

# On the advantage of sharing a holdfast: effects of density and occurrence of kin aggregation in the kelp Lessonia berteroana

Nicolás I. Segovia, Julio Vásquez, Sylvain Faugeron, Pilar A. Haye

## ► To cite this version:

Nicolás I. Segovia, Julio Vásquez, Sylvain Faugeron, Pilar A. Haye. On the advantage of sharing a holdfast: effects of density and occurrence of kin aggregation in the kelp Lessonia berteroana. Marine Ecology, 2014, pp.0173-9565. 10.1111/maec.12206 . hal-01136148

## HAL Id: hal-01136148 https://hal.science/hal-01136148

Submitted on 17 Apr 2015  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1        | Or  | n the advantage of sharing a holdfast: effects of density and                                                                        |
|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 2        | oc  | currence of kin aggregation in the kelp Lessonia berteroana                                                                          |
| 3        |     |                                                                                                                                      |
| 4        | Ni  | colás I. Segovia <sup>1</sup> , Julio A. Vásquez <sup>1</sup> , Sylvain Faugeron <sup>2,3</sup> , and Pilar A. Haye <sup>1,4,*</sup> |
| 5        |     |                                                                                                                                      |
| 6        | 1   | Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte & Centro de                            |
| 7        |     | Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile                                                                          |
| 8        | 2   | Centro de Conservación Marina, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile,                            |
| 9        |     | Santiago, Chile                                                                                                                      |
| 10       | 3   | UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités UPMC Univ. Paris 06,                                  |
| 11       |     | Pontificia Universidad Católica de Chile, Universidad Austral de Chile                                                               |
| 12<br>13 | 4   | Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Casilla 160-C, Concepción, Chile               |
| 14       |     |                                                                                                                                      |
| 15       |     |                                                                                                                                      |
| 16       | *C  | orrespondence: Pilar A. Haye, Departamento de Biología Marina, Facultad de Ciencias del                                              |
| 17       | Ma  | r, Universidad Católica del Norte & Centro de Estudios Avanzados en Zonas Áridas                                                     |
| 18       | (Cl | EAZA), Larrondo 1281, Coquimbo, Chile                                                                                                |
| 19       | E-  | mail: phaye@ucn.cl                                                                                                                   |
| 20       |     |                                                                                                                                      |
| 21       | Ru  | nning title: Density and kin in kelp aggregations                                                                                    |
| 22       |     |                                                                                                                                      |
| 23       | Ke  | ywords: fusion of individuals; density dependent; genetic relatedness; kelp; kin                                                     |
| 24       | agg | gregation; kin selection; microsatellites                                                                                            |

#### 25 Abstract

Here we investigate the density-dependent and genetic relatedness that regulate the occurrence 26 of inter-individual (genet) fusion forming plurigenotypic organisms in the brown alga 27 28 Lessonia berteroana. Recruitment generally occurs at high densities in the intertidal, allowing contact of neighbouring holdfasts as they grow and expand on the substrate. Algal density, on 29 30 the other hand, is regulated by the effects of herbivory and wave impact, which often lead to low holdfast density. Herein, we investigated whether the occurrence of plurigenotypic 31 32 organisms and their genotypic composition (number of genotypes per plurigenotypic 33 organism) are density dependent and affected by kin selection in the intertidal kelp L. berteroana. Four microsatellite loci were used to analyse DNA from 260 samples obtained 34 35 from shared and non-shared holdfasts, at two sites with high and two with low holdfast 36 density. Analyses showed that fusions forming plurigenotypic organisms are extremely 37 common. Interestingly, the frequency of fusions was higher in low-density sites, in which 38 100% of the plants had at least two genotypes while the average was 3.5. In high-density sites, 39 62% of plants where plurigenotypic, with an average of 2.8 genotypes per plant. Additionally, 40 we found that genotypes that shared a holdfast had a significantly higher genetic relatedness 41 than on average in the population, compatible with a kin structure. Density dependence and 42 kin structure suggest that the occurrence of plurigenotypic organisms is linked to 43 environmental quality, and that kin or multilevel selection may be favouring the fusion of 44 genetically related genets.

#### 45 Introduction

Different units of relevance for ecological and evolutionary processes can be delineated, 46 such as the population, the family or group of related individuals, the colony, and the 47 48 individual organism. Because most of these units can actually be nested one into the other (e.g. individuals into colonies or families, colonies into populations; see Nachtomy et al. 49 50 2002), the limits of the individual, as a basic ecological and evolutionary unit, are sometimes difficult to define. In fact, individuals of many species live in groups into which 51 52 they find both protection against environmental stresses (e.g. predation) and closeness to 53 other individuals for reproduction. The case of clumps and colonies is particularly interesting because the functional limits between the *genet*, issued from a single fertilized 54 55 egg, and the individual organism that is made of a mixture of different *genets*, are most 56 often indistinguishable. Such findings have stimulated important debate around the concept and definition of the individual and the organism (e.g. Nachtomy et al. 2002; Santelices 57 58 1999; Pepper & Herron 2008). Clumps have been reported in a wide variety of taxa, some of which are algal species (Santelices et al. 1996, 1999, 2003, Wernberg 2005; González & 59 60 Santelices 2008). In red algae, fusion of individuals results in a chimeric, plurigenotypic organism (PO), with complete loss of individual identity (Santelices et al. 1996, 1999; 61 Paine 1990). This process, known as coalescence in red and green algae (not formally 62 63 described in brown algae), is difficult to study in natural populations because it occurs 64 mainly at early microscopic stages (e.g. spores or sporelings; Santelices et al. 1996, 1999; Santelices & Aedo 2006). As a consequence, the factors that regulate the fusion of genets 65 66 have scarcely been explored.

67

Two non-exclusive hypotheses can be proposed to explain the occurrence of fusions

| 68 | at the holdfast level in algal species: (1) fusions are correlated with density of recruits         |
|----|-----------------------------------------------------------------------------------------------------|
| 69 | which, during their development, grow and eventually get in such a close contact with their         |
| 70 | neighbours, that they fuse together (i.e. they integrate their cell lines into a single tissue), or |
| 71 | (2) fusions are regulated by fitness differences between clumped and isolated genets. In the        |
| 72 | first case, fusions are just a density-dependent process whereas selection and adaptation can       |
| 73 | be invoked in the second hypothesis. Evidence based on higher survival rate of aggregates           |
| 74 | compared to isolated individuals of red and brown algae suggest a selective advantage of            |
| 75 | clumping (Santelices & Aedo 2006, Santelices & Alvarado 2008, Wernberg 2005). For                   |
| 76 | instance, holdfast aggregations of the kelp Ecklonia radiata have been observed in higher           |
| 77 | frequency in exposed areas than in more protected ones, suggesting that aggregation                 |
| 78 | reduces mortality from dislodgement in exposed areas (Wernberg 2005).                               |
| 79 | Based on field observations of tagged sporophytes, Vásquez et al. (2008) and                        |
| 80 | Rodriguez et al. (2014) showed that fusions of individuals forming a PO might be recurrent          |
| 81 | in the kelp Lessonia berteroana Montagne (formerly L. nigrescens, González et al. 2012).            |
| 82 | This species dominates the low intertidal rocky shores of Chile and southern Peru                   |
| 83 | (Hoffmann & Santelices 1997) and its structure consists of a massive holdfast attached to           |
| 84 | the rocky substrate. A variable number of stipes emerge from the holdfast. Stipes have              |
| 85 | branches and each branch carries one frond distally. Holdfasts grow vertically and                  |
| 86 | horizontally leading to contact between neighbours that progressively grown and their               |
| 87 | tissues mix forming a single unit that externally mimicks a single organism (Vásquez et al.         |
| 88 | 2008). A simple expectation from this growth pattern is that the rate at which genets fuse          |
| 89 | increases with density (Rodriguez et al. 2014). However, if fusions confer some kind of             |
| 90 | advantage under stressful environmental conditions, then the occurrence of fusions should           |

