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Optimal stopping time and halting set for total variation

distance

March 31, 2015

Abstract

An aperiodic and irreducible Markov chain on a finite state space converges to its station-

ary distribution. When convergence to equilibrium is measured by total variation distance,

there exists an optimal coupling and a maximal coupling time. In this article, the maximal

coupling time is compared to the hitting time of a specific state or set. Such sets, named

halting sets, are studied in the case of symmetric birth-and-death chains and in some other

examples. Some applications to the cutoff phenomenon are given. These results yield new

methods to calculate cutoff times for some monotone birth-and death chains without the

lazy hypothesis .

Key words. Markov chains, total variation distance, birth-and-death chains, stochastic
monotonicity, passage time, eigenvalues

1 Introduction

Let X be a finite space, (Xt)t≥0 a discrete or continuous time irreducible Markov chain on X.
Let π be its stationary distribution . For t ≥ 0, denote by πt the distribution of Xt. Let d be a
distance between probability distributions on X. For t ≥ 0, denote by d(t) the distance between
the distribution of Xt and π:

d(t) = d(πt, π)

For A ⊂ X, denote by TA the hitting time of A.

Definition 1.1. A set A ⊂ X is a halting set for the distance d and the Markov chain (Xt)t≥0

if for all t ≥ 0,
d(t) ≤ P(TA > t)

.

If the Markov chain is also aperiodic in the discrete time case, d(t) goes to 0 when t goes
to infinity. The question of non-asymptotic behavior is hard. There are several techniques for
obtaining explicit bounds on d(t) : Fourier analysis, coupling, strong stationnary times, . . .

Several of them use hitting times.

Strong stationary times are allied with separation distance, s(t) = maxx∈X(1 − πt(x)
π(x) ). T a

randomized stopping time is a strong stationary time if T and XT are independent and if the
law of XT is given by the stationary distribution π. In [2], Aldous and Diaconis prove that there
exists a strong stationary time T such that for all t ≥ 0, s(t) = P(T > t). Furthermore, in [7],
Diaconis and Fill construct an absorbing dual Markov chain X∗ such that T is the hitting time
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of an absorbing state for X∗. This is used by Diaconis and Saloff-Coste in [9] for birth-and-death
chain to prove some cut-off results.

Let T be a strong stationary time. A state y∗ is a halting state for T if Xt = y∗ implies T ≤ t
or equivalently if T ≤ Ty∗ . Furthermore, if there exists a halting state for T , then s(t) = P(T > t)
for all t. This is an example of the use of hitting times to obtain bounds on a distance.

In coupling methods, hitting times are very often used to bound P(T > t) where T is the
coupling time. Several examples can be found in the book of Levin, Peres and Wilmer [17] p.65.

In [19], Martinez and Ycart also use hitting times to obtain bounds on the total variation
distance. They prove that in general, the access time to equilibrium and the hitting times tend
to be equivalent, if the process starts “far away”. But the context is different, they consider
continuous time Markov chain on a countable set I and they study ‖δaPt − π‖TV when a goes
to infinity.

In this article, mainly the total variation distance is used, that is:

d(t) = ‖πt − π‖TV := sup
A⊂X

|πt(A)− π(A)| = 1

2

∑

x∈X

|πt(x) − π(x)|

Find some bounds on d(t) is equivalent to bound the mixing time of the chain. For ǫ ∈]0, 1[,
denote by tmix(ǫ), defined by

tmix(ǫ) = min{t ≥ 0/d(t) ≤ ǫ}.

In [17] (theorem 10.14 p 134), the autors established the following theorem for a lazy chain :

tmix(
1

4
) ≤ 2max

x∈X
Eπ[Tx] + 1

In fact, they prove that d(t) ≤
√

Eπ[Tx]
8t where π0 = δx.

In [10], Ding, Lubetzky and Peres prove the following result for a lazy birth-and-death chain
on {0, . . . , N} started at 0,

∀0 ≤ l ≤ N, ∀n ∈ N, ‖πn − π‖TV ≤ P(Tl > n) + π({l + 1, . . . , N}) (1)

So it is a natural idea and often used method to compare the access time to equilibrium with
the hitting time of a given state. This state will depend on the initial state.

One object of this article is to look at “minimal” coupling time for the total variation distance,
mimicking in some meaning what is done for the separation distance. The construction of Aldous
and Diaconis of a randomized stopping time satisfying s(n) = P(T > n) for all n leads naturally to
a strong stationary stopping time. So rewriting what can be found in [14] and [21], a randomized
stopping time T is constructed satisfying d(t) = P(T > t) for all t and the properties of the law
of (XT , T ) lead to the following result:

Theorem 1.2. Let M = {x ∈ X/ ∀t ≥ 0, πt(x) ≤ π(x)}, then M is a halting set for the total
variation distance and the chain (Xt)t≥0.

In the following, we omit to say for the total variation distance and the chain (Xt)t≥0. Of
course if x∗ ∈ M, {x∗} is a halting set and so for all t ≥ 0, d(t) ≤ P(Tx∗ > t), a property to be
compared to (1). A such state is called a halting state.

The difficulty then will be to find halting sets. The first fact is that if we have some property
of monotonicity, a halting set must exist (proposition (3.2).
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Halting sets can be used to prove some results about cutoff. This concepts was intoduced
by Aldous and Diaconis in [1] to describe the fact that many ergodic Markov chains converge
abruptly to their stationary distribution.

Consider a family (X
(N)
n )n≥0 of aperiodic irreducible Markov chains on a finite state space

X(N), each with its stationary distribution π(N)and its distance from stationary d
(N)
n . tN is a

cutoff if
d(N)([ctN ]) −→ 0 if c > 1

d(N)([ctN ]) −→ 1 if c < 1

Diaconis and Saloff-Coste in [9] verified this conjecture for continuous-time birth-and-death
chains, started at an endpoint, with convergence measured in separation.

Ding, Lubetzky and Peres in [10] proved it for continuous-time birth-and-death chains and
lazy discrete-time birth-and-death chains, started at an endpoint, with convergence measured in
total variation. For such chains, the fact that the product of the mixing time and the spectral
gap tends to infinity is equivalent to the fact that the product of the expected value of the hitting
time of the median of the stationary distribution and the spectral gap tends to infinity.

The cutoff depends of the distance. For example, the Ehrenfest process starting at 0 on
{0, . . . , N} has a N lnN

2 separation cutoff but a N lnN
4 total variation and L2 cutoff. The biased

(p; q)-random walk starting at 0 on {0, . . . , N} has a N
p−q total variation and separation cutoff

but a
ln( p

q
)

2(1−2
√
pq)N L2 cutoff.

Recently, Basu, Hermon and Peres in [4], study the link between cutoff and some concentration
of hitting time of “worst” sets of stationary measure at least α, for some α ∈]0, 1[. They prove
that in the case of a lazy reversible irreducible Markov chain, cutoff is equivalent to a notion of
cutoff for hitting times, denoted hitα-cutoff. Here, we use explicit hitting time, the hitting time
of a halting state for total variation.

Recall the definition of a cutoff window :
If (wN ) and (tN ) are two sequences such that wN = o(tN ), one may define that the family of

chain (X
(N)
n )n≥0 exhibits a cutoff at tN with window wN if

limγ→+∞ limN→+∞ d(N)([tN − γwN ]) = 1

limγ→+∞ limN→+∞ d(N)([tN + γwN ]) = 0

A general result can be the following in the discrete time:

Proposition 1.3. Let A(N) be a halting set such that σ(TA(N)) = o(E[TA(N) ]) . Let λA(N) be the
largest eigenvalue of the restriction of the transition kernel of the chain to X \A(N).

If (1− λA(N))E[TA(N) ] goes to infinity when N goes to infinity, then the chain has a cutoff at
time E[TA(N) ] for total variation.

If furthermore, lim(1−λA(N))σ(TA(N)) > 0, then the chain has a cutoff at time E[TA(N) ] with
window σ(TA(N)) for total variation.

The rest of the paper is to determine halting set in several examples, essentialy in the case of
birth-and-death chains. A Markov chain on {0, . . . , 2N+1} on {0, . . . , N} with transitions given
by K = (k(x, y))x,y∈X is symmetric if for all x, y ∈ X , k(N − x,N − y) = k(x, y). An example
of result is the following: In the case of a monotone and symmetric birth-and-death chain on

{0, . . . , 2N + 1}, N + 1 is a halting state for total variation. Furthermore, if 1 = λ0 > λ
(N)
1 >

· · · > λ
(N)
2N+1 are the eigenvalues of the transition kernel and if (1 − λ

(N)
1 )

2N+1∑

k=1

1

1− λ
(N)
k

goes to
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infinity when N goes to infinity, then the chain has a cutoff at time 1
2

2N+1∑

k=1

1

1− λ
(N)
k

for total

variation.
The paper is organized as follows. In section 2, the construction of an optimal randomized

stopping time for the total variation distance for discrete and continuous times markov chains
is given. Section 3 exposes the notion of a halting set for total variation for a chain with an
initial distribution and gives applications to cutoff. In section 4, general results about monotone
birth-and-death Markov chain are given and the case of symmetric monotone birth-and-death
Markov chain is studied. These results are used to prove cutoff in several examples.

2 Optimal stopping time

2.1 Construction of an optimal stopping time in discrete time

This construction is not new but the presentation made here is different from Lindvall’s proof
in [21].

Let (Xn)n≥0 be a Markov chain on a finite space X with a stationary probability π such that
for all x ∈ X , π(x) > 0.

The transition kernel is denoted by K = (k(x, y))x,y∈X . Let π0 be the distribution of X0 and
for n ≥ 1, πn = π0K

n be the distribution of Xn. Let dn = ‖πn − π‖TV be the total variation
distance between πn and π.

We define for n ≥ 0, γn : X → R+ by

γ0(x) = π0 ∧ π(x) and for n ≥ 1, γn(x) = (πn ∧ π)(x) − (πn−1 ∧ π)K(x)

As d(n) = 1−
∑

x∈X

(πn(x) ∧ π(x)), for all n ≥ 1, d(n− 1)− d(n) =
∑

x∈X

γn(x).

By consequence, we are looking for a randomized stopping time T which satisfies for all n ≥ 0,
for all x ∈ X , P(Xn = x, T = n) = γn(x).

