPs listening for
the same event have been triggered and have also changed
the value of en to false (i.e., their conditions hold).

As we explain before, the omission of the execution
of a branch causes that all TRs and TOs of the branch
are skipped. For this reason, each timed automaton of our
approach models the above behavior by leaving out its
execution when the event skip_p is emitted. Moreover, the
skipping of the branch is propagated by sending the event
skip. For instance, in the above example the IP whose
condition is not satisfied will omit the execution of the
corresponding texture and its branch.
Performer interaction. IPs allow users to interact with
the scenario during performance. This interaction is carried
out by asynchronously sending messages to the system. We
model this non-deterministic environment using the timed
automaton in Fig. 7. Roughly, it emits the event event (i.e.,
the message) with an attached value (val). The value is
communicated to the IPs by means of the shared variable
msg. The event is emitted at a non-deterministic time (i.e.,
the transition is not guarded by clock constraints) and it is
synchronized with the IPs that are waiting for it. Several
copies of this automaton could be instantiate in order to
represent different user interactions.

Figure 7. Timed automaton modelling an user interaction.

B. Temporal Objects

In the following, we introduce the models to describe tex-
tures and structures. As we shall see, TOs can be represented
using the automata defined above. That allows to have a
simple, yet powerful, modular model of IS.
Textures and multimedia processes. As we saw in Sec-
tion II-A, in IS a texture is the same as a TR, but the former
has an attached multimedia process that is executed in time
by an external application. Therefore, a texture with an IP
at the end (e.g., texture B in the running example) can be
modelled using the timed automaton of a flexible or semi-
flexible TR. Otherwise, it is modelled as a rigid TR.

Unlike the current model of IS, in our approach a texture
can have one or more attached multimedia processes, thus
decreasing the number of textures executed concurrently
(i.e., a reduction in the size of the scenario). Roughly, a
multimedia process is modelled as a list of parameters (i.e.,
values that are sent to the external application) associated
with their synchronization time. Let us explain the above
with an example. Assume that the texture F of our running
example has attached the multimedia process in Fig. 8.
Observe that it is composed of seven parameters (i.e., the
points pi) that are sent at ∆i time after the above (i.e.,
intra-stream synchronization) in order to control in time the
brightness of a lamp.

0%

30%

100%

50%

Brightness

�1 �2 �3 �4 �5 �6

p0

p1

p2

p3

p4

p5

p6

Figure 8. Example of a multimedia process controlling the brightness of
a lamp.

Before formalizing the idea, we show how to represent
the parameters of a multimedia process. UPPAAL allows
to create new data structures as in the C language. We thus
implement a structure (parameter_t) composed of the value

and the synchronization time of the parameter. Hence, a
multimedia process is a list of parameter_t elements. Fig. 9
shows the implementation of the example presented above.

typedef struct {

int value;

int offset;

} parameter_t;

parameter_t process_brightness[7] = {

{0,0}, {30,5}, {50,2}, ... };

Figure 9. Data structure representing the parameters of a multimedia
process. The variable process_brightness corresponds to the process in
Fig. 8.

Now we are ready to present the TA model for a mul-
timedia process (see Fig. 10). The timed automaton begins
in the state idle and its beginning is synchronized with the
starting of a specific texture (event start). Once this occurs,
the parameters of the multimedia process begin to be sent
maintaining their synchronization time (i.e., state wait). The
event send represents the communication with the external
application and the shared variable data denotes the sending
value. The timed automaton stops either the texture has
stopped (event stop) or all parameters have already been sent
(i.e., index = limit). The events kill_p and skip_p model
the same behavior as we have already explained.

Figure 10. Timed automaton modelling a multimedia process.

Structures. Intuitively, a structure defines the temporal
organization of a group of TOs. For example, the structure
D in the running example defines the starting of textures
F and G. Moreover, the stopping of D causes the stopping
of its children regardless of whether they are running. It is
important to note that TRs can only be defined between TOs
in the same hierarchy level (i.e., scope).