increase when the environment moves away from optimal conditions for the species. 91 92 To test these predictions, we quantified the number of different genets (i.e. multilocus microsatellite genotypes) per plant (stipes and fronds of a single holdfast) of L. 93 94 berteroana under two contrasting density of holdfasts in one natural population. In L. berteroana, density variability, spatial distribution, establishment of new 95 96 recruits, mortality rates, and growth patterns are regulated mainly by herbivory, wave impact and intraspecific competition for hard substrate (Ojeda & Santelices 1984; 97 98 Santelices & Ojeda 1984). The strength of these three selective agents differs in association 99 with distance between holdfasts. Net recruitment of *L. berteroana* is reduced in the 100 presence of herbivores (e.g. chitons and urchins) (Camus 1994; Ojeda & Santelices 1984), 101 while distance between holdfasts enhances herbivory (Vásquez & Santelices 1990). This 102 patterns result in a general negative relationship between kelp coverage and herbivore 103 abundance (Broitman et al. 2001), and pinpoint herbivory as a strong density dependent 104 selective pressure on *L. berteroana*. Wave impact is another major cause of mortality in benthic algae (Dayton et al. 1984; Vadas et al. 1990) that is considered a selective agent 105 106 driving morphological and physiological adaptation (Vásquez 1992; Blanchette 1997; 107 Martínez & Santelices 1998). Wave impact also imposes a high dynamic pressure that can 108 produce dislodgement or removal of settled plants (Vadas et al. 1990, 1992). In close 109 holdfast proximity, the interaction between water motion and the shape of the stipes and 110 fronds produce a wave movement known as the Whiplash Effect (WE, sensu Dayton 1994). Because of the WE, high holdfast density is beneficial for the kelp populations, allowing 111 112 the persistence of new recruits (Ojeda & Santelices 1984). Vásquez (1995) showed that when distance between holdfasts exceeds 2 m, the WE is reduced (i.e. environment is less 113

| 114 | protective), increasing herbivory. Thus, both herbivory and WE have density-dependent           |
|-----|-------------------------------------------------------------------------------------------------|
| 115 | effects in both intertidal and subtidal Lessonia species (e.g. L. trabeculata, Vásquez 1992;    |
| 116 | Vásquez & Buschmann 1997) that lead to greater survival of plants at high holdfast density.     |
| 117 | High holdfast density implies intraspecific competition for substrate and light,                |
| 118 | limiting the settlement of new recruits (Santelices & Ojeda 1984; Andrew & Viejo 1998;          |
| 119 | Steen & Scrosati 2004). In this context, fusions between conspecifics may be seen as a          |
| 120 | way to increase individual density without increasing substrate occupancy and to avoid          |
| 121 | intraspecific competition. This kind of strategy has been found more frequently between         |
| 122 | kin than unrelated individuals (Gerlash et al. 2007, Lizé et al. 2012). For example, plants     |
| 123 | effectively experience strong social interactions and kin recognition to varying                |
| 124 | physiological and morphological responses depending on the identity of the neighbour (de        |
| 125 | Kroon 2007, Biedrzycki et al. 2010, Wu et al. 2013). However, as the Hamilton's (1964)          |
| 126 | rule predicts, fusions may be an adaptive trait only if the benefits overpass the costs, and    |
| 127 | close contact among individuals within a holdfast is likely to induce strong competition        |
| 128 | among them (Novoplansky 2009). This cost can probably be reduced if fusion occurs               |
| 129 | among relatives, so that benefits are expressed in terms of inclusive fitness (i.e. the direct  |
| 130 | contribution of each genotype to the next generation's gene pool plus their indirect            |
| 131 | contribution through the progeny of their relatives). Therefore, if fusion between relatives    |
| 132 | enhances survival rate, then positive kin selection is a likely explanation (File et al. 2013). |
| 133 | In this context fusions between relatives in L. berteroana would be more frequent in low        |
| 134 | environmental qualities (i.e. low density) in were isolated individuals (unigenotypic           |
| 135 | organisms) may not persist.                                                                     |
|     |                                                                                                 |



The goal of this study was to shed light onto the factors that regulate the fusion of

| 137 | genets into a single organism, by assessing genetic diversity of holdfasts at low and high |
|-----|--------------------------------------------------------------------------------------------|
| 138 | plant density and the genotypic relatedness within plants in the kelp L. berteroana.       |
| 139 |                                                                                            |

140 Material and Methods

141

142 Sampling, field measurements, and DNA extraction

143

144 Tissues of *L. berteroana* were sampled in an extensive intertidal kelp bed in Lagunillas, 145 Chile (30°06'S, 71°22'W) on areas showing no evidence of recent kelp harvest. In order to test for density dependence, twelve plants of different sizes were sampled in two sites of 146 low holdfast density (LD: 0.5 to 1 holdfasts/m<sup>2</sup>) and two of high holdfast density (HD: 5 to 147 148 8 holdfasts/ $m^2$ ). We use the term plant to refer to the organism identifiable macroscopically 149 on the shore, and which may be made of either a single or multiple *genets*. 150 From each of the 48 sampled plants, six tissue samples were collected each from a 151 different stipe selected at random, except for some small plants (i.e. less than six stipes). In 152 these cases, the samples were taken from all the available stipes (at least 5). Fresh tissue 153 samples of 2 cm in diameter were collected from the base of fronds avoiding reproductive 154 tissue and epiphytes. Collected pieces were dried using paper towel, placed in sealed individual bags with silica gel, and stored at room temperature until DNA extraction. DNA 155 156 was extracted from 30-40 mg of dried powdered tissue using a slightly modified version of the Cetyltrimethyl Ammonium Bromide (CTAB) DNA extraction that adds Polyvinyl 157 158 Pyrolidone to discard polyphenols (Martínez et al. 2003). Extracted DNA was quantified in a spectrophotometer (NanoDrop Technologies) and kept at -20°C. 159

| 160 | To account for the effect of plant size on the frequency of fusions, three plant-to-         |
|-----|----------------------------------------------------------------------------------------------|
| 161 | plant morphometric values were recorded for each sampled plant: maximum length,              |
| 162 | holdfast diameter and number of stipes. In brown algae growth is highly related to           |
| 163 | microhabitat conditions, thus kelp size is not necessarily related with age. In order to     |
| 164 | consider genet-to-genet morphology, i.e., differences within the plant, for each sampled     |
| 165 | stipe, we recorded the length, diameter, and number of dichotomies.                          |
| 166 |                                                                                              |
| 167 | Informative microsatellite loci determination                                                |
| 168 |                                                                                              |
| 169 | To evaluate which loci were informative for the study, ten DNA samples from different        |
| 170 | plants were randomly picked to explore eight microsatellite loci available for L. berteroana |
| 171 | (Faugeron et al. 2009). PCR's were performed in a final volume of 20 µl with: 1.5 ng of      |
| 172 | DNA, 2 mM of 10X Buffer, 0.6 mM of dNTP mix, 1.8 mM of MgCl <sub>2</sub> , 0.2 mM of each    |
| 173 | primer, 0.075 mg/mL of Bovine Serum Albumin, and 0.2 U of Taq DNA polymerase                 |
| 174 | (Fermentas). Temperature cycling consisted of an initial soak of three min at 95 °C, then 10 |
| 175 | touchdown cycles at 95 °C for 45 sec, 60 °C- 63 °C for 45 sec, and an extension of 45 sec    |
| 176 | at 72 °C. Following, 30 cycles at 95 °C for 45 sec, 50 °C for 45 sec, 72 °C for 45 sec and a |
| 177 | final extension of 72 °C for 7 min. Amplicons were genotyped in an ABI Prism 3700            |
| 178 | (Applied Biosystems) and the electrophenograms were visualized using GeneMarker v.           |
| 179 | 1.81 (SoftGenetics PA, USA).                                                                 |
| 180 | The main criteria for considering loci as informative were the degree of                     |
| 181 | polymorphism in the local population and PCR amplification success. After checking for       |
| 182 | polymorphism, genotypes were analysed in Microchecker 2.2 (Van Oosterhout et al. 2004)       |