Proposition 2.1. Let ∆n be defined by

{
∆0 = π0
∆n+1 = πn+1 − (πn ∧ π)K (2)

Let Ψn be defined for all n ≥ 0 by

ψn(x) =

{
γn(x)
∆n(x)

if ∆n(x) 6= 0

1 if ∆n(x) = 0
(3)

For all n ≥ 0, ψn takes value in [0, 1].
Let (Un)n≥0 be independent variables uniformly distributed on [0, 1], independent of (Xn)n≥0.
Let T be the randomized stopping time defined by T = inf{n ≥ 0 / Un ≤ ψn(Xn)}.
Then ∀n ≥ 1, ∀x ∈ X,

P(Xn = x, T = n) = γn(x) (4)

P(Xn = x, T ≥ n) = ∆n(x),P(Xn = x, T > n) = πn(x) − (πn ∧ π)(x) (5)

P(T > n) = d(n) (6)
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Proof. As 0 ≤ γn ≤ ∆n, ψn takes value in [0, 1] and T is well defined.
We prove (5) inductively :

∆0(x) = π0(x) = P(X0 = x, T ≥ 0)

P(Xn+1 = x, T ≥ n+ 1) =
∑

y∈X
P(Xn = y,Xn+1 = x, T ≥ n, Un > ψn(y))

=
∑

y∈X
(1− ψn(y))P(Xn = y, T ≥ n)k(y, x)

= ((1− ψn)∆n)K(x) = (∆n − ψn∆n)K(x)
= (∆n − γn)K(x) = ∆n+1(x)

The second equality comes from the Markov property and definition of T . (4) and (6) are easy
consequences of (5).

Remark 2.2. ψn is given by the following formulae:

ψn(x) =

{
γn(x)
∆n(x)

= πn∧π(x)−(πn−1∧π)K(x)
πn(x)−(πn−1∧π)K(x) if ∆n(x) 6= 0

1 if ∆n(x) = 0
(7)

Remark 2.3. An alternative definition can be made for the randomized stopping time T .
We define for all n ≥ 0

Jn =

n∏

k=0

(1 − ψk(Xk)) (8)

and T = inf{n ≥ 0/ U ≥ Jn} where U is a random variable uniformly distributed [0, 1] indepen-
dent of (Xn)n≥0.

Remark 2.4. To study distance from stationarity for Markov chains, separation distance has
good properties.

The separation distance is defined by

s(n) := sep(πn, π) = sup
y∈X

s(n, y) where s(n, y) = 1− πn(y)

π(y)

and satisfies d(n) ≤ s(n).
The following result was established by Aldous and Diaconis (1987) :

• If T is a strong stationary time, for all n ∈ N, s(n) ≤ P(T > n).

• Conversly, there exists a strong stationary time T such that there is equality for all n ∈ N.

The construction of the stochastically optimal strong stationary time is the following :

γn(x) = (s(n− 1)− s(n))π(x), so as before
∑

x∈X

γn(x) = s(n− 1)− s(n)

With the method of proposition 2.1 with ψ0(x) = (1 − s(0)) π(x)
π0(x)

on the support of π0, we

obtain P(Xn = x, T = n) = (s(n− 1)− s(n))π(x). So T is an optimal strong stationary time.

Remark 2.5. We see in the preceding remark that in the cases of separation and total variation,
we can construct a randomized stopping time T such that d(n) = P(T > n) for all n ∈ N, the

construction depends of the choice of γn such that
∑

x∈X

γn(x) = d(n− 1)− d(n).
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For example, if for the total variation distance, we take γn(x) = (d(n− 1)− d(n))π(x) as for
separation, we can prove that it does not exist ψn with values in [0, 1] which satifies ∆nψn = γn.

We can deal with others distances and the first condition is to have n→ d(n) decreasing.
For any convex function f : R+ → R, one may define the f -divergence distance on P(E) by

df (µ, π) =
∑

x∈X

π(x)f(
µ(x)

π(x)
).

These measures are studied in [18] by Liese-Vajda.
We suppose that f(1) = 0, so df (µ, π) ≥ 0.
Some examples :

• The total variation distance given by f(x) = 1
2 |x− 1|.

• The relative entropy given by f(x) = x ln(x).

• The Hellinger distance given by f(x) = 1
2 (1 −

√
x)2.

• The χ2 distance given by f(x) = 1
2 (1− x)2.

We note df (n) = df (πn, π).
Let γn : X → R be defined by γn(x) = (πf(πn−1

π ))K − f(πn

π )π. So df (n − 1) − df (n) =∑

x∈X

γn(x). The convexity of f implies that γn(x) ≥ 0.

In all generality, df (n) can be superior to 1 and so it will be impossible to find a randomized
stopping time T such that for all n ≥ 0, P(T > n) = d(n).

So a constant c > 0 and a function ψ0 : X → [0, 1] have to be found such that for all n ≥ 0,

P(Xn = x, T = n) = γn(x)
c = ψn(x)∆n(x).

If we want P(T < +∞) = 1, it is necessary to choose ψ0 such that

1 = P(T = 0) +
∑

n≥1

P(T = n) =
∑

x∈X

ψ0(x)π0(x) +
1

c
df (0)

By mimicking the preceding calculus, for all n ≥ 1,

∆n(x) = πn(x) −
[
(ψ0π0) +

1

c
f(
π0
π
)π

]
Kn(x) +

1

c
f(
πn
π
)π(x) +

1

c
γn(x)

So the condition ∆n ≥ 1
cγn implies that

f(
πn
π
)π ≥ −cπn +

[
c(ψ0π0) + f(

π0
π
)π
]
Kn

In the case where π0 = δx0 , this condition becomes f(πn

π ) ≥ f(0)(1− πn

π ).

But as f(1) = 0 and f is convex, if πn(x)
π(x) ≤ 1, f(πn(x)

π(x) ) ≤ (1− πn(x)
π(x) )f(0).

This implies that f/[0, 1] is affine.
In our examples, the only one is the total variation distance.

2.2 Construction of an optimal stopping time in continuous time

Let Q = (q(x, y))(x,y)∈X×X be the generator of an irreducible positive recurrent Markov chain on
the finite space X.

As before, π0 is a probability measure on X. (Xt)t≥0 is a Markov chain with initial distribution
π0 and generator Q.
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We write πt = π0 exp(tQ) for the distribution of Xt.
Let π be the unique stationary distribution. π is the unique distribution satisfying πQ = 0.
We write d(t) = ‖πt − π‖TV .
Let (Jt)t≥0 be defined by

Jt =

{
0 if ∃s ∈ [0, t], πs(Xs) ≤ π(Xs)

(1 − ψ0(X0))exp
(∫ t

0
(πs∧π)Q(Xs)
πs(Xs)−π(Xs)

ds
)

else
(9)

where ψ0 is defined in (3). Let U be a uniformly distributed on [0, 1] random variable independent
of (Xt)t≥0.

A randomized stopping time T is defined by T = inf{t ≥ 0/ U ≥ Jt}.

Proposition 2.6.

∀t ≥ 0, d(t) = P(T > t) (10)

∀t ≥ 0,P(T ≤ t,Xt = x) = (πt ∧ π)(x) (11)

∀t ≥ 0,P(T ≤ t,XT = x) = (πt ∧ π)(x) −
∫ t

0

(πs ∧ π)Q(x)ds (12)

The distribution ν of (T,XT ) on (R+ ∪ {+∞})× X is given by

ν(ds, x) = (π0 ∧ π)(x)δ0(s) + (1πs(x)<π(x)πsQ(x)− (πs ∧ π)Q(x))ds (13)

The proof of the proposition (2.6) can be found in part (5.2) of the appendix.

2.3 Some remarks about weak and maximal coupling

In the preceding sections, the construction of an optimal randomized stopping time T such that
for all n, P(T > n) = d(n) is given. It is easy to see that by the same way, a randomized stopping

time T̃ for a Markov chain (Yn)n≥0 whose initial distribution given by π, can be defined such

that P(T̃ > n) = d(n) and P(Xn = x, T = n) = P(Yn = x, T̃ = n) = γn(x).

So ((Xn)n≥0, T ) and ((Yn)n≥0, T̃ ) is a weak optimal coupling as defined in [21]. Then Lindvall

prove that it exists (X̂, Ŷ ) a coupling of (X,Y ) such that the coupling time T̂ of (X̂, Ŷ ) has the
same distribution as T .

Furthermore, the coupling process (X̂, Ŷ ) can be chosen such that it is a time inhomogeneous
Markov chain. The transitions can be computed but are quite complicated. It is not necessarily a
Markovian coupling. By definition a Markovian coupling ((Xn, Yn)n≥0 of (π0,K), (π,K) satisfies
the following property :

∀N, under P( |(Xk, Yk)0≤k≤N ), (XN+n, YN+n)n≥0 is a coupling of (πN ,K), (π,K)

This is sometimes called causal or co-adapted coupling. These ones do not always exist.
Furthermore, it can be proved that T̃ = min(S, S̃) where S = inf{n ≥ 0/πn(X̃n) ≤ π(X̃n)}

and S̃ = inf{n ≥ 0/πn(Ỹn) ≥ π(Ỹn).
Here is an example of what is obtained for the two-state chain in continuous time.

X = {0, 1}, Q =

(
−λ λ
µ −µ

)
, θ = λ+ µ and π0 = pδ0 + qδ1.

The stationary distribution π is given by π = µ
θ δ0 +

λ
θ δ1 and suppose that p > µ

θ .

We have πt = (µθ + pλ−µq
θ e−tθ)δ0 + (λθ − pλ−µq

θ e−tθ)δ1 and d(t) = pλ−µq
θ e−tθ.
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The initial law of the coupling is given by what is called the γ-coupling of (π0, π) in [21],

P((X0, Y0) = (0, 0)) = π(0),P((X0, Y0) = (1, 1)) = π(1),P((X0, Y0) = (0, 1)) = p− π(0)

We find in this case an homogeneous Markov chain on X× X with generator given by

q((0, 1), (1, 1)) = λ, q((0, 1), (0, 0)) = µ, q((1, 1), (0, 0)) = µ, q((0, 0), (1, 1)) = λ

The distribution of the coupling time T ∗ is (q + µ
θ )δ0 + (p− µ

θ )E(θ).
In [12], Fill finds that in this example, the optimal coupling time for separation is given by

an exponential random variable with parameter θ.