In the spirit of textures, we can model structures as
flexible or semi-flexible TRs with an attached group of
TOs (children). Roughly, a structure with an IP at the end
is modelled as a flexible or semi-flexible TR. Since the
stopping of a structure causes the stopping of its children, we
use the timed automaton in Fig. 11 to emit a kill event (i.e.,
event event_out) when the structure emits its stopping event

Figure 11. Auxiliary timed automaton to stop the children of a structure.

(i.e., event event_e2 in the timed automaton of a TR). This
event will synchronize with the kill_p of its children leading
them to stop. Notice that the above behavior is propagated
down the hierarchy stopping all descendants of the structure.

In the other case, a structure with no IPs at the end is
modelled as a flexible TR whose minimum duration is the
duration of the structure and whose maximum duration is in-
finity. These considerations are necessary since the structure
must wait for the duration imposed by the composer and also
for the ending of all its children. We use the timed automaton
to handle TRs (defined above) in order to know when all
its children have stopped. Therefore, this timed automaton
will emit the event to stop the structure (i.e., event event_e)
when both the minimum duration of the structure elapses
(i.e., event event_e1 in the TR model) and its children have
stopped (i.e., event event_e2 in the TR model). Note that the
event event_e has the same effect as an IP because it stops
dynamically the TR (i.e., the structure) during its execution.
Interactive multimedia scenarios. As a result of the above,
we can conclude that an interactive multimedia scenario is
a network of TA representing the execution in parallel of
the TOs and TRs defined by the composer in the scenario.
Thus, as we saw before, the whole scenario is modelled
as a structure with an IP at the start and containing these
elements, and whose starting time is defined by an event
sent by the performer (e.g., the play button).

IV. VERIFICATION OF INTERACTIVE SCENARIOS AND
THEIR REAL-TIME PERFORMANCE

In this section we shall describe how to translate scenarios
written in the software I-SCORE into our TA model in order
to verify some critical properties of them. Moreover, we
present a hardware implementation of the verified scenarios
that allows their real-time execution. The reader can found
the details of the implementations presented below as well
as examples at http://www.labri.fr/perso/jarias/is-framework.

A. Verification of Interactive Scenarios Using UPPAAL

As we saw in Section II-A, I-SCORE provides a graph-
ical environment for composing and performing interactive
scenarios. Its current implementation (version 0.3) allows to
write conditions on IPs, but it still lacks a formal modelling.
We thus implemented a tool in OCAML (http://www.ocaml.
org) to automatically construct UPPAAL models from sce-
narios written in I-SCORE. In this way, we take advantage

of: (1) the composition stage of I-SCORE to intuitively
compose scenarios; and (2) the mature and efficient model
checker provided by UPPAAL to verify the properties of
scenarios. Roughly, our tool parses the XML file of the
scenario generated by I-SCORE and applies the definitions
described in the above section in order to create an XML
file (supported by UPPAAL) of the generated bottom-up
TA model of the scenario. Since a scenario contains a finite
number of TOs and TRs our tool always terminates.

Once the TA model is built, we can use UPPAAL to
automatically verify properties of scenarios. Let us now
show the verification of some properties of the scenario in
Fig. 1.
Terminating scenarios. In I-SCORE, adding an IP at the end
of a TO causes that the duration of the TO is not bounded
(i.e., the maximum duration is infinity). Moreover, a TO
with an IP at its start (e.g., texture A in the running example)
implicitly defines a flexible TR from the start of its parent
and itself. By checking with UPPAAL

A<> Scenario.finished (Property is not satisfied)

we can prove that the above assumption of I-SCORE pro-
duces a scenario that may never terminate. A simple ex-
ecution in which this property is not satisfied is when no
IP is triggered during the performance. We can solve this
problem by bounding the duration of (1) the TR preceding
the texture A and the duration of the TOs (2) B and (3) C.
For instance, we changed the duration of (1), (2), and (3)
to [0,3776] ms, [0,3120] ms and [0,10000] ms, respectively.
However, the property remains being not satisfied. We show
the cause of this by checking the property below.
Playability. This property is very important in IS be-
cause a scenario could be over-constrained and therefore
not playable. Considering the previous changes, the TRs
defining the starting time of structure C may not be always
satisfied. By proving