| 183 | to determine the probability of null alleles. The probability of finding twice the same     |
|-----|---------------------------------------------------------------------------------------------|
| 184 | multilocus genotype by chance in each site of each density was calculated with Genealex v.  |
| 185 | 6 (Peakall & Smouse 2006). It was considered a sufficient number of informative loci when   |
| 186 | each of the ten analysed DNA samples had different multilocus genotypes.                    |
| 187 |                                                                                             |
| 188 | Multilocus genotype data analyses                                                           |
| 189 |                                                                                             |
| 190 | Any holdfast with more than one multilocus genotype was considered a plurigenotypic         |
| 191 | organism (PO). The effect of size and density was analysed using Generalized Linear         |
| 192 | Mixed Models (GLMMs) with Poisson error implemented in the lme4 package in the              |
| 193 | software R (R Core Team 2013). GLMMs are appropriate for non-normal data influenced         |
| 194 | by fixed and random effects (Bolker et al. 2008; Crawley 2005; Grueber et al. 2011). In     |
| 195 | each model, effects and interaction of plant-to plant morphometric values (MV) (holdfast    |
| 196 | diameter, total length, and total number of stipes) and density (high and low denoted as LD |
| 197 | and HD, respectively) in the occurrence of POs was evaluated using each of the three MV     |
| 198 | as covariables with the Site (St) nested into Density. The correlation between plant length |
| 199 | and holdfast diameter is well known in Lessonia (Santelices 1982; Vásquez & Santelices      |
| 200 | 1984; Vásquez 1991), however, the correlation of these variables and the number of stipes   |
| 201 | is not consistent and only occurs when reproductive stipes are considered (Vásquez 1991).   |
| 202 | Finally, differences in the number of genotypes between densities were evaluated in a       |
| 203 | single GLMM using density (D) as categorical variable following the same structure than     |
| 204 | previous models.                                                                            |
|     |                                                                                             |

Strictly, site has a random effect because all levels of that factor are selected as a

206 random sample from all possible levels (sites) that could be included in the study area 207 (spatial pseudoreplication). So additionally, as an exploratory analysis of the relative importance of the factors in the models, according to the evidence weight of the AIC, the 208 209 site effect was evaluated as explanatory variable with fixed effects, and in interaction with variables that GLMMs showed to have a significant effect on number of genotypes. 210 211 Lastly, Principal Component Analyses (PCA) and Lineal Discriminant Analysis (LDA) were carried out with the log-transformed data of the three genet-to-genet variables 212 213 (length, diameter of the stipe and number of dichotomies) and the three plant-to-plant MV 214 variables (holdfast diameter, total length, number of stipes). The objective of these analyses was to observe possible differences in both densities considering genet-to-genet variance as 215 216 a way to include the morphological differences within the plant and plant-to-plant 217 differences between densities. Both analyses were carried out using MASS package, and the 95% confident ellipses where calculated with ELLIPSE package, both available in 218 219 CRAN R project (R Core Team 2013). 220 Relatedness among fused genets 221 222 To investigate the occurrence of kin aggregations within a PO, we tested whether 223 genotypes sharing a holdfast were genetically closer than on average in the population. This 224 was achieved by comparing the average pairwise coefficient of relatedness R (Ritland 225 1996) of each plant with the average inter-plant pairwise R. The upper limit of the onetailed 95% confidence interval for inter-plant R-values for each site was determined by 226

bootstrapping in R (R Core Team 2013) 10,000 values of mean R among ten randomly

| 228 | sampled (with replacement) pairwise $R$ -values obtained from pairs of genotypes from             |
|-----|---------------------------------------------------------------------------------------------------|
| 229 | different plants. Observed intra-plant mean <i>R</i> -values that were higher than the 95 % limit |
| 230 | were considered representing a significantly higher genetic relatedness than the background       |
| 231 | population.                                                                                       |
| 232 |                                                                                                   |
| 233 | Results                                                                                           |
| 234 |                                                                                                   |
| 235 | Informative microsatellite loci identification                                                    |
| 236 |                                                                                                   |
| 237 | Of the eight explored microsatellite loci, four (Less1T11, Less2D22, Less2D25 and                 |
| 238 | Less2D26) were polymorphic enough to unequivocally identify each of the 10 preliminary            |
| 239 | sampled individuals, and thus were selected to characterize all samples. The probability of       |
| 240 | finding twice the same multilocus genotype by chance using these four loci was 9.07 x $10^{-5}$   |
| 241 | $\pm$ 0.0004 and 0.001 $\pm$ 0.020 for LD and HD, respectively.                                   |
| 242 |                                                                                                   |
| 243 | Fusion of individuals in Lessonia berteroana                                                      |
| 244 |                                                                                                   |
| 245 | Of the 260 tissue samples analysed, from 48 plants, 150 corresponded to different                 |
| 246 | individuals based on multilocus genotypes, which correspond to a total of 39 plurigenotypic       |
| 247 | organisms (81.3% of the sampled holdfasts). There was an average of 3.17 multilocus               |
| 248 | genotypes per plant, of a maximum of six that could be detected with the sampling scheme.         |
| 249 | Only 18.5 $\%$ of the sampled holdfasts showed only one multilocus genotype. On the               |
| 250 | opposite, 22.9 % showed at least five different multilocus genotypes, including small kelps       |
|     |                                                                                                   |

251 (e.g., all five stipes with a different multilocus genotype) (Fig. 1).

252 The evaluation of the effects of plant-to-plant MV using GLMM's revealed that neither total length nor holdfast diameter influenced on the number of genotypes per 253 254 holdfast (df: 41, p = 0.1130 and 0.1891, respectively), even when interacting with density (df: 41, p = 0.0970 and 0.0879, respectively) (Table 1). Interestingly, the number of 255 256 genotypes varied significantly with the number of stipes per holdfast (df: 41, p = 0.00721) with a significant effect of density in this model (df: 41, p = 0.00261), although the 257 258 interaction of density with the MV was not significant (df: 41, p=0.15932) (Table 1). The 259 effect of the size, particularly with the number of stipes as response variable was significant 260 only in HD, while in LD there was no relationship (Fig. 2). Moreover, holdfast density had a significant effect in the average number of genotypes per holdfast (df: 41, p = 0.0036) 261 262 (Table 1). In LD 100% of the holdfasts were plurigenotypic, whereas only 62.5 % at HD. 263 The average number of genotypes was also greater in LD, with 3.54 genotypes/holdfast, 264 versus 2.79 genotypes/holdfast in HD. This suggests that plant density explains the 265 observed data better than MV; a marginal association between number of stipes and 266 number of genotypes can be observed only in HD (Fig. 2). 267 Exploring the relative weights of each factor in the models considering the Site (St) as 268 a fixed predictor, the model of the interaction of Size and Density showed low values in terms of relative weights (according to the AICs), suggesting that density and size did not 269 270 act together as explanatory variables on the occurrence of POs and the number of genotypes

271 per holdfast. Site-to-site density variations seem to explain the differences between the

number of POs and number of genotypes per PO in each model (Fig. 1).