3 Halting set for total variation distance

3.1 Proof of theorem 1.2, existence of halting set

By the preceding constructions, for all t ≥ 0, d(t) = P(T > t) = P(U < Jt). By definition of Jt
(9), (8), {U < Jt} ⊂ {TM > t}. So T ≤ TM.

Remark 3.1. How can we find a halting state ?
Suppose that our Markov chain is a reversible aperiodic Markov chain.
Let |X| = N + 1 and let 1 = β0 > β1 ≥ · · · ≥ βN > −1 be the eigenvalues of K with

L2(π)-normalized eigenvectors V0, . . . , VN . The spectral decomposition gives:

πn(x)

π(x)
− 1 =

N∑

k=1

βn
k (
∑

y∈X

π0(y)Vk(y)Vk(x))

Denote by ρ = max(|βi|, 1 ≤ i ≤ N). So if an halting state x∗ exists, it must satisfy

∑

k/|βk|=ρ

∑

y∈X

π0(y)Vk(y)Vk(x∗) ≤ 0 and
∑

k/|βk|=ρ

sign(βk)
∑

y∈X

π0(y)Vk(y)Vk(x∗) ≤ 0 (14)

Of course, the set M can be empty. Property of monotonicity can imply the existence of
halting state, as proved in the following proposition.

Let ≺ be a partial order on X.
A Markov chain on X with transition kernel given by K = (k(x, y))x,y∈X is monotone if for

all x ≺ y, the probability K(x, ·) is stochastically smaller than K(y, ·). That means that for an
increasing function f , Kf is increasing.

Proposition 3.2. Let K = (k(x, y))x,y∈X a monotone kernel for a partial order on X. Suppose
furthermore that there exists a smallest element denoted by 0 and a largest element denoted by
1.

Then 1 is a halting state for the Markov chain started at 0.

Proof. π0

π is decreasing. We prove inductively that for all n ≥ 0, πn

π is decreasing.
It comes from the relation πn+1

π = K(πn

π ).
So if πn

π (1) > 1, for all x ∈ X, πn(x) > π(x) that is false.

Remark 3.3. In the continuous case, the hypothesis is changed to the following, for all t ≥ 0,
the kernel Pt = etQ is monotone.
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3.2 One example: The riffle shuffle

The well-known rifle-shuffle is a method of shuffling cards. Its mathematical description was
made by Gilbert and Shannon (see [13]) and independently by Reeds [20]. A sharp mathematical
analysis for the riffle shuffling was carried out by Bayer and Diaconis (1992) [5].

Denote by (σn)n≥0 this Markov chain on the symmetric group SN . σ0 is the identity and
the stationary measure is given by the uniform one.

Let f(σ) be the number of rising sequence of σ. In [5], corollary 2. it is proved that (f(σn))n≥0

is a Markov chain on X = {1, . . . , N}. Its stationary probability is given by ν(r) =
AN,r

N ! where
AN,r, the Eulerian number, is the number of permutations with r rising sequences.

If we denote by νn the law of f(σn), we have ‖πn − π‖TV = ‖νn − ν‖TV .

In [5], theorem 3, it is proved that P(σn = σ) =
(N+2n−r

N )
2nN if f(σ) = r.

So a halting state for total variation for the chain (f(σn))n≥0 is a state r such that for all

n ≥ 0,
(N+2n−r

N )
2nN ≤ 1

N ! .

We can see easily that [N+1
2 ] is a halting state for total variation.

Furthermore (f(σn) − 1)n≥0 is a Markov chain on {0, . . . , N − 1} which is symmetric, i.e.
k(x, y) = k(N − 1− x,N − 1− y). We shall see later that for symmetric birth–and-death chain,
the middle element is often a halting state.

If M is the set of permutations with more than [N+1
2 ] rising sequence then we have ‖πn −

π‖TV ≤ P(TM > n).
We deduce using Theorem 4 of ( [5]) that P(TM > n) ≥ 1− 2Φ( −1

4c
√
3
)+Oc(

1

N
1
4
) where 0 < c,

n = log2(N
3
2 c) and Φ(x) =

∫ x

−∞
e−

1
t2

dt√
2π

.

So for example, lim E[TM]

log2(N
3
2 )

≥ 1.

3.3 Applications to the bounding of the total variation distance and
to problems of cutoffs

To prove the proposition 1.3, the following results found in the book of Aldous and Fill [3] are
used.

They are given in the discrete time.
Let P be an irreducible transition matrix on a finite space X with a reversible distribution π.
Let A ⊂ X and PA = P/Ac ×Ac. Let λA be the largest eigenvalue of PA and λ1 the second

eigenvalue of P . PA is supposed to be irreducible and aperiodic, then:

1− λA ≥ π(A)(1 − λ1) (15)

The proof can be found in [3], Theorem 33, Corollary 34, Chapter 3 Reversible Markov Chains.
For all n ≥ 0,

Pπ(TA > n) ≤ π(Ac)λnA (16)

The proof can be found in [3], Proposition 21, Chapter 3 Reversible Markov Chains. This is
an application of the Perron-Froebenius theorem to PA.

These results are also used in [10] and [4].
The third useful result, seen in [4] is the following :

∀x ∈ X, ∀n,m, Px(TA > n+m) ≤ ‖δxPn − π‖TV + Pπ(TA > m) (17)

We prove this result for clarity:

9



Proof. Let (Xn)n≥0 be (δx, P ) Markov chain. Let n ≥ 0.
We can find a random variable U independent of (Xn)n≥0 and a function ofXn and U denoted

by Yn such that the law of Yn is π and ‖δxPn − π‖TV = P(Xn 6= Yn). It is a standard argument
of coupling.

We have Px(TA > n +m) ≤ P(Xn 6= Yn) + P(TA > n +m, Xn = Yn). Using the Markov
property, we have

P(TA > n+m, Xn = Yn) = E[1TA>n,Xn=Yn
P(TA(X) > n+m|σ(Xk, k ≤ n) ∨ σ(U))]

= E[1TA>n,Xn=Yn
PXn

(TA(X) > m)]

So Px(TA > n+m) ≤ ‖δxPn − π‖TV + E[PYn
(TA(X) > m)].

Proof of proposition 1.3

The proof is similar to these found in the paper of Ding, Lubetzky, Peres ( [10]) and of
Diaconis and Saloff-Coste ( [9]) or in [4].

Bounding the total variation from above For all n ≥ 0, d(N)(n) ≤ P(TA(N) > n). So for
all γ > 0,

d(N)(⌈E[TA(N) ] + γσ(TA(N))⌉) ≤ P(TA(N) − E[TA(N) ] > γσ(TA(N))) ≤ 1

1 + γ2

Bounding the total variation from below By (17),

d(N)(n) ≥ P(TA(N) > n+m)− Pπ(TA(N) > m)

Let 0 < ǫ < 1 and n = [(1− ǫ)E[TA(N) ]] and m = [ ǫ2E[TA(N) ]]. Then by (16) ,

Pπ(TA(N) > m) ≤ (1 − π(A(N)))e−m(1−λ
A(N) )

≤ ee−
ǫ
2 (1−λ

A(N) )E[TA(N) ]

So
P(TA(N) > n+m) ≥ P(TA(N) − E[TA(N) ] ≥ − ǫ

2E[TA(N) ])

≥ 1− σ(T
A(N) )

2

( ǫ
2E[TA(N) ])2

D’où d(N)([(1− ǫ)E[TA(N) ]]) ≥ 1−
(σ(T

A(N) )
2

ǫ
2E[TA(N) ]

)2 − ee−
ǫ
2 (1−λ

A(N) )E[TA(N) ]

If n = [E[TA(N) ]− γσ(TA(N))], we obtain using the same inequalities,

d(N)(n) ≥ 1− 4

γ2
− e−

γ
2 (1−λ

A(N) )σ(TA(N) )

Remark 3.4. If lim π(A(N)) > 0, the condition (1 − λA(N))E[TA(N) ] → +∞ can be changed to

(1− λ
(N)
1 )E[TA(N) ] → +∞ by the property (15).
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4 Birth-and-death chain on X
(N) = {0, . . . , N} started at 0

4.1 General results

For every birth-and-death chain on {0, · · · , N}, we will denote

px = k(x, x+ 1) if 0 ≤ x ≤ N − 1
qx = k(x, x − 1) if 1 ≤ x ≤ N
rx = k(x, x) if 0 ≤ x ≤ N

We have for all 0 ≤ x ≤ N , px + rx + qx = 1. We suppose the Markov chain irreducible, so for
all 0 ≤ x ≤ N − 1, px > 0 and for all 1 ≤ x ≤ N , qx > 0.

The chain is started at 0. For x, y ∈ X
(N), Tx is the hitting time of the state x and τx,y is the

hitting time of y by the chain started at x.
To use proposition (1.3), it is necessary to know the spectrum of the transition matrix. So

below, is given a result without eigenvalues.

Proposition 4.1. Suppose that x∗N is a halting state for total variation for the chain started at
0 such that E[Tx∗

N
] goes to +∞ when N goes to +∞ and such that σ(Tx∗

N
) = o(E[Tx∗

N
]).

Suppose also that there exists y < x∗N such that E[Tx∗

N
] ∼ E[Ty] and π

(N)({0, . . . , y}) → 0;
Then the chain has a cutoff at time E[Tx∗

N
] for total variation.

If furthermore E[τy,x∗

N
] = O(σ(Tx∗

N
)), then there is a cutoff at time E[Tx∗

N
] with window

σ(Tx∗

N
) for total variation.

Proof. To bound the total variation distance from below, the following inequality is used :
For all n ≥ 0, d(N)(n) ≥ P(Ty ≥ n)− π(N)({0, . . . , y}).
If n = [(1− ǫ)E[Tx∗

N
]],

P(Ty ≥ n) = 1− P

(
E[Ty]− Ty > E[Tx∗

N
](ǫ − (1− E[Ty]

E[Tx∗

N

))

)

≥ 1− σ(Ty)
2

E[Tx∗

N
]2(ǫ−(1− E[Ty]

E[Tx∗

N
]
))2

≥ 1− σ(Tx∗

N
)2

E[Tx∗

N
]2(ǫ−(1− E[Ty]

E[Tx∗

N
]
))2

So d(N)(n) ≥ 1− σ(Tx∗

N
)2

E[Tx∗

N
]2(ǫ−(1− E[Ty]

E[Tx∗

N
]
))2

− π(N)({0, . . . , y}).