A[] !Control_Start_C.error

(Property is not satisfied)

where Control_Start_C is the timed automaton handling
the TRs of C, we can see that the TRs are not always
satisfied (i.e., the timed automaton reaches the state error).
An execution in which this happens is when the texture A

starts at 144 ms and stops at 3168 ms, and texture B starts at
3168 ms and stops at 6288 ms (i.e., the IP is not triggered).
However, if we bound the duration, respectively, of texture
B and its TR to C to [1000,2000] ms and [300,4000] ms,
we can prove that the TRs of the scenario are always
maintained. Moreover, the above modification makes the
termination property (described above) becomes satisfied.
Temporal properties of TOs. As we explained before,
composers use TRs to define temporal constraints on the
starting and stopping times of TOs. In I-SCORE, it can
sometimes be complicated to know the result of adding

many TRs since the system does not provide a feedback
of the resulting temporal constraint. However, we can use
UPPAAL to check that a desired constraint will always be
satisfied. For instance, assume that the composer hopes that
the structure C always starts after 4468 ms. We can prove
that this property is always satisfied by verifying that

E<> Structure_C.wait_min && clk < 4468

(Property is not satisfied)

where the variable clk denotes the current time of execution
of the scenario. Intuitively, we ask if there exists an execu-
tion of the scenario in which the structure C starts before
4468 ms.
Shared resources. We recall that textures use external
applications to execute in time the multimedia processes.
Hence, a resource (i.e., an external application) cannot be
used by two or more textures at the same time. For instance,
assume that textures F and G, in the running example, send
values to the same external application which controls the
playing of a video. If both textures send values at the same
time, the application may not be able to handle the data or
the expected behavior could not occur. We can prevent such
behavior by proving the following property:

E<> Texture_G.wait && Texture_F.wait

(Property is satisfied)

We then see that both textures can eventually be executing
simultaneously. We can solve this problem, for example, by
modifying the duration of the texture G and its preceding
TR by 1000 ms and 100 ms, respectively. In that case,
the property is not satisfied and both textures will never be
executed simultaneously. Fig. 12 shows the results of veri-
fying the above properties once the suggested modifications
are applied to the scenario. Observe that now the scenario
satisfies the expected properties.

B. True Parallel Implementation of IS

A Field Programmable Gate Array (FPGA) is a digital
circuit that can be reprogrammed, many times, to the desired
functionality requirements of the user after manufacturing.

Figure 12. Overview of the verification of some properties of the scenario
once the suggested modifications are applied. The green light means that
the property is satisfied, while the red light means the opposite.

FPGAS can simultaneously compute millions of operations
in resources distributed on the device (i.e., spatial comput-
ing). Then, such systems can be hundred of time faster
than microprocessors-based systems and also provide huge
power, area, and performance benefits over software. In
recent years, FPGAS have been used with success in many
different areas of application, such as aerospace, automotive,
medical, video and audio processing applications [12]–[14].
Since FPGAS have risen over the last years, they have
become economically viable for use in several applications.

Let us now present the benefits of these devices [15]:
• Reconfigurability: FPGAS can be reconfigured at any

time.
• High-level design: The hardware is defined by using

high-level hardware description languages. Moreover,
the designed systems can be simulated and verified
before their execution on the FPGA.

• Physical parallelism: FPGAS allow to design com-
pletely parallel systems without computation loading.

• High-speed: Parallelism and fast clock rates of FPGAS
allow systems to achieve very high speed that some-
times outperforms processor-based systems.

• Reliability: FPGAS provide true hardware reliability
because there is no operating system or driver layer
that can affect system update.

• IP protection and re-use: It is difficult to reverse
engineering a synthesized system. Moreover, a tested
hardware design can be re-used multiple times by
instantiating. As we shall see, we construct bottom-
up scenarios using the tested modules of each timed
automaton presented above.