273 In the PCA analyses, using genet-to-genet morphological variables, the first two axes

| 274 | explained 95.67% of the total variance. The first axis was composed by the three variables               |
|-----|----------------------------------------------------------------------------------------------------------|
| 275 | that had similar loadings, and the second axis was mainly of stipe diameter, suggesting that             |
| 276 | the three genet-to-genet variables are associated to morphological variation between                     |
| 277 | densities. The PCA showed two groups with an overlap of few genets that were                             |
| 278 | significantly differentiated (one-way ANOVA; $F_{1,258}$ =52.59, p<10 <sup>-12</sup> ) (Fig. 3). In this |
| 279 | analysis, results showed that genets in LD are in general smaller than in HD. The trend is               |
| 280 | more evident for stipe diameter which tends to be thinner in LD than HD. The LDA                         |
| 281 | approach, with one canonical discriminant function (i.e. two classes HD-LD), showed that                 |
| 282 | the stipe diameter was the variable with the highest discriminant coefficient. This                      |
| 283 | discriminant function was capable to correctly assign 89.7% of the samples to their density.             |
| 284 | Wrong predictions were in almost all the cases (except for one) for HD samples assigned as               |
| 285 | LD. On the other hand, using plant-to-plant MV, the PCA showed only one                                  |
| 286 | undistinguishable group and the LDA could correctly assign the plant to the density of                   |
| 287 | origin in 47.9% of the cases.                                                                            |
| 288 |                                                                                                          |
| 289 | Relatedness analyses                                                                                     |
| 290 |                                                                                                          |
| 291 | From a total of 39 POs, 15 in HD and 24 in LD, 30 (i.e. 77%) displayed an intra-plant mean               |
| 292 | relatedness significantly higher than expected given the inter-plant pairwise relatedness in             |

the population (Table 3). From these 30 holdfasts, 66.6% occurred in HD and 79.16% in

LD. There was strong heterogeneity in intra-plant relatedness: site A in HD (SA-HD) had

the lowest number of plants (three out of seven) with significantly higher mean relatedness

than population level, whereas every PO in the site B (SB-HD) displayed significantly

| 297 | higher intra-plant mean $R$ (Table 3). In LD, where relatedness is more common, most intra-    |
|-----|------------------------------------------------------------------------------------------------|
| 298 | holdfast pairwise R-values are significant with only two and three POs from SA-LD and          |
| 299 | SB-LD, respectively, with values within the expected range of inter-plant values.              |
| 300 |                                                                                                |
| 301 | Discussion                                                                                     |
| 302 |                                                                                                |
| 303 | Occurrence of plurigenotypic holdfasts                                                         |
| 304 |                                                                                                |
| 305 | Our results indicate that the formation of plurigenotypic organisms (POs) in L. berteroana     |
| 306 | is a highly frequent phenomenon. Thirty-nine of the forty-eight analysed plants bared at       |
| 307 | least two different genets. As for a number of red and green coalescing algae (Santelices et   |
| 308 | al. 1999; 2003), fusion of L. berteroana at the holdfast level results in a single macroscopic |
| 309 | organism in which the different genets are indistinguishable (Rodriguez et al 2014). The       |
| 310 | average number of genotypes per holdfasts was surprisingly high, with 11 out of 35 POs         |
| 311 | bearing at least 5 genotypes. Together with the observation that fusions were more frequent    |
| 312 | in low-density (LD) than in high-density (HD) areas, the results indicate that the occurrence  |
| 313 | of fusions is not a simple consequence of holdfast proximity. Therefore, fusions do not        |
| 314 | occur during the plants' ontogeny, but instead as a consequence of reduced space when          |
| 315 | plants grow and the increased distance between plants. Rodriguez et al. (2014), shows that     |
| 316 | the coalescence in L. berteroana is a continuous process in which recruits may fuse with       |
| 317 | other isolated recruits, groups or even in and between adults and senescent plants             |
| 318 | (Rodriguez et al. 2014).                                                                       |
| 319 | This has been proved to explain the early benefits of coalescence in microscopic stages of     |

| 320 | red algae (Santelices et al. 1996; Santelices & Aedo 2006), which show a positive                  |
|-----|----------------------------------------------------------------------------------------------------|
| 321 | relationship between the number of coalescing spores and the probability of survivorship           |
| 322 | (Santelices et al. 1999; Santelices 2001; 2004). Small plants (i.e. less than 5 stipes) of L.      |
| 323 | berteroana were found at both densities, but in LD every small plant is formed of up to five       |
| 324 | multilocus genotypes, giving further support for the early selection of PO's against               |
| 325 | unigenotypic organisms in LD. On the other hand, high densities seem to result from the            |
| 326 | survival of both uni- and pluri-genotypic organisms, at least during early stages.                 |
| 327 | There are three main ways of coalescing at the microscopic stages of kelps: (1)                    |
| 328 | aggregated settlement of spores within a few mm <sup>2</sup> producing a single PO when observable |
| 329 | by naked eye; (2) recruitment of spores on top of established holdfasts; and (3) vegetative        |
| 330 | ramification of the female gametophyte that then produces multiple eggs (Avila et al.              |
| 331 | 1985) that could be fertilized by different males. This study was not designed to                  |
| 332 | discriminate among these possibilities. However, two major findings of this study allow            |
| 333 | inferring on the causes of the fusions. On one hand, aggregated settlement should vary             |
| 334 | among sites and be negatively correlated to population density in order to explain the             |
| 335 | higher occurrence of PO in LD than in HD. On the other hand, multiple paternities in a             |
| 336 | single ramified female gametophyte should create half-sibs relatedness, increasing the             |
| 337 | degree of genetic relatedness among genotypes within a plant, compared to the population.          |
| 338 | Alternatively, both aggregated and non-aggregated settlements occur everywhere, but only           |
| 339 | closely settled gametophytes survive and reproduce. These points are discussed in the              |
| 340 | following sections.                                                                                |
| 341 |                                                                                                    |

342 Fusions of individuals as an environmentally mediated process

| 344 | The occurrence of intraspecific fusion in L. berteroana seems strongly correlated with             |
|-----|----------------------------------------------------------------------------------------------------|
| 345 | environmental quality, as well as in other kelps (Wernberg 2005, Malm & Kausky                     |
| 346 | 2004). Indeed, differences in population density of <i>L. berteroana</i> result from environmental |
| 347 | quality, which is heterogeneous, and optimal conditions favour high densities. However,            |
| 348 | the negative correlation between holdfast density and occurrence of POs strongly suggests          |
| 349 | that POs have certain advantages over non-PO in sub-optimal conditions, i.e. in low-density        |
| 350 | areas. Unigenotypic organisms only occur at HD accounting for 75% of the small plants              |
| 351 | with less than five stipes, suggesting that the optimal environmental conditions allow             |
| 352 | recruitment and survival of the different kinds of organisms (uni- and plurigenotypic), as         |
| 353 | opposed to LD. Similar results were obtained by Malm & Kausky (204) in Fucus                       |
| 354 | vesiculosus in which the proportion of fused individuals was greater in wave exposed areas.        |
| 355 | In addition to that, our ordination analyses interestingly showed that plant density could be      |
| 356 | effectively differentiated according to the morphology of the stipes. As is suggested by           |
| 357 | Novoplasnky (2009), plant morphology can be modified as a response to competition in               |
| 358 | contrasting densities.                                                                             |
| 359 | Our results suggest that the quality of the environment on L. berteroana influences                |
| 360 | both the occurrence and composition of the POs and the stipe-to-stipe intra-plant                  |

361 morphology. High density implies intraspecific competition for substrate and light.

362 Concordantly, a positive correlation between mortality of recruits and plant density has

- been reported for other algae (e.g. of the genus *Fucus*, Steen & Scrosati 2004). As the
- 364 presence of adult conspecific inhibit recruitments (Santelices & Ojeda 1984), fusion poses
- 365 an additional challenge to each individual genotype, by potentially adding intra-plant

| 366 | competition on top of intra-population competition. A precise evaluation of intra-specific   |
|-----|----------------------------------------------------------------------------------------------|
| 367 | competition between genets within and between plants is necessary to further understand      |
| 368 | the balance between both the environmental quality and the intraspecific competition.        |
| 369 | Finally, our results add complexity to demographic studies in L. berteroana that             |
| 370 | thus far have considered the whole plant as the individual entity (e.g. Santelices & Ojeda   |
| 371 | 1984, Ojeda & Santelices 1984). Our finding suggests than rather than the whole plant, it is |
| 372 | important to consider the stipes, which take into account possible differences between       |
| 373 | genets into the clump.                                                                       |
| 374 |                                                                                              |
| 375 | Kin aggregation                                                                              |
| 376 |                                                                                              |
| 377 | An important result of this study was the observation that genotypes sharing a holdfast      |
| 378 | were more genetically related than on average in the population. This kin aggregation is not |
| 379 | expected under the paradigm of stochastic spore settlement (i.e. with no choice of the       |
| 380 | settlement site). However, kin aggregation is increasingly being detected in coastal species |
| 381 | including sessile (Veliz et al. 2006) and mobile invertebrates (Selkoe et al. 2006),         |
| 382 | evidencing that mixing of propagules in the water column is less extensive than previously   |
| 383 | considered.                                                                                  |
| 384 | At least three non-exclusive hypotheses could explain this strong trend, each as             |
| 385 | post-settlement processes. First, higher R-values can result from fusions between            |
| 386 | sporophytes sharing the same mother and multiple fathers (siblings or half-siblings).        |
| 387 | Vegetative ramification and multiple egg production of the female gametophyte is a           |
| 388 | common process in Laminariales (Muñoz et al. 2004; Nelson 2004). To determine whether        |