According to the hypothesis, it is clear that lim
N→+∞

d(N)([(1 − ǫ)E[Tx∗

N
]]) = 1.

If furthermore E[τy,x∗

N
] = O(σ(Tx∗

N
)), if γ big enough,

d(N)(E[Tx∗

N
]− γσ(Tx∗

N
)) ≥ 1− 1

(γ − E[τy,x∗

N
]

σ(Tx∗

N
) )

2
− π(N)({0, . . . , y} (18)

There are several methods to calculate E[Tx] and σ(Tx) for a birth-and-death chain. The first
one uses the spectrum with the following formulae, see [16] :

E[Tx] =

x−1∑

k=0

1

1− αk
, σ(Tx)

2 =

x−1∑

k=0

αk

(1− αk)2
(19)

11



where α0 > . . . > αx−1 are the eigenvalues of P/{0,...,x−1}2 . This implies the following inequality:

σ(Tx)
2 ≤ 1

1− α0
E[Tx] (20)

The second one uses the following formulae :

E[Tx] =

x−1∑

y=0

E[τy,y+1] and σ(Tx)
2 =

x−1∑

y=0

σ(τy,y+1)
2 (21)

E[τx,x+1] =
π({0, . . . , x})

pxπ(x)
, σ(τx,x+1)

2 =
2

π(x)px

x−1∑

y=0

π({0, . . . , y})2
pyπ(y)

+E[τx,x+1]
2−E[τx,x+1] (22)

Sometimes, it is possible to calculate E[Tx] by using martingale.

4.2 Monotone birth-and-death chain on X
(N) = {0, . . . , N} started at 0

A birth-and-death chain is monotone if for all 0 ≤ x ≤ N − 1, px + qx+1 ≤ 1.

In this case if π0 = δ0 and as usual, πn = π0K
n, then for all n ≥ 0, x 7→ πn(x)

π(x) is decreasing

and by consequence N is a halting state for total variation as proved in proposition (3.2).
An example of monotone birth-and-death chain is given by birth-and-death chain with positive

spectrum and in particular by lazy chain which are chain with rx ≥ 1
2 for all x.

Remark 4.2. With the notation of the section 2, it can be proved that in the case of a mono-
tone birth-and-death chain on {0, · · · , N} started at 0, the support of the distribution of XT is
{0, . . . , x∗} where x∗ is the smallest halting state for total variation.

Indeed, P(XT = x) =

+∞∑

n=0

γn(x).

So P(XT = 0) ≥ γ0(0) > 0, P(XT = 1) ≥ γ1(1) = p0 ∧ π(1)− p0π(0) > 0

By iteration and by using monotonicity of x 7→ πn(x)
π(x) ,

∀n ≥ 0, γn(x) = 0 ⇔ ∀n ≥ 0, πn(x− 1) ≤ π(x − 1)

By consequence, the support of the distribution of XT is {0, . . . , x∗} where for all n ≥ 0, πn(x
∗) ≤

π(x∗) and there exists n ≥ 0 with πn(x
∗ − 1) > π(x∗ − 1).

So x∗ is the smallest halting state for total variation.
The proof is the same in continuous time using (2.6).

There is an interesting property satisfied by monotone birth-and-death chain. With the
notations of (3.1)

Lemma 4.1. If P is a monotone irreducible birth-and-death matrix with eigenvalues given by
1 = β0 > β1 ≥ · · · ≥ βN > −1, then |βN | ≤ β1.

Proof. The spectrum of an irreducible birth-and-death chain satisfies 1 = β0 > β1 > · · · > βN ,
so ρ ∈ {β1, |βN |}

We have seen by monotony that for all n ≥ 0, πn(N)
π(N) ≤ 1. But

πn(N)
π(N) − 1 =

N∑

k=1

βn
k Vk(0)Vk(N)

= βn
1 V1(0)V1(N) + βn

NVN (0)VN (N) +

N−1∑

k=2

βn
k Vk(0)Vk(N)

12



But by using property (30) of the appendix on the eigenvectors of irreducible birth-and-death
chain, we have that V1(0)V1(N) < 0 and (−1)NVN (0)VN (N) > 0.

So if |βN | > β1,
πn(N)
π(N) − 1 ∼ βn

NVN (0)VN (N) and we have a contradiction with the fact that

for all n ≥ 0, πn(N)
π(N) − 1 ≤ 0.

By consequence |βN | ≤ β1.

Example 4.3. Metropolis chains

Let π be a probability on X
(N) = {0, . . . , N} with π(x) > 0 for all x ∈ X

(N). Use the Metropolis
algorithm with base chain the simple symmetric random walk to obtain a birth-and- death chain
with stationary measure π (see e.g.( [8])). By construction, it is a monotone chain and so N is
a halting state.

Example 4.4. Simple random walk

Consider the birth-and-death chain on X
(N) = {0, . . . , N} started at 0 with px = p, qx = q,

r0 = q and rN = p. We suppose 0 ≤ q < p ≤ 1 and p+ q = 1. It is a monotone chain, so N is
a halting state.

The spectrum of this kernel is known, see [11] for example.

The eigenvalues are βk = 2
√
pq cos( πk

N+1 ) for 1 ≤ k ≤ N and Vk is proportional to




xk,0
...

xk,N




where xk,l =
√
p sin(πk(l+1)

N+1 )−√
q sin( πkl)

N+1 ).
Some calculus prove that (14) is satisfied if cot( πx∗

N+1) ≤ −(1− 2q) cot( π
N+1 ).

If xN is the smallest integer such that xN > N + 1− N+1
π cot−1((1− 2q) cot( π

N+1 )), we have

xN ≃ N + 1− 1
1−2q which is close to N for N large enough.

It can be proved, using methods of martingales that for all 0 ≤ x ≤ N ,

E[Tx] =
x

p− q
− q

(p− q)2
(1 − (

q

p
)x) σ2(Tx) = Ax +B + C(

q

p
)x +D(

q

p
)2x + Ex(

q

p
)x

with A = 4pq
(p−q)3 and B,C,D,E some constants depending of p.

So proposition(4.1) implies that there is a cutoff at time tN with a window σN , where tN = N
p−q

and σN =
√
N .

To prove this, one can take y = N −
√
N .

If p = q = 1
2 , we have E[Tx] = x(x + 1) and σ2(Tx) =

x(x+1)(2x2+2x−1)
3 .

It is well known that in this case, there is no cutoff.
We can prove that in this case x∗N = [N2 ] + 1 is the smallest halting state for total variation

for the chain started at 0, but the condition σ(Tx∗

N
) = o(E[Tx∗

N
]) is not satisfied.

Remark 4.5. We can suppose that p depends of N .
As we have seen above, the smallest halting state for total variation for the chain started at

0 is bigger than N + 1− N+1
π cot−1((1− 2q)

cos( π
N+1 )

sin( π
N+1 )

).

Let δ > 0 and pN = 1
2 + δ

N and qN = 1
2 − δ

N .

So the smallest halting state for total variation for the chain started at 0 belongs to {[N2 ], . . . , N}.
Denote it by x∗N . As in the case above, the condition σ(Tx∗

N
) = o(E[Tx∗

N
]) is not satisfied.

Remark 4.6. If we suppose that pN = 1
2 + ǫN and qN = 1

2 − ǫN with ǫN > 0, ǫN = o(1) and
NǫN → +∞.

We have σ2(TN) ∼ N
2ǫ3N

and E[TN ] ∼ N
2ǫN

. So σ(TN ) = o(E[TN ]).
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Furthermore it is easy to see that y = N −
√

N
4ǫN

satisfies the hypothesis of proposition(4.1),

so we have a N
2ǫN

cut-off.

4.3 The case of symmetric birth-and-death chain

Definition 4.7. A Markov chain on X = {0, . . . , N} with transitions given by K = (k(x, y))x,y∈X

is symmetric if for all x ∈ X, y ∈ X then k(N − x,N − y) = k(x, y).

Two different cases can occur, N odd or N even. The spectral analysis differs in these two
cases.

4.3.1 The case of symmetric birth-and-death chain on {0, . . . , 2N + 1}
Denote by P the transition matrix of the birth-and-death chain, by Q the restriction of P to
{0, . . . , N} × {0, . . . , N}.

Let L be the (N + 1)× (N + 1) matrix define by Li,j = 1 if i+ j = N and Li,j = 0 if not.

So P is the tridiagonal matrix given by P =




Q
pN

qN+1

LQL




Denote by Q1 the matrix equal to Q unless the entry Q1(N,N) that is Q1(N,N) = rN + pN .
So Q1 is a stochastic matrix.

Proposition 4.8. If P is monotone, then N + 1 is a halting state for total variation distance
for the chain started at 0.

Proof. If (Xn)n≥0 is a birth-and-death symmetric chain on {0, . . . , 2N+1} with transition matrix
given by P then the process (Zn)n≥0 given by Zn = N + 1

2 − |Xn− (N + 1
2 )| is a birth-and-death

chain on {0, . . . , N} with transition matrix given by Q1. Its stationary probability is given by π̃
with π̃(x) = 2π(x).

And if P is monotone then Q1 is monotone too. So for all n ≥ 0,
Qn

1 (0,N)
π̃(N) ≤ 1.

Also for all n ≥ 0, x 7−→ Pn(0,x)
π(x) is decreasing. So

2Pn(0,N+1)
π(N+1) ≤ Pn(0,N)

π(N) + Pn(0,N+1)
π(N+1)

≤ 2
π̃(N) (P(Xn = N) + P(Xn = N + 1))

≤ 2
π̃(N)P(Zn = N) = 2

Qn
1 (0,N)
π̃(N) ≤ 2

Proposition 4.9. If for all x ∈ {0, . . . , 2N + 1}, rx = 0 then for all n ≥ 0, for all k ≥ 0,

Pn(0, N + 1)

2π(N + 1)
≤ 1 and

Pn(0, N + 2)

2π(N + 2)
≤ 1

Proof. Denote by Q2 the matrix equal to Q unless the entry Q2(N,N) that is Q2(N,N) =
rN − pN .