The creation of a FPGA-based system consists on build-
ing a bitstream file to load into the device. The designers
start with an application written in a Hardware Description
Language (HDL), such as SYSTEMVERILOG or VHDL.
This abstract design is optimized to fit into the FPGA’s
available logic. Next, the optimized design is mapped into
logic blocks and routing determines the interconnected re-
sources. Finally, the bitstream file is generated in order
to configure the logic blocks and routing resources of the
FPGA appropriately. Once the bitstream file is loaded into
the FPGA, it operates as a custom digital system.

In our framework, the verified scenarios can be syn-
thesized into a reconfigurable hardware (i.e., an FPGA).
Thus, we provide a real-time and low-latency performance
of scenarios, which is not guaranteed in I-SCORE, by taking
advantage of all the benefits listed above. Moreover, FPGAS
are synchronous hardware with a jitter less than one cycle
of clock and they are not affected by the complex behavior
of the operating system services, interrupt handling, etc.

As we explained before, a timed automaton is a finite-
state machine (FSM) extended with non-negative variables
that model the clocks of the system. Since the verification
of TA is an integer based formalism, then the use of integer

variables in our implementation does not affect the behavior
of the modelled scenario. Channels can be implemented as
wires connected between each process (i.e., timed automa-
ton) with a logic to handle multiple connections.

Let us now present the proposed hardware implementation
of a timed automaton (see Fig. 13). A Mealy FSM was
chosen to model a timed automaton because it adequately
expresses the behavior of synchronous systems: (1) the
outputs depend on the current state and the inputs, and
(2) the outputs react instantaneously to the inputs. Moreover,
we used SYSTEMVERILOG (SV) as HDL to describe our
implementation. Roughly, we implemented parametric tem-
plates for each timed automaton presented in Section III. The
specification of our model is natural in SV since it combines
the features of HDL such as VERILOG and VHDL with
features from specialized Hardware Verification Languages
(HVL), together with features from C and C++.

Next
State

State
Register

Output
Logic

Inputs
Outputs

Mealy FSM

Local
Variables

Clock
Variables

Global Clock
Inputs Outputs

Figure 13. Block diagram of the hardware implementation of a timed
automaton.

In our approach, we generate the clock of the scenario
from the FPGA clock. For that, we divide the frequency of
the FPGA clock by the number of clock cycles needed to
obtain the desired frequency. On the other side, the FPGA
clock is used for the FSM. That is very important because
we need to guarantee that the sampling period of the scenario
is greater than the time needed to update the states of the
FSMS.

Each time that a timed automaton resets its local clocks, it
updates the register Clock Variables with the global time of
the system (i.e., the input Global Clock). Thus, to calculate
the elapsed time of each local clock, the FSM subtracts the
stored value to the global clock. In this way, the system is
synchronized with the same clock rate. On the other side,
the local variables of the timed automaton are stored in the
register Local Variables. As we can see, our model does not

need special architecture for its implementation. The results
of the simulations show that our approach allows to satisfy
all real-time constraints imposed by the composer and also
it provides a low-rate data synchronization that allows to
satisfactory react to the environment’s events.

With the help of the XILINX VIVADO DESIGN SUITE
(http://www.xilinx.com), we can simulate the generated SV
code. We also can validate the generated code with the result
of the UPPAAL simulation by implementing test benches.
We have done large amounts of behavioral comparisons to
validate the consistency between the TA model and the
generated code. Finally, the generated code can directly be
synthesized into an FPGA to its execution. It is important
to note that the only limitation of our implementation is the
number of logic blocks provided by the FPGA platform.