389 genotypes do correspond to full or half-sibs, a higher number of loci would be required in 390 order to reduce the large sampling variance that lowers the precision of estimated relatedness (Lynch & Ritland 1999). Second, dispersal and settlement may be non-random. 391 392 Kin-structured dispersal (the joint dispersal of seeds or juveniles that come from a same 393 family or a same mother) is an example of process that leads to kin aggregation in the adult 394 stage. It explains some cases of small-scale genetic structure in plants (Torimaru et al. 2007) and genetic patchiness in marine invertebrates (Johnson & Black 1982). Such 395 396 dispersal modes have been reported in some seaweeds that bear unitary reproductive organs 397 like the cystocarp in red algae, which can release bunches of spores surrounded by their maternal mucilage that keeps the spores together until settlement (Aedo 2007). This 398 399 phenomenon seems unlikely to apply to kelps, which release motile spores individually that 400 can hardly maintain proximity with their relatives because of the turbulence of the coastal 401 waters were they are released.

402 The third hypothesis argues that dispersal and settlement are random but survival of 403 the young sporophytes is determined by the genetic relatedness of the surrounding 404 individuals. If fusions between genets are environmentally mediated, it is possible that the 405 aggregation between relatives provides higher benefits to the PO than non-kin aggregates 406 would. This scenario is possible whenever intra-plant competition is reduced by the genetic 407 relatedness of individuals sharing the holdfast. This is particularly noteworthy because it 408 opens to a potential role of selection in determining the occurrence of kin aggregations 409 within plants. It is not necessarily kin selection, as it is known for social animal species, 410 particularly because the existence of high relatedness between interacting individuals is not by itself sufficient evidence that kin selection is the driving force (Griffin & West 2002). In 411

| 412 | the case of L. berteroana, genotypes within a kin aggregate may have a higher survival up        |
|-----|--------------------------------------------------------------------------------------------------|
| 413 | to the adult stage than those within non-kin aggregates, as evidenced by the predominance        |
| 414 | of PO in low-density areas, suggesting that kin aggregation brings fitness advantages over       |
| 415 | random interaction. In this context, every life history trait that favours the fusion between    |
| 416 | relatives to form PO should be selected for, including traits at the group level (File et al.    |
| 417 | 2013). Such multilevel selection (Wilson 1997) on group-living traits in kelps is an             |
| 418 | interesting and testable hypothesis that emerges from the pattern observed in this study.        |
| 419 |                                                                                                  |
| 420 | Perspective: Fusion of individuals as an adaptive strategy                                       |
| 421 |                                                                                                  |
| 422 | Traditionally, L. berteroana has been considered as a unitary, aclonal species (sensu            |
| 423 | Santelices 1982), wherein each plant corresponds to one individual (e.g. Ojeda & Santelices      |
| 424 | 1984; Santelices & Ojeda 1984). Here, we showed that one organism, made of a single              |
| 425 | holdfast and a variable number of stipes and fronds can be composed of one or more               |
| 426 | individuals, and large kelps are most likely colonies of different genets. As several other      |
| 427 | intertidal species of red or green algae share this fusion capacity, it is possible that the     |
| 428 | phenomenon of coalescence in algae is an adaptation to highly stressful and heterogeneous        |
| 429 | environments such as the marine intertidal rocky shore. Direct benefits (i.e. higher survival,   |
| 430 | protection of the recruits) to the individual genet when integrated within a PO lead to the      |
| 431 | question whether fusion or coalescence is an adaptive strategy. This may be difficult to         |
| 432 | answer because it requires characterizing traits of the PO that influence the individual         |
| 433 | genet, as well as the relative contribution of PO's traits and individual genets traits to the   |
| 434 | fitness of the genet. It requires also measuring the exact costs and benefits of being part of a |

PO. So far, we have shown that the number of stipes of the PO is correlated with the
number of genotypes, and in LD stipes tend to be thinner than HD. The number of stipes is
a good indicator of the reproductive potential in *L. berteroana* (Santelices & Ojeda 1984),
and therefore the observed morphological differences could mean fitness differences in
terms of reproductive success.

440 At the individual level, the higher number of stipes in PO may indicate that the trade-off between sharing the holdfast and the opportunity to produce external structure (the stipes) 441 442 is reduced, as opposed to a situation in which the number of stipes would be fixed by 443 external factors. The predominance of POs in low density areas suggests that benefits largely exceed the eventual costs of sharing a holdfast, despite that plants tends to be 444 445 smaller in low- than in high-density areas. Better evaluation of these trade-offs (e.g. by 446 quantifying the number of stipes that each genotype is able to produce within a shared 447 holdfast, compared to a solitary holdfast) would allow an exact assessment of these costs 448 and benefits at the individual level.

449 Santelices (1999) showed that genetic homogeneity and uniqueness as well as 450 physiological autonomy of algae, are relevant criteria to define an individual. In this 451 context, the limits of an individual, as a functional basic unit of organization, may vary 452 according to the questions and approaches that focus on the model organism (Pepper & 453 Herron 2008). For example, ramets, clones, colonies and clumps can be defined as 454 individual organisms, although none of these would fit into the more traditional unitary organism concept (Santelices 1999). While an important debate still holds around universal 455 456 definitions of individual and organism (Nachtomy et al. 2002; Santelices 1999, Pepper & Herron 2008 among others), the ecological and evolutionary implications of different ways 457

| 458 | of organization have received relatively little attention. The propensity of most species to |
|-----|----------------------------------------------------------------------------------------------|
| 459 | form groups has been considered as an adaptation that may maximize the inclusive fitness     |
| 460 | of the individual-genotype. The adaptation of these concepts traditionally used in social    |
| 461 | animals to non-animal models is a most challenging perspective of the study of               |
| 462 | plurigenotypic organisms.                                                                    |
| 463 |                                                                                              |
| 464 | Acknowledgements                                                                             |
| 465 | The authors thank Alonso Vega, Nicole Piaget, Alfonso Gonzalez, Horacio Bastías and          |
| 466 | Cristian Jofré for fieldwork assistance; Raúl Vera and Javier Tapia for laboratory           |
| 467 | assistance; Marcelo Rivadeneira, Jacqui Shykoff and Florence Tellier, for valued comments    |
| 468 | that improved this manuscript. This study was partially supported by FONDECYT                |
| 469 | 1090742 to SF and CEAZA and INCAR (FONDAP 15110027) to PH.                                   |
| 470 |                                                                                              |
| 471 | References                                                                                   |
| 472 | Aedo D. (2007) Esporas de algas rojas coalescentes y no coalescentes: diferencias            |
| 473 | funcionales y factores ambientales afectado la coalescencia. Doctoral Thesis,                |
| 474 | Departamento de Ciencias Biológicas, Pontificia Universidad Católica de Chile,               |
| 475 | Santiago, Chile.                                                                             |
| 476 | Andrew N.L., Viejo R.M. (1998) Effects of wave exposure and intraspecific density on the     |
| 477 | growth and survivorship of Sargassum muticum (Sargassaceae: Phaeophyta).                     |
| 478 | European Journal of Phycology, <b>33</b> , 251-258.                                          |
| 479 | Avila M., Hoffmann A.J., Santelices B. (1985) Interacciones de temperatura, densidad de      |
| 480 | flujo fotónico y fotoperiodo sobre el desarrollo de etapas microscópicas de Lessonia         |
|     |                                                                                              |