We have the following easy lemma :

14



Lemma 4.2. If λ is an eigenvalue of Q1 associated with the eigenvector v, then λ is an eigenvalue

of P associated with the eigenvector

(
v
Lv

)
.

If λ is an eigenvalue of Q2 associated with the eigenvector v, then λ is an eigenvalue of P

associated with the eigenvector

(
v

−Lv

)
.

Denote by 1 = β0 > β1 > · · · > βN the eigenvalues of Q1.
Suppose N = 2a, the proof is similar if N is odd.
The formula (33) of the appendix tells us :

P 2n+1(0, N + 1) = 2π(N + 1)(1 +

N∑

k=1

β2n+1
k (−1)kνk) with νk > 0

If we denote for 0 ≤ k ≤ a, λ2k = βk and for 0 ≤ k ≤ a − 1, λ2k+1 = |βN−k|, the sequence
(λk)0≤k≤N by property (32) of the appendix, is decreasing and

P 2n+1(0, N+1) = 2π(N+1)(1+

N∑

k=1

λ2nk Bk) where B2k = (−1)kλ2kνk and B2k+1 = (−1)k+1λ2k+1νN−k

So B2kB2k+1 < 0 and B2k+1B2k+2 > 0. The following lemma gives the result.

Lemma 4.3. Let Γn =

2d∑

k=0

αn
kBk where

B0 > 0, ∀i B2iB2i+1 < 0, B2i+1B2i+2 > 0, α0 = 1 > α1 > α2 > . . . > α2d > 0 (23)

We suppose that Γ0 = Γ1 = · · · = Γd−1 = 0. Then n 7→ Γn is stricly increasing on {d, d+1, · · · }.
The proof is in part (5.3) of the appendix

4.3.2 The case of symmetric birth-and-death chain on {0, . . . , 2N}
Denote by Q+ the stochastic matrix on {0, . . . , N} × {0, . . . , N} defined by :

{
Q+(x, y) = P (x, y) if 0 ≤ x, y ≤ N − 1
Q+(N,N − 1) = 2pN , Q+(N,N) = rN

Proposition 4.10. If P is monotone and pN−1 ≤ rN then N is a halting state for total variation
distance for the chain started at 0.

Proof. If (Xn)n≥0 is a birth-and-death symmetric chain on {0, . . . , 2N} with transition matrix
given by P then the process (Zn)n≥0 given by Zn = N − |Xn − N | is a birth-and-death chain
on {0, . . . , N} with transition matrix given by Q+. Its stationary probability is given by π̃ with
π̃(x) = 2π(x) if x ≤ N − 1 and π̃(N) = π(N).

And if P is monotone and pN−1 ≤ rN then Q+ is monotone. So for all n ≥ 0,
Qn

+(0,N)

π̃(N) ≤ 1.

But Qn
+(0, N) = P(Zn = N) = P(Xn = N) which gives the result.
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Lemma 4.4. It exists γ1, . . . , γN such that for all n ≥ 0, Pn(0,N)
π(N) = 1 +

N∑

k=1

βn
k γk where 1 >

β1 > · · · > βN are the eigenvalues of Q+.

Proof. If λ is an eigenvalue of Q associated with the eigenvector v, then λ is an eigenvalue of P

associated with the eigenvector




v
0

−Lv


.

If λ is an eigenvalue of Q+ associated with the eigenvector

(
v
x

)
, then λ is an eigenvalue of

P associated with the eigenvector



v
x
Lv


.

Spectral properties give the result.

Proposition 4.11. If all the eigenvalues of P are positive then N is a halting state for total
variation distance for the chain started at 0.

Proof. By using the lemma above, for all n ≥ 0, Pn(0,N)
π(N) = 1 +

N∑

k=1

βn
k γk.

So the result comes from the following lemma (4.5) proved in the appendix with Γn = Pn(0,N)
π(N) .

Lemma 4.5. Let 1 = λ0 > λ1 > . . . > λd > 0 and Γn =

d∑

i=0

Aiλ
n
i , A0 ≥ 0

If for 0 ≤ i ≤ d− 1, Γi = 0, then n→ Γn is increasing and so for all n ≥ 0, Γn ≤ A0.

Proposition 4.12. If for all x ∈ {0, . . . , 2N}, rx = 0 then for all n ≥ 0,

If 2k ≥ N,
P 2n(0, 2k)

2π(2k)
≤ 1

If 2k + 1 ≥ N,
P 2n+1(0, 2k + 1)

2π(2k + 1)
≤ 1

Proof. We define two stochastic matrices Qe and Qo respectively on {0, . . . , N}×{0, . . . , N} and
on {0, . . . , N − 1} × {0, . . . , N − 1} by

Qe(x, y) = P 2(2x, 2y) and Qo(x, y) = P 2(2x+ 1, 2y + 1)

These stochastic matrices have positive eigenvalues, so they are monotone. Their stationary
measures are given respectively by πe(x) = 2π(2x) and πo(x) = 2π(2x+1). They are symmetric
so we can apply proposition (4.8) and proposition(4.11).

The relations P 2n(0, 2x) = Qn
e (0, x) and P

2n+1(0, 2x+ 1) = Qn
o (0, x) give the results.

Proposition 4.13. Let P be a transition matrix of a birth-and-death Markov chain on X =
{0, . . . , 2N} be given by P = rI + (1 − r)P̃ where for all x ∈ X, P̃ (x, x) = 0. We suppose
0 < r < 1

2 and P monotone. Then for all n ≥ 0, Pn(0, N + 1) ≤ π(N + 1).
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Proof. It is an easy consequence of the above proposition (4.12).

For all n ≥ 0, Pn =

n∑

k=0

(
n

k

)
rn−k(1− r)kP̃ k. Let 2x+ 1 ∈ X, 2x ≥ N .

Then P 2n(0, 2x+ 1) =

n−1∑

k=0

(
2n

2k + 1

)
r2n−2k−1(1− r)2k+1P̃ 2k+1(0, 2x+ 1).

So P 2n(0, 2x+ 1) ≤ π(2x+ 1)(1− (2r − 1)2n) ≤ π(2x+ 1)
The same method gives that for 2x ∈ X, 2x ≥ N , P 2n+1(0, 2x) ≤ π(2x).
Using monotonocity, we have the result.

4.3.3 Continuous time symmetric birth-and-death chain on X = {0, . . . , N}
Proposition 4.14. [N+1

2 ] is a halting state for total variation for the continuous time Markov
chain started at 0.

Proof. Let Q be the generator of the markov chain. Q is supposed symmetric, Q(N−x,N−y) =
Q(x, y).

Let q ≥ 2max{q(x), x ∈ X} and P = I + 1
qQ.

P is the transition of a symmetric birth-and-death chain on X which satisfies rx = P(x, x) =

1− q(x)
q ≥ 1

2 . So this chain is lazy and we can apply proposition(4.8) and proposition(4.11) which

say that for all n ≥ 0, Pn(0, [N+1
2 ]) ≤ π([N+1

2 ]).

But for all t ≥ 0, πt([
N+1
2 ]) = etQ(0, [N+1

2 ]) = e−qt

+∞∑

n=0

(tq)n

n!
Pn(0, [

N + 1

2
]) ≤ π([

N + 1

2
]).

4.3.4 Applications to cutoffs for symmetric birth-and-death chain

Proposition 4.15. Under the hypothesis that the birth-and-death is symmetric on {0, . . . , N}

such that x∗N = [N2 ] + 1 is a halting state and (1 − λ1)

N∑

k=1

1

1− λk
→ +∞, then the chain has a

E[Tx∗

N
] cutoff for total variation.

Furthermore E[Tx∗

N
] ∼ 1

2

N∑

k=1

1

1− λk

If lim inf(1 − λ1)
2

N∑

k=1

λk
(1− λk)2

> 0, then the chain exhibits a cutoff at time E[Tx∗

N
] with a

window σ(Tx∗

N
).

Furthermore in this case, the chain exhibits a cutoff at time 1
2

N∑

k=1

1

1− λk
with a window

1
2

√√√√
N∑

k=1

λk
(1 − λk)2

.

Here 1 = λ0 > λ1 > · · · > λN are the eigenvalues of the chain.

Proof. One has to prove that the hypothesis of this proposition imply these of the proposition
(1.3).
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By (19) and using the notation of the appendix,

E[TN+1] =

N∑

k=0

1

1− γk

But as π({N + 1, . . . , 2N + 1}) = 1
2 , by (15) 1−λ1

2 ≤ 1− γ0 ≤ 1− λ1.
By lemma (4.2) and (31), for all 0 ≤ k ≤ N , λ2k = βk and λ2k+1 = αk.
So by (31), (1− λ1)E[TN+1] tends to +∞.
The proof is almost the same in the case of a symmetric birth-and-death chain on {0, . . . , 2N}.

4.3.5 Two examples

The Ehrenfest process The Markov kernel of the Ehrenfest chain on {0, . . . , N} is defined
by

px =
N − x

N + 1
, rx =

1

N + 1
, qx =

x

N + 1

The stationary distribution is given by π(x) =
(
N
x

)
2−N and the eigenvalues are λk = 1 −

2k
N+1 , 0 ≤ k ≤ N with L2(π)-normalized eigenvectors

Vk(x) =

(
N

k

)− 1
2

k∑

i=0

(−1)i
(
x

i

)(
N − x

k − i

)

In this case |λN | = λ1. It was proved in lemma (4.1) that for a monotone chain, |λN | ≤ λ1.
We can search candidates to be halting states by (14) for the chain started at 0 :

V1(0)V1(x) ± VN (0)VN (x) ≤ 0 ⇐⇒ 2x ≥ N + 1

So the smallest candidate is [N2 ] + 1.

If N is odd, we can apply proposition(4.8) ans so N+1
2 is a halting state for total variation

for the chain started at 0.
If N = 2N ′ is even, we haven’t qN ′+1 ≤ rN ′ so we can’t apply proposition(4.10).

But P = rI + (1 − r)P̃ with r = 1
N+1 and P̃ (x, x) = 0 for all x. So we can apply

proposition(4.13) and so N ′ + 1 is a halting state for total variation for the chain started at
0.