V. CONCLUDING REMARKS AND RELATED WORK

In this paper, we have presented a novel framework
for composition, verification and real-time performance of
interactive multimedia scenarios. We defined the semantics
of IS using a network of TA and we extended it with the
ability to express branching behaviors. Moreover, we im-
plemented a tool to construct bottom-up UPPAAL models
from scenarios written in the graphical environment of I-
SCORE. Thus, scenarios can intuitively be designed and their
critical properties can now be automatically verified using
the mature and efficient algorithms of verification (symbolic
model checking) provided by the tool UPPAAL. We also
presented an approach for the low-latency and real-time
performance of scenarios by synthesizing validated scenarios
into FPGAS. To the best of our knowledge, none of the
existing models of IS supports the automatic verification
of scenarios or provides an implementation that guarantees
their real-time execution.
Related work. In the last years, some researchers have
proposed models for the specification and verification of IS.
For instance, in [6] and [5] the authors propose a semantics
based on process calculi. However, no practical techniques
were proposed for the verification and real-time performance
of scenarios as the framework presented here.

Our framework is influenced by the works in [16], [17]
and [18]. In [16], the authors define an automata based
semantics for the programming language ORC (https://orc.
csres.utexas.edu). This language has been proposed as a
model to orchestrate distributed services that are subject
to constraints on their execution. The authors also provide
a systematic construction of the TA model from ORC
programs, allowing the verification of critical properties
using UPPAAL. In [17], a novel model of ANTESCOFO
(http://repmus.ircam.fr/antescofo) is proposed using Para-
metric Timed Automata [19]. Roughly, ANTESCOFO is
an automatic accompaniment system consisting of both a
listening machine which recognizes in real-time the events

described by a score, and a reactive system which co-
ordinates and schedules in real-time the accompaniment
actions. The proposed semantics allows the verification of
qualitative and quantitative properties. Moreover, it permits
the inference of constraints on the parametric delays of
events for ensuring the composer’s requirements. In [18],
the authors present a TA and synchronous data-flow based
framework for modelling and verification of multi-clock
train control systems. Additionally, the authors propose an
implementation on FPGAS of the validated models.
Future work. The use of UPPAAL for specifying scenario’s
properties may be cumbersome for composers. Then, our
next step is to develop a front-end to intuitively verify
such properties. Currently, we are implementing a tool to
automatically generate SYSTEMVERILOG code from the
model. Therefore, we plan to use the formal specification
language SVA (SystemVerilog Assertions) [20] to validate
some properties of the generated code.

Nowadays, composers have increasingly needed to ma-
nipulate streams in their multimedia scenarios. In [7], the
authors present a Colored Petri Net (CPN) [21] model for
specifying interactive scenarios extended with the ability
to handle data audio streams. We intend to increase the
expressive power of our model by integrating the CPN
semantics for handling streams into our TA semantics.
In this way, we will be able to specify and verify some
properties of the multimedia processes (i.e., textures in IS).

In I-SCORE, external applications (e.g., MAX/MSP and
PURE DATA) are used to execute the multimedia processes.
Then, by following the ideas presented in [22], we plan
to implement a Fast Ethernet module in order to provide
a low-rate and reliable communication between the FPGA
platform and the external applications which are running
on standard operating systems. To conclude, we plan to
synthesize DSP programs into FPGAS basing on the work
done in [23], in which the authors compile into VHDL, DSP
programs written in the functional programming language
FAUST (http://faust.grame.fr).

ACKNOWLEDGMENT

We thank the anonymous reviewers for their detailed
comments that helped us to improve this paper. Also, we
would like to thank Jean-Michaël Celerier for his valuable
remarks about the paper. This work has been supported
by the ANR project OSSIA (ANR-12-CORD-0024) and
SCRIME (Studio de Création et de Recherche en Informa-
tique et Musique Électroacoustique).

REFERENCES

[1] A. Allombert, “Aspects Temporels d’un Système de Partitions
Musicales Interactives pour la Composition et l’Exécution,”
Ph.D. Thesis, Université de Bordeaux, 2009.

[2] M. Desainte-Catherine, A. Allombert, and G. Assayag, “To-
wards a hybrid temporal paradigm for musical composition
and performance: The case of musical interpretation,” Com-
puter Music Journal, vol. 37, no. 2, pp. 61–72, 2013.