- 481 *nigrescens* (Phaeophyta, Laminariales). *Revista Chilena de Historia Natural*, 58, 71482 82.
- Biedrzycki M., Jilany T., Dudley S., Bais H. (2010) Root exudates mediate kin recognition
  in plants. *Communicative & Integrated Biology*, 3, 1–8.
- Blanchette C.A. (1997) Size and survival of intertidal plants in response to wave action: A
  case study with *Fucus gardneri*. *Ecology*, **78**, 1563-1578.
- 487 Bolker B.M., Brooks M.E., Clarck C.J., Geange S.W., Poulsen J.R., Henry M., White J.S.S.
- 488 (2008) Generalized linear mixed models: a practical guide for ecology and evolution.
  489 *Trends in Ecology and Evolution*, 24, 127-135.
- 490 Broitman B.R., Navarrete S.A., Smith F., Gaines S.D. (2001) Geographic variation of
- 491 southeastern Pacific intertidal communities. *Marine Ecology Progress Series*, 224,
  492 21-34.
- 493 Camus P. (1994) Recruitment of intertidal kelp *Lessonia nigrescens* Bory in northern Chile:
- 494 successional constraints and opportunities. *Journal of Experimental Marine Ecology*,
- **184**, 171-181.
- 496 Crawley M.J. (2005) Statistics: an introduction using R. Wiley, New York
- 497 Dayton P.K. (1974) Experimental evaluation of ecological dominance in a rocky intertidal
  498 algal community. *Ecological Monographs*, 45, 137-159.
- 499 Dayton P.K., Currie V., Gerrodette T., Keller B., Ronsenthal R., Tresca D.V. (1984) Patch
- 500 dynamics and stability of some southern California kelp communities. *Ecological*
- 501 *Monographs*, **54**, 253-289.
- 502 de Kroon H. (2007) Ecology: how do roots interact? *Science*, **318**, 1562–1563.

| 503 | Faugeron S., Véliz D., Peralta G., Tapia J., Tellier F., Billot C., Martínez E. (2009)  |
|-----|-----------------------------------------------------------------------------------------|
| 504 | Development and characterization of nine polymorphic microsatellite markers in the      |
| 505 | Chilean kelp Lessonia nigrescens. Molecular Ecology Resources, 9, 937-939.              |
| 506 | Gerlach G., Hodgins-Davis A., MacDonald B., Hannah R. (2007) Benefits of kin            |
| 507 | association: related and familiar zebrafish larvae (Danio rerio) show improved          |
| 508 | growth. Behavioral Ecology and Sociobiology, 61, 1765–1770.                             |
| 509 | González A.V., Santelices B. (2008) Coalescence and chimerism in Codium (Chlorophyta)   |
| 510 | from central Chile. Phycologia, 47, 468–476.                                            |
| 511 | González A., Beltrán J., Hiriart-Bertrand L., Flores V., de Reviers B., Correa J.A.,    |
| 512 | Santelices B. (2012) Identification of cryptic species in the Lessonia nigrescens       |
| 513 | complex (Phaeophyceae, Laminariales). Journal of Phycology. 48, 1153–1165.              |
| 514 | Griffin A.S., West S.A. (2002) Kin selection: fact and fiction. Trends in Ecology and   |
| 515 | Evolution, <b>17</b> , 15-21.                                                           |
| 516 | Grueber C.E., Nakagawa S., Laws R.J., Jamieson I.G. (2011) Multimodel inference in      |
| 517 | ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24,   |
| 518 | 699–711.                                                                                |
| 519 | Hamilton W.D. (1964) The genetical evolution of social behaviour. I. Journal of         |
| 520 | Theoretical Biology, 7,1–16.                                                            |
| 521 | Hoffmann A.J., Santelices B. (1997) Flora Marina de Chile Central. Ediciones Pontificia |
| 522 | Universidad Católica de Chile, Santiago.                                                |
| 523 | Johnson M.S., Black R. (1982) Chaotic genetic patchiness in an intertidal limpet,       |
| 524 | Siphonaria sp. Marine Biology, 70, 157-164.                                             |
| 525 | Lizé A., Khidr S.K., Hardy I.C.W. (2012) Two components of kin recognition influence    |

| 526 | parasitoid aggression in resource com- petition. Animal Behaviour, 83, 793-799.            |
|-----|--------------------------------------------------------------------------------------------|
| 527 | Lynch M., Ritland K. (1999) Estimation of pairwise relatedness with molecular markers.     |
| 528 | Genetics, <b>152</b> , 1753-1766.                                                          |
| 529 | Malm T., KautskyL. (2004) Are Bladderwrack (Fucus vesiculosus L.) holdfasts that           |
| 530 | support several fronds composed of one or several genetic individuals? Aquatic             |
| 531 | Botany, <b>80</b> , 221-226.                                                               |
| 532 | Martínez E., Santelices B. (1998) Selective mortality on haploid and diploid microscopic   |
| 533 | stages of Lessonia nigrescens Bory (Phaeophyta, Laminariales. Journal of                   |
| 534 | Experimental Marine Biology and Ecology, 229, 219-239.                                     |
| 535 | Martínez E., Cárdenas L., Pinto R. (2003) Recovery and genetic diversity of the intertidal |
| 536 | kelp Lessonia nigrescens (Phaeophyceae) 20 years after EL NIÑO 1982/83. Journal            |
| 537 | of Phycology, <b>39</b> , 504-508.                                                         |
| 538 | Muñoz V., Hernandez-Gonzalez M.C., Buschmann A., Graham M.H., Vásquez J.A. (2004)          |
| 539 | Variability in per capita oogonia and sporophyte production from giant kelp                |
| 540 | gametophytes (Macrocystis pyrifera, Phaeophyceae). Revista Chilena de Historia             |
| 541 | Natural, <b>77</b> , 639-647.                                                              |
| 542 | Nachtomy O., Shavit A., Smith J. (2002) Leibnizian organisms, nested individuals, and      |
| 543 | units of selection. Theory in Biosciences, 121, 205-230.                                   |
| 544 | Nelson W.A. (2004) Life history and growth in culture of the endemic New Zealand kelp      |
| 545 | Lessonia variegata J. Agardh in response to differing regimes of temperature,              |
| 546 | photoperiod and light. Journal of Applied Phycology, 17, 23-28.                            |
| 547 | Novoplansky A. (1998) Picking battles wisely: plant behaviour under competition. Plant,    |
| 548 | Cell and Environment, <b>32</b> , 726-741.                                                 |
|     |                                                                                            |

| 549 | Ojeda F.P., Santelices B. (1984) Ecological dominance of Lessonia nigrescens              |
|-----|-------------------------------------------------------------------------------------------|
| 550 | (Phaeophyta) in central Chile. Marine Ecology Progress Series, 16, 83-91.                 |
| 551 | Paine R. (1990) Benthic macroalgal competition: Complications and consequences. Journal   |
| 552 | of Phycology, <b>26</b> , 12-17.                                                          |
| 553 | Peakall R., Smouse P. (2006) GENEALEX 6: genetic statistic analysis in Excel. Population  |
| 554 | genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.          |
| 555 | Pepper J.W., Herron M.D. (2008) Does Biology Need an Organism Concept? Biological         |
| 556 | Reviews, 83, 621-627.                                                                     |
| 557 | R Core Team. (2013) R: a language and environment for statistical computing. R            |
| 558 | Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/.         |
| 559 | Ritland K. (1996) Estimators for pairwise relatedness and individual inbreeding           |
| 560 | coefficients. Genetics Research, 67,175-185.                                              |
| 561 | Rodriguez D, Oróstica M.H, Vásquez J.A. (2014) Coalescence in wild organisms of the       |
| 562 | intertidal population of Lessonia berteroana in northern Chile: management and            |
| 563 | sustainability effects. Journal of Applied Phycology, 26, 1115–1122                       |
| 564 | Santelices B. (1982) Bases biológicas para el manejo de Lessonia nigrescens               |
| 565 | (Phaeophyta Laminariales) en Chile Central. Monografías Biológicas, 2, 135-150.           |
| 566 | Santelices B. (1999) How many kind of individuals are there? Trends in Ecology and        |
| 567 | Evolution, 14, 152-155.                                                                   |
| 568 | Santelices B. (2001) Implications of clonal and chimeric-type thallus organization on     |
| 569 | seaweed farming and harvesting. Journal of Applied Phycology, 13, 153-160.                |
| 570 | Santelices B. (2004) A comparison of ecological responses among aclonal (unitary), clonal |
| 571 | and coalescing macroalgae. Journal of Experimental Marine Biology and Ecology,            |