So xN = [N2 ] + 1 is the smallest halting state for total variation for the chain started at 0.

As (1 − λ1)
N∑

k=1

1

1− λk
=

N∑

k=1

1

k
→ +∞ and (1 − λ1)

2

N∑

k=1

λk
(1− λk)2

= − 2

N + 1

N∑

k=1

1

k
+

N∑

k=1

1

k2
→ π2

6
, proposition (4.15) gives the existence of a cutoff at time 1

2

N∑

k=1

1

1− λk
∼ N lnN

4

with a window N .

Bernoulli-Laplace models Consider two urns, the left containing r red balls, the right N − r
black balls with 0 < 2r ≤ N . At each step, a ball is picked uniformly at random in each urn and
the two balls are switched. The process is completely determined by the number of red balls in

18



the right urn and this is a birth-and-death chain on X = {0, . . . , r}.The stationary distribution
is

πN,r(j) =

(
r
j

)(
N−r
r−j

)
(
N
r

)

and for x ∈ X, the rates are given by

px =
(r − x)(N − r − x)

r(N − r)
, qx =

x2

r(N − r)

The eigenvalues of this chain are well known (see [15] or [6]) and are given by

βN,r,i = 1− i(N − i+ 1)

r(N − r)
, 0 ≤ i ≤ r (24)

The first eigenvectors are

V0 ≡ 1, V1(x) = (1− Nx

r(N − r)
)C1 where C1 is defined by the condition ‖V1‖L2(πN,r) = 1.

The sign of V1(0)V1(x) is that of 1− Nx
r(N−r) so the halting states belong to {x/x ≥ r(N−r)

N }.
In the symmetric case where r = N

2 , a halting state must be ≥ r
2 .

Proposition 4.16. [N+1
2 ] is the smallest halting state for total variation.

Proof. Unfortunatly, this chain is not monotone (p0 + q1 > 1) so the proposition(4.10) cannot
be applied.

Consider the case of N even, and change N to 2N .
We use the notation of part (3.3.2) and of proposition (4.10). The result will be true if Q2

+ is

monotone and x 7→ Q3
+(0,x)

π̃(x) is decreasing.

Indeed, for all n ≥ 0, then x 7→ (Q3
+(0,.)Q2n

+ )(x)

π̃(x) =
Q2n+3

+ (0,x)

π̃(x) is decreasing and so P 2n+3(0, N) =

Q2n+3
+ (0, N) ≤ π̃(N) = π(N).

In the same way, using decreasing of x 7→ δ0
π̃ (x), for all n ≥ 0, P 2n(0, N) ≤ π(N).

So first, we have to prove that for all x, for all y,

Q2
+(x, {0, . . . , y}) ≥ Q2

+(x+ 1, {0, . . . , y}) (25)

We have that for all N − 2 ≥ x ≥ 1, px + qx+1 ≤ 1 and pN−1 + 2qN ≤ 1, so if x ≥ 1,
Q+(x, {0, . . . , y}) ≥ Q+(x+ 1, {0, . . . , y}). This inequality is also true if x = 0 and y ≥ 1.

So if x ≥ 2,

Q2
+(x, {0, . . . , y}) = qx(Q+(x− 1, {0, . . . , y})−Q+(x, {0, . . . , y}))

+(1− px)(Q+(x, {0, . . . , y})−Q+(x+ 1, {0, . . . , y}))
+Q+(x+ 1, {0, . . . , y})−Q+(x+ 2, {0, . . . , y})
+Q+(x+ 2, {0, . . . , y})

≥ qx+1(Q+(x, {0, . . . , y})−Q+(x+ 1, {0, . . . , y}))
+(1− px+1)Q+(x+ 1, {0, . . . , y})−Q+(x+ 2, {0, . . . , y})
+Q+(x+ 2, {0, . . . , y}) = Q+(x+ 1, {0, . . . , y})
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It remains to prove (25) for x = 0 and x = 1, y = 0.

Q2
+(0, {0}) = p0q1 + r20 = q1 ≥ r1q1 = Q2

+(1, {0})
Q2

+(0, {0, 1}) = q1 + r1
Q2

+(1, {0, 1}) = q1 + r1(1− p1) + p1q2 = q1 + r1 + p1(q2 − r1)
Q2

+(1, {0}) = r1q1
Q2

+(2, {0}) = q1q2

So the condition is satisfied if q2 ≤ r1 and this the case for the Bernoulli-Laplace chain.

Now it remains to prove that x 7→ Q3
+(0,x)

π̃(x) is decreasing.

Denote π̃n = Qn
+(0, .).

We have by reversibility that π̃n+1

π̃ (x) =
∑

y

π̃n
π̃
(y)Q+(x, y).

So by some calculus, we find

π̃3
π̃
(0) =

r1
π̃1(1)

π̃3
π̃
(1) =

q1 + r21 + p1q2
π̃1(1)

π̃3
π̃
(2) =

r1q2 + q2r2
π̃1(1)

π̃3
π̃
(3) =

q2q3
π̃1(1)

So we have to verify if r1 ≥ q1 + r21 + p1q2 ≥ r1q2 + q2r2 ≥ q2q3. It is true if N is big enough.
Consider now the case where N is odd and replace N by 2N + 1.
By the same ideas, it suffices to show that Q2

1 and P 2 are monotone where Q1 is given in
proposition (4.8). In fact px + qx+1 ≤ 1 if 1 ≤ x ≤ 2N − 1, but using symetry, P 2(2N + 1 −
x, {0, . . . , y}) = 1 − P 2(x, {0, . . . , 2N − y}), so there is no additional verifications to do. We
conclude as in proposition (4.8).

By the same method as used for the Ehrenfest chain, using (4.16) and the knowledge of
eigenvalues given by (24), the symmetric Bernoulli-Laplace birth-and-death chain on {0, . . . , N}
exhibits a cutoff at time N lnN

4 with a window N .

4.3.6 Asymmetric continuous-time Erhenfest process

Let Zt = (Z
(1)
t , . . . , Z

(N)
t ) be a continuous-timeMarkov chain on (Z/2Z)N where

(
(Z

(i)
t )t≥0

)
1≤i≤N

are iid continuous-time Markov chain on Z/2Zwith infinitesimal generator given by

(
−λ λ
µ −µ

)
.

We have
P0(Z

1
t = 0) = pt(0, 0) =

µ
λ+µ + λ

λ+µe
−t(λ+µ)

P0(Z
1
t = 1) = pt(0, 1) =

λ
λ+µ − λ

λ+µe
−t(λ+µ)

P1(Z
1
t = 0) = pt(1, 0) =

µ
λ+µ − µ

λ+µe
−t(λ+µ)

P1(Z
1
t = 1) = pt(1, 1) =

λ
λ+µ + µ

λ+µe
−t(λ+µ)

(26)

If Xt = |Zt| =
N∑

i=1

Z
(i)
t , then (Xt)t≥0 is the asymmetric continuous-time Ehrenfest Markov

chain on {0, . . . , N}.
Furthermore if 0 ≤ i, j ≤ N ,

Pi(Xt = j) =
∑

k+l=j

(
i

k

)(
N − i

l

)
pt(1, 1)

kpt(1, 0)
i−kpt(0, 1)

lpt(0, 0)
N−i−l (27)
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The stationnary distribution πλ,µ is the binomial distribution B(N, λ
λ+µ ).

So P(Xt=x)
π(x) = (1 + λ

µe
−t(λ+µ))N−x(1− e−t(λ+µ))x.

So it is easy to prove that the minimal halting state is x∗λ,µ = ⌈ λ
λ+µN⌉.

Proposition 4.17. The asymmetric continuous-time Erhenfest process has a cutoff at time
log(N)
2(λ+µ) .

Proof. The smallest halting state is given by x∗λ,µ = ⌈ λ
λ+µN⌉. Let y∗ = N − x∗.

We have to prove that the hypothesis of (1.3) are satisfied.
Denote by Qλ,µ the generator of our chain and by A the restriction of Qλ,µ to {0, . . . , x∗λ,µ−1}

and by B the restriction of Qµ,λ to {0, . . . , y∗µ,λ − 1}.
For all 0 ≤ i ≤ N , qλ,µ(i, i+ 1) = λ(N − i) and qλ,µ(i, i− 1) = µi.

Let ϕλ,µ
0 , ϕλ,µ

1 , . . . , ϕλ,µ
N the sequence of orthogonal polynomials associated to Qλ,µ.

The eigenvalues of −Qλ,µ are tk = k(λ+ µ), 0 ≤ k ≤ N .
If L is the (N +1)× (N +1) matrix defined by Li,j = 1 if i+ j = N and Li,j = 0 if not, then

LQλ,µL = Qµ,λ.

So by an argument of symmetry, for all 0 ≤ k ≤ N , for all 0 ≤ x ≤ N , ϕλ,µ
N−x(tk) =

ϕλ,µ
N (tk)ϕ

λ,µ
x (tk). Furthermore, by (30), (−1)kϕλ,µ

N (tk) > 0.
Let VA = 0 < α0 < α1 < . . . < αx∗−1 be the eigenvalues of −A.
Let VB = 0 < β0 < β1 < . . . < βy∗−1 be the eigenvalues of −B.

Lemma 4.6. For all 0 ≤ i ≤ N − 1, the interval [ti, ti+1] contains a single element of VA ∪ VB .

Proof. It is a consequence of Sturm’s theorem : The number of sign changes in the sequence
ϕλ,µ
0 (t), ϕλ,µ

1 (t), . . . , ϕλ,µ
N (t) gives the number of eigenvalues > t. The convention is that if

ϕk+1(t) = 0 and ϕk(t) 6= 0, the sign of ϕk+1(t) is equal to the sign of ϕk(t).
Apply this to t = −t1 :
The single change of sign can occur in the sequence ϕλ,µ

0 (−t1), ϕλ,µ
1 (−t1), . . . , ϕλ,µ

x∗ (−t1), and
in this case , −t1 < −α0 < 0

or can occur in the sequence (ϕλ,µ
x∗ (−t1), . . . , ϕλ,µ

N (−t1)) = −(ϕµ,λ
0 (−t1), . . . , ϕµ,λ

N−y∗(−t1)),
and in this case −t1 < −β0 < 0.