[3] P. Sénac, P. de Saqui-Sannes, and R. Willrich, “Hierarchical
time stream petri net: A model for hypermedia systems,” in
Application and Theory of Petri Nets, ser. LNCS, vol. 935.
Springer, 1995, pp. 451–470.

[4] R. Marczak, M. Desainte-Catherine, and A. Allombert, “Real-
time temporal control of musical processes,” in The Third
International Conferences on Advances in Multimedia, 2011,
pp. 12–17.

[5] M. Toro, M. Desainte-Catherine, and C. Rueda, “Formal
semantics for interactive music scores: a framework to design,
specify properties and execute interactive scenarios,” Journal
of Mathematics and Music, vol. 8, no. 1, pp. 93–112, 2014.

[6] C. Olarte and C. Rueda, “A Declarative Language for Dy-
namic Multimedia Interaction Systems,” in Mathematics and
Computation in Music. Springer Berlin Heidelberg, 2009,
vol. 38, pp. 218–227.

[7] J. Arias, M. Desainte-Catherine, and C. Rueda, “Modelling
Data Processing for Interactive Scores Using Coloured Petri
Nets,” in 14th International Conference On Applications Of
Concurrency To System Design, 2014, pp. 186–195.

[8] R. Alur and D. L. Dill, “A theory of timed automata,”
Theoretical Computer Science, vol. 126, no. 2, pp. 183–235,
Apr. 1994.

[9] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nut-
shell,” International Journal on Software Tools for Technology
Transfer, vol. 1, no. 1-2, pp. 134–152, Dec. 1997.

[10] R. Milner, Communication and concurrency. Prentice Hall,
1989.

[11] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on
Uppaal,” in Formal Methods for the Design of Real-Time
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
Jan. 2004, pp. 200–236.

[12] S. Hauck and A. DeHon, Reconfigurable Computing: The
Theory and Practice of FPGA-Based Computation, San Fran-
cisco, CA, USA, 2007.

[13] J. Rodriguez-Andina, M. Moure, and M. Valdes, “Features,
Design Tools, and Application Domains of FPGAs,” IEEE
Transactions on Industrial Electronics, vol. 54, no. 4, pp.
1810–1823, Aug. 2007.

[14] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan,
and M. W. Naouar, “FPGAs in Industrial Control Applica-
tions,” IEEE Transactions on Industrial Informatics, vol. 7,
no. 2, pp. 224–243, 2011.

[15] R. Dubey, Introduction to Embedded System Design Using
Field Programmable Gate Arrays. London: Springer Lon-
don, 2009.

[16] J. S. Dong, Y. Liu, J. Sun, and X. Zhang, “Towards Ver-
ification of Computation Orchestration,” Formal Aspects of
Computing, vol. 26, no. 4, pp. 729–759, 2014.

[17] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard,
“Operational Semantics of a Domain Specific Language for
Real Time Musician–Computer Interaction,” Discrete Event
Dynamic Systems, vol. 23, no. 4, pp. 343–383, Dec. 2013.

[18] Y. Jiang, H. Zhang, Z. Li, Y. Deng, X. Song, M. Gu, and
J. Sun, “Design and Optimization of Multiclocked Embedded
Systems Using Formal Techniques,” IEEE Transactions on
Industrial Electronics, vol. 62, no. 2, pp. 1270–1278, 2015.

[19] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-
time reasoning,” in Proceedings of the 25th annual ACM
symposium on Theory of computing. ACM Press, 1993, pp.
592–601.

[20] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, The
Power of Assertions in SystemVerilog, 2010.

[21] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Mod-
elling and Validation of Concurrent Systems. Springer Berlin
Heidelberg, 2009.

[22] R. Aviziensis, A. Freed, T. Suzuki, and D. Wessel, “Scal-
able Connectivity Processor for Computer Music Perfor-
mance Systems,” in International Computer Music Confer-
ence, 2000.

[23] R. Trausmuth, C. Dusek, and Y. Orlarey, “Using FAUST
for FPGA Programming,” in 9th International Conference on
Digital Audio Effects, 2006, pp. 18–20.