**300**, 31-64.

- 573 Santelices B., Aedo D., Hormazabal M., Flores V. (2003) Field testing of inter- and
- 574 intraspecific coalescence among mid-intertidal red algae. *Marine Ecology Progress*575 *Series*, **250**, 91-103.
- Santelices B., Aedo D. (2006) Group recruitment and early survival of *Mazzaella laminarioides*. *Journal of Applied Phycology*, **18**, 583-589.
- 578 Santelices B., Alvarado L. (2008) Demographic consequences of coalescence in sporeling
- populations of *Mazzaella laminaroides* (Gigartinales, Rhodophyta). *Journal of Applied Phycology*, 44, 624-636.
- 581 Santelices B., Correa J., Meneses I., Aedo D., Varela D. (1996) Sporeling coalescence and
- intraclonal variation in *Gracilaria chilensis* (Gracilariales, Rhodophyta). *Journal of Phycology*, **32**, 313-322.
- Santelices B., Correa J., Aedo D., Flores V., Hormazabal M., Sanchez P. (1999)
- 585 Convergent biological processes in coalescing Rhodophyta. *Journal of Phycology*,
  586 **35**, 1127-1149.
- 587 Santelices B., Ojeda F.P. (1984) Recruitment, growth and survival of Lessonia nigrescens

588 (Phaeophyta) at various tidal levels in exposed habitats of central Chile. *Marine*589 *Ecology Progress Series*, 19, 73-82.

- 590 Selkoe K.A., Gaines S.D., Caselle J.E., Warner R.R. (2006) Current shifts and kin
- aggregation explain genetic patchiness in fish recruits. *Ecology*, **87**, 3082–3094.
- 592 Steen H., Scrosati R. (2004) Intraspecific competition in *Fucus serratus* and *F. evanescens*
- 593 (Phaeophyceae: Fucales) germings: effects of settlement density, nutrient
- concentration, and temperature. *Marine Biology*, **144**, 61-70.

| 595 | Torimaru T., Tani N., | Tsumura Y. | ., Nishimura N., | Tomaru N ( | (2007) | ) Effects of kin- |
|-----|-----------------------|------------|------------------|------------|--------|-------------------|
|-----|-----------------------|------------|------------------|------------|--------|-------------------|

- structured seed dispersal on the genetic structure of the clonal dioecious shrub *Ilex leucoclada. Evolution*, **61**, 1289-1300.
- <sup>598</sup> Vadas R.L., Wright A.W., Miller S.L. (1990) Recruitment of *Ascophyllum nodosum*: wave

action as a source of mortality. *Marine Ecology Progress Series*, **61**, 263-272.

- Vadas R.L., Johnson S., Norton T.A. (1992) Recruitment and mortality of early t-settlement
  stages of benthic algae. *British Phycological Journal*, 27, 331-351.
- Van Oosterhout C., Hutchisnson W.F., Willis D.P.M., Shipley P. (2004) Micro-checker:
- software for identifying and correcting genotyping errors in microsatellite data.
- 604 *Molecular Ecology Notes*, **4**, 535–538.
- 605 Vásquez J.A. (1991) Variables morfométricas y relaciones morfológicas de Lessonia
- 606 trabeculata Villouta & Santelices 1984, en poblaciones submareales del Norte de

607 Chile. *Revista Chilena de Historia Natural*, **64**, 271-279.

- 608 Vásquez J.A. (1992) *Lessonia trabeculata*, a subtidal bottom kelp in northern Chile: a case
- of study for a structural and geographical comparison. In Coastal communities of

610 Latin America. U. Seeliger (Ed) Academic Press Inc., San Diego.

- 611 Vásquez J.A. (1995) Ecological effect of brown seaweed harvesting. *Botanica Marina*, 38,
  612 251-257.
- 613 Vásquez J.A., Buschmann A. (1997) Herbivory-kelp interactions in subtidal Chilean
  614 communities: a review. *Revista Chilena de Historia Natural*, **70**, 41-52.
- 615 Vásquez J.A., Santelices B. (1984) Comunidades de macroinvertebrados en discos de
- adhesion de Lessonia nigrescens en Chile central. Revista Chilena de Historia
- 617 *Natural*, **57**, 131-154.

- Vásquez J.A., Santelices B. (1990) Ecological effects of harvesting *Lessonia* (Laminariales,
  Phaeophyta) in central Chile. *Hydrobiologia*, 204, 41-47.
- 620 Vásquez J.A., Tala F., Vega J.M.A., Zuñiga S., Edding M., Piaget N. (2008) Bases
- 621 ecológicas y evaluación de usos alternativos para el manejo de praderas de algas
- 622 pardas de la III y IV regiones. *Final Report FIP* 2005-22.
- 623 Veliz D., Duchesne P., Bourget E., Bernatchez L. (2006) Genetic evidence for kin
- aggregation in the intertidal acorn barnacle (*Semibalanus balanoides*). *Molecular Ecology*, 15, 4193–4202.
- 626 Venegas M., Tala F., Fonck E., Vásquez J.A. (1992) Sporangial sori on stipes of *Lessonia*
- 627 *nigrescens* Bory (Laminareacea, Phaeophyta): a high frequency phenomenon in
- 628 intertidal populations of northern Chile. *Botanica Marina*, **35**, 573-578.
- 629 Wernberg T., Kendrick G.A., Toohey B.D. (2005) Modification of the physical
- environment by an *Ecklonia radiata* (Laminariales) canopy and implications for
  associated foliose algae. *Aquatic Ecology*, **39**, 419-430.
- 632 Wernberg T. (2005) Holdfast aggregation in relation to morphology, age, attachment and
- drag for the kelp *Ecklonia radiata*. Aquatic Botany, **82**, 168-180.
- Wilson D.S. (1997) Introduction: multilevel selection comes of age. *American Naturalist*,
  150, S1-4.
- 636 Wu C.C., Diggle P.K., Friedman W.E. (2013) Kin recognition within a seed and the effect
- 637 of genetic relatedness of an endosperm to its compatriot embryo on maize seed
- 638 development. *Proceedings of the National Academy of Sciences*, **110**, 2217-2222.
- 639

| 640 | Table | captions |
|-----|-------|----------|
|     |       |          |

| 642 | Table 1. Summary of the GLMM models using morphometric values of the plants. Table                  |
|-----|-----------------------------------------------------------------------------------------------------|
| 643 | shows the result of comparing high holdfast density (HD) with the other levels of the               |
| 644 | factor. Ng: Number of genotypes; D: Density; St: sites; AIC: Akaike Information Criterion.          |
| 645 | * Significant values ( $p < 0.05$ ).                                                                |
| 646 |                                                                                                     |
| 647 | <b>Table 2:</b> Summary of the GLMM model testing the effect of Density (D) on the Number of        |
| 648 | Genotypes (Ng). St: sites; AIC: Akaike values; k: number of variables. * Significant values         |
| 649 | (p < 0.05).                                                                                         |
| 650 |                                                                                                     |
| 651 | Table 3. Estimates of intra- and inter-plant pairwise relatedness <i>R</i> -values. The name of the |
| 652 | sampled plant with more than one genotype is between brackets after each $R$ -value. *              |
| 653 | Indicates values significantly higher than expected from one-tailed 95% confidence interval         |
| 654 | of mean inter-plant pairwise <i>R</i> -values.                                                      |
| 655 |                                                                                                     |
| 656 | Figure Captions                                                                                     |
| 657 |                                                                                                     |
| 658 | Fig. 1. Box-plot of number of multilocus genotypes per plant detected at two sites with             |
| 659 | high (SA-HD and SB-HD) and two with low holdfast densities (SA-LD and SB-LD) in                     |
| 660 | Lessonia berteroana. Dashed horizontal line indicates total average of multilocus                   |
| 661 | genotypes in both densities.                                                                        |
| 662 |                                                                                                     |

| 663 | Fig. 2. Relationship between the number of multilocus genotypes per plant and the number |
|-----|------------------------------------------------------------------------------------------|
| 664 | of stipes in high (a) and low (b) holdfast density in Lessonia berteroana.               |

**Fig. 3**. Bivariate plot of scores from principal components 1 (PC1) and 2 (PC2) of a PCA

of the 260 sampled genets of *Lessonia berteroana* and three genet-to-genet morphological

- values of stipes (length, diameter, and number of dichotomies). Blue points for low density
- and orange points for high density; the 95% confidence ellipses for each group are shown.