This method is reiterated.

But E0[T
λ,µ
x∗ ] =

x∗−1∑

i=0

1

αi
and E0[T

µ,λ
y∗ ] =

y∗−1∑

i=0

1

βi
. Denote the first mean by UN et the second

by VN .

The lemma implies that

N∑

i=1

1

ti
≤ UN + VN ≤ 1

α0
+

1

β0
+

N∑

i=1

1

ti
.

As in the discrete time, we have by (15), α0 ≥ πλ,µ({x∗ + 1, · · · , N})t1.

But πλ,µ({x∗ + 1, · · · , N}) ∼ 1
2 , then UN + VN ∼

N∑

i=1

1

ti
∼ log(N)

λ+ µ
.

Lemma 4.7. (UN − VN ) is bounded.

Proof. By using the equality proved in [3], chapter 2, lemma 12,

Ei[Tj ] =
Zj,j − Zi,j

π(j)
, with Zi,j =

∫ +∞

0

(Pi(Xt = j)− π(j))dt,

21



we have

UN − VN =
1

πλ,µ(x∗)

∫ +∞

0

(PN (Xλ,µ
t = x∗)− P0(X

λ,µ
t = x∗))dt

By using formula (27),

UN − VN =

∫ +∞

0

(1 +
µ

λ
e−t(λ+µ))x

∗

(1 − e−t(λ+µ))y
∗ − (1 − e−t(λ+µ))x

∗

(1 +
λ

µ
e−t(λ+µ))y

∗

dt

After the change of variables u = e−t(λ+µ), we obtain

UN − VN =
1

λ+ µ

∫ 1

0

(1 + µ
λu)

x∗

(1− u)y
∗ − (1 − u)x

∗

(1 + λ
µu)

y∗

u
du

Some calculus gives the result.

Then as UN +VN ∼ log(N)
λ+µ and UN −VN is bounded, UN ∼ log(N)

2(λ+µ) and the result comes from

proposition (1.3).

5 Appendix

5.1 Birth-and-death chain and orthogonal polynomials

A reference for orthogonal polynomial and birth and death chain can be found in Karlin and
McGregor( [16], [15]).

Denote by P the transition matrix on {0, . . . , N} and by Pk the restriction of P to {0, . . . , k}
for 0 ≤ k ≤ N .

For 1 ≤ k ≤ N , denote by ϕk the polynomial given by ϕk(t) =
1

p0···pk−1
det(tIk − Pk−1). Let

ϕ0(t) = 1.
So (ϕ0, . . . , ϕN ) is a family of polynomials which satisfy the following recurrence equation :

ϕk(t) =
t− rk−1

pk−1
ϕk−1(t)−

qk−1

pk−1
ϕk−2(t) (28)

Let 1 = λ0 > λ1 > · · · > λN be the eigenvalues of P .
It exists (µ0, . . . , µN ) ∈ R

N+1
+ such that (ϕ0, . . . , ϕN ) are the orthogonal polynomials in

L2([−1, 1], µ) where µ =

N∑

k=0

µkδλk
.

Furthermore
∫ 1

−1
ϕk(t)

2µ(dt) = π(0)
π(k) = q1···qk

p0···pk−1
, µ0 = π(0).

We have for all n ≥ 0, for all x, y ∈ X,

Pn(x, y) =
π(y)

π(0)

N∑

k=0

λnkϕx(λk)ϕy(λk)µk (29)

So the normalized in L2(π) eigenvector Vk associated to the eigenvalue λk is given by Vk(x) =√
µk

µ0
ϕx(λk).

The zeros of the orthogonal polynomials have the following interlacing property : if m > n,
there is a zero of ϕm between any two zeros of ϕn.

So there is a zero of ϕN in each interval ]λk+1, λk[ and as ϕN (1) = 1, we have :

∀0 ≤ k ≤ N, (−1)kϕN (λk) > 0 (or (−1)kVk(N) > 0)) (30)
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The case of a symmetric birth-and-death chain on {0, . . . , 2N + 1} Denote by Q1 the
matrix equal to PN unless the entry Q1(N,N) that is rN + pN and by C1(t) the characteristic
polynomial of Q1.

Denote by Q2 the matrix equal to PN unless the entry Q2(N,N) that is rN − pN and by
C2(t) the characteristic polynomial of Q2.

Let 1 = β0 > β1 > · · · > βN be the eigenvalues of Q1.
Let α0 > α1 > · · · > αN be the eigenvalues of Q2.
Let η0 > η1 > · · · > ηN−1 be the eigenvalues of PN−1.
Let γ0 > γ1 > · · · > γN be the eigenvalues of PN .
So by the interlacing property, for all 0 ≤ k ≤ N − 1, βk+1 < ηk < βk, αk+1 < ηk < αk and

γk+1 < ηk < γk.
We have (p0 · · · pN−1)

−1C1(t) = (t − rN − pN )ϕN (t) − qNϕN−1(t), (p0 · · · pN−1)
−1C2(t) =

(t− rN + pN)ϕN (t)− qNϕN−1(t) and ϕN+1(t) = (t− rN )ϕN (t)− qNϕN−1(t).
So (p0 · · · pN−1)

−1C1(αk) = −2pNϕN (αk). But as ηk < αk < ηk−1, (−1)kϕN (αk) > 0.
But αk ∈]ηk, βk[ or αk ∈]βk, ηk−1[ and (−1)kC1 < 0 on the first interval and (−1)kC1 > 0 on

the second interval. So we have for all 0 ≤ k ≤ N , αk < βk.
As (p0 · · · pN−1)

−1(C1(t) + C2(t)) = 2ϕN+1(t), C1(γk) = −C2(γk) so for all 0 ≤ k ≤ N − 1,

ηk < αk < γk < βk < ηk−1 (31)

with η−1 = +∞ et ηN = −∞.
Suppose now that for all x ∈ X, rx = 0.
In this case if k is odd then ϕk is odd and if k is even, ϕk is even.
Furthermore C2(−t) = (−1)N−1C1(t) and so for all 0 ≤ k ≤ N , αk = −βN−k. So we have :

{
If N = 2a+ 1, 0 < |βa+1| < βa < |βa+2| < · · · < β1 < |β2a+1| < β0 = 1
If N = 2a, 0 < βa < |βa+1| < βa−1 < |βa+2| < · · · < β1 < |β2a| < β0 = 1

(32)

So by (29), we have in the case where N is even :

P 2n+1(0, N + 1) =
2π(N + 1)

π(0)

N∑

k=0

β2n+1
k ϕN+1(βk)µ2k (33)

and ϕN+1(βk) has the sign of (−1)k.

5.2 Proof of results on continuous time

For each 0 ≤ h, consider the h-skeleton discrete time Markov chain X(h)(n) = X(nh), n ∈ N.
X(h) is a Markov chain with transition matrix ehQ, initial distribution π0 and stationary

distribution π.

We denote the corresponding quantities (7) and (8) by ψ
(h)
n and J

(h)
n =

n∏

k=0

(1 − ψ
(h)
k (X

(h)
k ))

Proposition 5.1. For all t /∈ A, there exists (hn) −→ 0 such that a.e. on Ω

J
(hn)

[ t
hn

]
−→ Jt

Proof. For all x ∈ X, t 7−→ πt(x) is analytic with derivative πtQ(x).
By consequence Ax = {t ≥ 0/πt(x) = π(x)} is either equal to R+ or contains only isolated

points.
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Let T = {x ∈ X/ ∀t ≥ 0, πt(x) = π(x)} and A = ∪x/∈T Ax.
For all t ≥ 0, A ∩ [0, t] is a finite set.
Let t /∈ A. We take (hn) −→ 0 such that there exists ǫ > 0 such that for all n ≥ 0, for all

a ∈ A ∩ [0, t], d(a, hnN) ≤ h1+ǫ
n .

We choose ω such that for all r ≥ 1, Tr(ω) /∈ A ∪ {t} where (Tr)r≥0 are the jump times of
the continuous-time Markov chain (Xt)t≥0.

First case : ∀s ∈ [0, t], πs(Xs(ω)) > π(Xs(ω)

So for all s ∈ [0, t], Xs(ω) /∈ T and as Tr(ω) /∈ A ∪ {t}, by continuity there exists α > 0
such that for all s ∈ [0, t], πs(Xs(ω))− π(Xs(ω) > α.

ln J (hn)
n (ω) = ln

(
1− π(X0(ω))

π0(X0(ω))

)
+

[ t
hn

]∑

k=1

ln
(
1− ψ

(hn)
k (Xkhn

(ω))
)

So, we have, using continuity and derivability of t 7→ πt(x) :

ln J (hn)
n (ω) = ln

(
1− π(X0(ω))

π0(X0(ω))

)
+ hn

[ t
hn

]∑

k=1

(πhnk ∧ π)Q(Xkhn
(ω))

πhnk(Xkhn
(ω))− π(Xkhn

(ω))
+O(hn)

That gives the result in this case

Second case : ∃s ∈ [0, t], πs(Xs(ω)) ≤ π(Xs(ω)

If there exists s ∈ [0, t] such that πs(Xs(ω)) < π(Xs(ω)) then by continuity, J
(hn)
n (ω) = 0

for n big enough.

So we suppose that there exists s0 ∈]0, t[ which satisfies πs0(Xs0(ω)) = π(Xs0 (ω)) and for
all u ∈ [0, t], πu(Xu(ω)) ≥ π(Xu(ω)).

Let x = Xs0(ω) and r such that Tr(ω) < s0 < Tr+1(ω).

We want to prove that J
(hn)
n (ω) −→ 0.

Let sn ∈ hnN which satisfies |sn − s0| ≤ h1+ǫ
n . For n big enough, Tr(ω) < sn − hn < sn <

Tr+1(ω).

We have J
(hn)
n (ω) ≤ πsn (x)−π(x)

πsn(x)−(πsn−hn∧π)ehnQ(x)
.