**Table 1.** Summary of the GLMM models using morphometric values of the plants. Table

- shows the result of comparing high holdfast density (HD) with the other levels of the
- 673 factor. Ng: Number of genotypes; D: Density; St: sites; AIC: Akaike Information Criterion.

| Model                                           | Estimate | Std. Error | Z value | <i>p</i> value <b>5</b> |
|-------------------------------------------------|----------|------------|---------|-------------------------|
| Ng = D x Number of Stipes + St(D) (AIC: 35.79)  |          |            |         | 676                     |
| Intercept                                       | 0.601    | 0.191      | 3.137   | <b>677</b><br>>0.001    |
| Density (HD-LD)                                 | 0.780    | 0.259      | 3.010   | 678<br>0.003*           |
| Number of stipes                                | 0.018    | 0.006      | 2.687   | 679<br>0.007*<br>680    |
| Density High-Low x Number of stipes             | -0.018   | 0.013      | -1.407  | 0.159<br>681            |
| Ng = D x Total length + St(D) (AIC: 37.96)      |          |            |         | 682                     |
| Intercept                                       | 0.527    | 0.297      | 1.772   | 683                     |
| Density (HD-LD)                                 | 0.609    | 0.367      | 1.660   | 6847                    |
| Total length                                    | 0.003    | 0.002      | 1.585   | 685                     |
| Density High-Low x Total length                 | -0.001   | 0.002      | -0.376  | 686                     |
| Ng = D x Holdfast diameter + St(D) (AIC: 38.14) |          |            |         | 687                     |
| Intercept                                       | 0.558    | 0.322      | 1.730   | <b>688</b><br>0.083     |
| Density High-Low                                | 0.622    | 0.364      | 1.706   | <b>689</b><br>0.087     |
| Holdfast diameter                               | 0.028    | 0.021      | 1.313   | 690<br>0.189<br>691     |
| Density High-Low x Holdfast diameter            | -0.011   | 0.023      | -0.466  | 0.641<br>692            |

674 \* Significant values (p < 0.05).

693

- **Table 2:** Summary of the GLMM model testing the effect of Density (D) on the Number of
- 696 Genotypes (Ng). St: sites; AIC: Akaike values; k: number of variables. \* Significant values
- (p < 0.05)

| Model                                  | Estimate | Std. Error | Z value | <b>698</b> ue |
|----------------------------------------|----------|------------|---------|---------------|
| Ng= D + St(D) (AIC: 22.2,df= 5, k = 3) |          |            |         | 699           |
| Intercept                              | 0.9328   | 0.1280     | 7.286   | < 0.001*      |
| Density                                | 0.4535   | 0.1637     | 2.769   | 0.006*        |

**Table 3.** Estimates of intra- and inter-plant pairwise relatedness *R*-values. The name of the
sampled plant with more than one genotype is between brackets after each *R*-value. \*

702 Indicates values significantly higher than expected from one-tailed 95% confidence interval

|                                                                                        | SA-HD          | SB-HD          | SA-LD          | SB-LD          |
|----------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|
| Intra-plant pairwise R-                                                                | 0.046 *        | 0.215 *        | 0.058 *        | 0.065 *        |
| values                                                                                 | (10)           | (5)            | (37)           | (1)            |
|                                                                                        | -0.006         | 0.094 *        | 0.030          | 0.094 *        |
|                                                                                        | (11)           | (7)            | (38)           | (3)            |
|                                                                                        | 0.023          | 0.624 *        | 0.318 *        | 0.077 *        |
|                                                                                        | (24)           | (8)            | (39)           | (4)            |
|                                                                                        | 0.124 *        | 0.233 *        | 0.058 *        | 0.174 *        |
|                                                                                        | (27)           | (15)           | (40)           | (6)            |
|                                                                                        | 0.027          | 0.026 *        | 0.046 *        | 0.049 *        |
|                                                                                        | (28)           | (16)           | (41)           | (13)           |
|                                                                                        | 0.024          | 0.300 *        | 0.892 *        | 0.033          |
|                                                                                        | (32)           | (17)           | (42)           | (22)           |
|                                                                                        | 0.211 *        | 0.088 *        | 0.071 *        | 0.041          |
|                                                                                        | (33)           | (19)           | (43)           | (29)           |
|                                                                                        |                | 0.360 *        | -0.014         | 0.172 *        |
|                                                                                        |                | (20)           | (44)           | (31)           |
|                                                                                        |                |                | 0.077 *        | -0.059         |
|                                                                                        |                |                | (45)           | (34)           |
|                                                                                        |                |                | 0.283 *        | 0.084 *        |
|                                                                                        |                |                | (46)           | (35)           |
|                                                                                        |                |                | 0.478 *        | 0.058 *        |
|                                                                                        |                |                | (47)           | (39)           |
|                                                                                        |                |                | 0.941 *        | 0.338 *        |
|                                                                                        |                |                | (48)           | (50)           |
| One-tailed 95%<br>confidence interval for<br>inter-plant pairwise <i>R</i> -<br>values | -0.123 - 0.029 | -0.149 - 0.020 | -0.169 – 0.046 | -0.144 - 0.042 |

703 of mean inter-plant pairwise *R*-values.

704



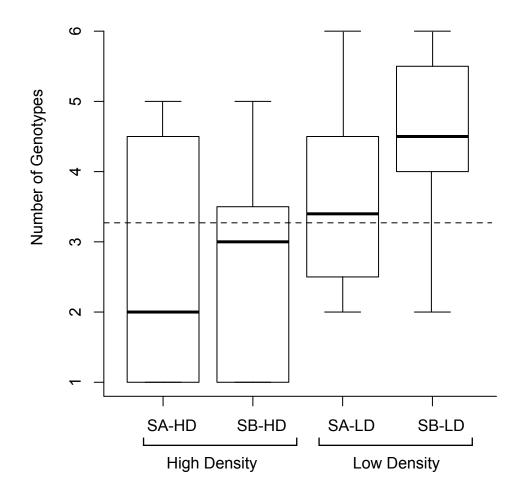
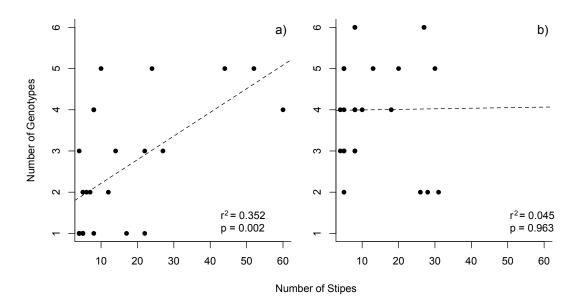
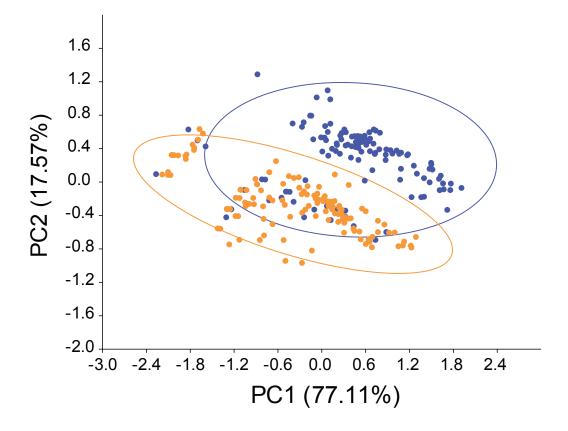





Figure 2