Define for n ≥ 1,

Rn = {x ∈ X/πs0(x) = π(x), πs0Q
k(x) = 0 for 1 ≤ k ≤ n−1, (πs0∧π)Qk(x) = 0 for 1 ≤ k ≤ n}

Let n ≥ 2. We prove by iteration that

x ∈ Rn =⇒ ∀y/q(y, x) 6= 0, y ∈ Rn−1, (πs0 ∧ π)Qn(y) ≤ 0 and πs0Q
n−1(y) ≥ 0 (34)

Let n ≥ 2. We prove by iteration that

x ∈ Rn and πs0Q
n(x) = 0 =⇒ ∀y/q(y, x) 6= 0, y ∈ Rn−1 and πs0Q

n−1(y) = 0 (35)

For n big enough, πsn(x)−(πsn−hn
∧π)ehnQ(x) = πsn(x)−π(x)+

∑

k≥1

(πsn−hn
∧π)Qk(x)

hkn
k!

.

24



Define the following sets :

P = {y ∈ X/πs0(y) > π(y)}, M = {y ∈ X/πs0(y) < π(y)}

A+ = {y ∈ X/πs0(y) = π(y), (πs0−π)(y−) > 0}, A− = {y ∈ X/πs0(y) = π(y), (πs0−π)(y−) < 0}
So, if n is big enough and s = sn − hn,

(πs∧π)Qk(x) =
∑

y∈T ∪P∪A+

π(y)qk(y, x)+
∑

y∈M∪A−

πs(y)qk(y, x) =
∑

y∈M∪A−

(πs(y)−π(y))qk(y, x)

.

So if we denote αl,k =
∑

y∈M∪A−

πs0Q
k(y)ql(y, x), we have

(πsn−hn
∧ π)Ql(x) = (πs0 ∧ π)Ql(x) +

∑

r≥1

(sn − hn − s0)
r

r!
αl,r and so

π(x)−(πsn−hn
∧π)ehnQ(x) = −

∑

l≥1

(πs0∧π)Ql(x)
hln
l!
−
∑

l≥1

hln
l!

∑

r≥1

(sn − hn − s0)
r

r!
αl,r (36)

We prove by induction that for n ≥ 2,

x ∈ Rn =⇒
{

if k + l ≤ n− 1 then αk,l = 0
if k + l = n then αk,l ≥ 0

(37)

We prove by induction that for n ≥ 2,

x ∈ Rn and πs0Q
n(x) = 0 =⇒

{
if k + l ≤ n then αk,l = 0
if k + l = n+ 1 then (−1)lαk,l ≤ 0

(38)

Let 2k0 be the smallest integer k which satisfies πs0Q
k(x) 6= 0. We have πs0Q

2k0(x) > 0.

Let k1 be the smallest integer k which satisfies (πs0 ∧ π)Qk(x) 6= 0.

If k1 ≤ 2k0 then by (36)

π(x)−(πsn−hn
∧π)ehnQ(x) = −(πs0∧π)Qk1 (x)

hk1
n

k1!
−

∑

l,r≥1,l+r≤k1

hln
l!

(sn − hn − s0)
r

r!
αl,r+o(h

k1
n )

But as x ∈ Rk1−1, using (34), we have (πs0∧π)Qk−1(x) < 0 and using (38) (−1)rαl,r(x) ≤ 0
if l + r = k1 and αl,r(x) = 0 if l+ r < k1, so there exists C > 0 such that

π(x) − (πsn−hn
∧ π)ehnQ(x) = hk1

n C + o(hk1
n )

If k1 > 2k0, then x ∈ R2k0 . By (36), we have

π(x) − (πsn−hn
∧ π)ehnQ(x) = h2k0

n


 ∑

l,r≥1,l+r=2k0

(−1)r+1αl,r

l!r!


+ o(h2k0

n )
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But α1,2k0−1(x) =
∑

y∈A−

(πs0Q
2k0−1)(y)q(y, x). By (34) and (35), if q(y, x) > 0, then

y ∈ R2k0−2 and πs0Q
2k0−1(y) ≥ 0.

Furthermore if y ∈ A+, then πs0Q
2k0−1(y) = 0. So α1,2k0−1(x) = πs0Q

2k0(x) > 0.

And using again (38), there exists C > 0 such that

π(x) − (πsn−hn
∧ π)ehnQ(x) = h2k0

n C + o(h2k0
n )

The fact that πsn(x)− π(x) = πs0Q
2k0(x) (sn−s0)

2k0

(2k0)!
+ o((sn − s0)

2k0) and |sn − s0| ≤ h1+ǫ
n

implies that
πsn (x)−π(x)

πsn (x)−(πsn−hn∧π)ehnQ(x)
goes to 0.

We give now the proof of proposition (2.6).

Proof. We define for t ≥ 0 and x ∈ X, f(t, x) = P(T ≤ t,XT = x) and l(t, x) = P(T ≤ t,Xt = x).
This proposition is the consequence of the two following lemma.

Lemma 5.1. l(t, x) = (πt ∧ π)(x)

Proof. By using the proposition (5.1), we have

l(t, x) = P(U ≥ Jt, Xt = x) = lim
n→+∞

P(U ≥ J
(hn)

[ t
hn

]
, Xt = x)

But hn[
t
hn

] ≤ t so,

P(U ≥ J
(hn)

[ t
hn

]
, Xt = x) =

∑
y∈X

P(U ≥ J
(hn)

[ t
hn

]
, Xhn[

t
hn

] = y,Xt = x)

=
∑

y∈X
P(U ≥ J

(hn)

[ t
hn

]
, Xhn[

t
hn

] = y)e(t−hn[
t

hn
])Q(y, x)

=
∑

y∈X
(πhn[

t
hn

] ∧ π)(y)e(t−hn[
t

hn
])Q(y, x)

→ (πt ∧ π)(x)

this by (4) and (5).

Lemma 5.2. ∂f
∂t (t, x) =

∂l
∂t (t, x)−

∑

y∈X

l(t, y)q(y, x)

It is true for all stopping times.

5.3 Proof of lemma (4.3)

Lemma 5.3. Let Γn =
2d∑

k=0

αn
kBk where

B0 > 0, ∀iB2iB2i+1 < 0, B2i+1B2i+2 > 0, α0 = 1 > α1 > α2 > . . . > α2d > 0 (39)

We suppose that Γ0 = Γ1 = · · · = Γd−1 = 0. Then n 7→ Γn is stricly increasing on {d, d+1, · · · }.
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Proof. We prove the result inductively by the study of the real function ϕ(t) = B0+
2d∑

k=1

Bke
−µkt

where µk = − lnαk.
We prove that if (39) is satisfied then

• If d is even, there exists 1 ≤ k ≤ d
2 , there exists t1 < . . . < t2k−1 such that

∀1 ≤ i ≤ k, ϕ is strictly increasing on [t2i−1, t2i[

∀0 ≤ i ≤ k − 1, ϕ is strictly decreasing on [t2i, t2i+1[

where t0 = −∞, t2k = +∞.

• If d is odd, there exists 1 ≤ k ≤ d−1
2 , there exists t1 < . . . < t2k such that

∀0 ≤ i ≤ k, ϕ is strictly increasing on [t2i, t2i+1[

∀1 ≤ i ≤ k, ϕ is strictly decreasing on [t2i−1, t2i[

where t0 = −∞, t2k+1 = +∞.

It is easy to see that if d = 1, ϕ is strictly increasing.

If d is odd and ϕ(t) = B0 +

2(d+1)∑

k=1

Bke
−µkt, we write ϕ′(t) = −e−µ1tψ(t) and ψ′(t) =

e−(µ2−µ1)tθ(t).
θ satisfy the same hypothesis so there exists 1 ≤ k ≤ d−1

2 , there exists t1 < · · · < t2k such
that

∀0 ≤ i ≤ k, θ is strictly increasing on [t2i, t2i+1[
∀1 ≤ i ≤ k, θ is strictly decreasing on [t2i−1, t2i[
where t0 = −∞, t2k+1 = +∞.
Furthermore lim

t→+∞
θ(t) = −B2µ2(µ2 − µ1) > 0.

The number of zeros of θ is odd and smaller than 2k + 1 . So there exists l ≤ k, there exists
s1 < · · · < s2l+1 such that

θ < 0 on ]s2i, s2i+1[ for 0 ≤ i ≤ l, s0 = −∞.
θ > 0 on ]s2i+1, s2i+2[ for 0 ≤ i ≤ l, s2l+2 = +∞.
Furthermore lim

t→+∞
ψ(t) = B1µ1 < 0.

So the number of zeros of ψ is odd and smaller than 2l+1. So there exists m ≤ l, there exists
r1 < · · · < r2m+1 such that

ψ > 0 on ]r2i, r2i+1[ for 0 ≤ i ≤ m, r0 = −∞.
ψ < 0 on ]r2i+1, r2i+2[ for 0 ≤ i ≤ m, r2m+2 = +∞.
As m ≤ l ≤ k ≤ d−1

2 , we have proved the result for ϕ.
The case where d is even is the same.

The preceding result prove that ϕ(t) = B0 +
2d∑

k=1

Bke
−µkt has at most d zeros. So if ϕ(0) =

ϕ(1) = · · · = ϕ(d − 1) = 0, t 7→ ϕ(t) is strictly increasing on ]d − 1,+∞[ and this proves the
lemma.

5.4 Proof of lemma (4.5)

Lemma 5.4. Let 1 = λ0 > λ1 > . . . > λd > 0 and Γn =

d∑

i=0

Aiλ
n
i , A0 ≥ 0
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If for 0 ≤ i ≤ d− 1, Γi = 0, then n→ Γn is increasing and so for all n ≥ 0, Γn ≤ A0.

Proof. We show the result inductively.
If d = 1, Γn = A0(1− λn1 ).
We suppose the result true for d− 1. We can suppose that for all 0 ≤ i ≤ d, Ai 6= 0 et denote

by ǫ the sign of A1.
Then for all n ≥ 0, Γn+1 − Γn = ǫλn1 θn, where

θn = B0 +

d−1∑

i=1

Biλ̃
n
i , Bi = ǫAi+1(λi+1 − 1), λ̃i =

λi+1

λ1

Furthermore, θ0 = · · · = θd−2 = 0, so by hypothesis, n → θn is increasing, so as θ0 = 0, for all
n ≥ 0, θn ≥ 0 and n→ ǫΓn is increasing.

So 0 = ǫΓ0 ≤ ǫΓn ≤ limn→+∞ ǫΓn = ǫA0.
As A0 > 0, then ǫ = 1. this completes the proof of the lemma.
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