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Abstrat 3D aquisition devies aquire objet surfaes with growing auray by

obtaining 3D point samples of the surfae. This sampling depends on the geometry

of the devie and of the sanned objet and is therefore very irregular. Many

numerial shemes have been proposed for applying PDEs to regularly meshed 3D

data. Nevertheless, for high preision appliations it remains neessary to ompute

di�erential operators on raw point louds prior to any meshing. Indeed di�erential

operators suh as the mean urvature or the prinipal urvatures provide ruial

information for the orientation and meshing proess itself.

This paper reviews a half dozen loal shemes whih have been proposed to

ompute disrete urvature-like shape indiators on raw point louds. All of them

will be analyzed mathematially in a uni�ed framework by omputing their asymp-

toti form when the size of the neighborhood tends to zero. They are given in terms

of the prinipal urvatures or of higher order intrinsi di�erential operators whih,

in return, haraterize the disrete operators. All onsidered loal shemes are of

two kinds: either they perform a polynomial loal regression, or they ompute di-

retly loal moments. But the polynomial regression of order 1 is demonstrated

to play a speial role, beause its iterations yield a sale spae. This analysis is

ompleted with numerial experiments omparing the auraies of these shemes.

We demonstrate that this auray is enhaned for all operators by applying pre-

viously the sale spae.
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Introdution

The output of laser sanners or any surfae aquisition system is a set of points

sampled with variable density on the surfae. The sanners often deliver diretly a

mesh, i.e., a set of triangles linking point samples. But the basi raw information

is an unorganized point loud whih an be loally sparse or over-luttered. In this

paper we fous on the mathematial analysis and proessing of suh raw irregularly

sampled surfaes. Indeed, they ontain the most aurate information, before it

is altered or smoothed by any re-sampling and meshing. We shall interpret in

terms of intrinsi di�erential operators (the urvatures) the most interesting and

simple loal surfae estimators. Iterative surfae regularization proesses will also

be analyzed and the sale spae method used to ompute reliably loal di�erential

features. In one word, the hallenge is: how to ompute intrinsi operators whih

ideally only depend on the underlying surfae, not on its sampling? Surprisingly

enough, we shall see that this is possible and that the reliability of suh operators

an be enfored and evaluated.

The �eld of numerial surfae analysis has been widely studied over the �fteen

past years, due to the development of omputer graphis. Yet, most studies take as

starting surfae representation a mesh. Meshes are muh easier to handle than raw

point louds, being already oriented, having usually a uniform or regularly varying

sampling, and having a de�nite surfae topology. On the ontrary, raw data point

sets are ompletely unstrutured heaps of points, known only by their Eulidean

oordinates. Nevertheless the onstrution of a mesh and the onstitution of its

topology involve, impliitly or expliitly, the omputation of di�erential operators

on the raw data.

The most popular mesh reonstrution methods from a raw point loud de�ne a

signed funtion over R
3
representing the distane to the objet, and then extrat

the 0 level set whih approximates the objet surfae. See (e.g.) [15℄, [22℄, [9℄,

[27℄, [4℄, and the well established Poisson method [28℄, whih solves a Poisson

equation to build the indiator funtion of the solid objet. These methods vary

in the approah to ompute the distane funtion, but all extrat its zero-level set

by using the marhing ubes algorithm [35℄, [29℄. In suh meshing proesses, the

initial raw points are irremediably lost. This inurs into a loss of resolution and

explains the relevane of proessing diretly an unstrutured raw point loud.

The reminder of this paper is divided as follows: setion 1 reviews surfae

operators and surfae motions previously de�ned on meshes and on point louds,

setion 2 gives the neessary de�nitions and tools for raw surfaes and their under-

lying smooth model. Setion 3 analyzes the �rst kind of loal �di�erential operator�

omputable on a raw loud: these are simply loal order 2 moments, whih will

be shown to asymptotially ompute funtions of the surfae prinipal urvatures.

Setion 4 analyzes and ompares the surfae motions given by the projetion on

simple regression surfaes: a plane and a degree 2 polynomial surfae. Finally, se-

tion 5 shows omparative numerial experiments omparing the auraies of the

mesh free methods to ompute loal pseudo-di�erential operators, and also show

the improvement brought by applying a sale spae strategy based on the iteration

on the loud of a loal linear surfae regression.
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1 Computing urvatures on sampled surfae: state of the art

1.1 Curvatures omputed on meshes

Reviews for urvature estimation on meshed surfaes an be found in [44℄ or [36℄.

Curvature tensor estimation methods were pioneered by Taubin [46℄ who presented

a simple approximation for omputing the diretional urvature in any tangent di-

retion. The urvature is omputed in all inident edge diretions and a ovariane

matrix of the edge diretions weighted by their diretional urvatures and the area

of the two inident triangles is built. Eigenvetors and eigenvalues of this ovari-

ane matrix yield a simple expression of the prinipal urvatures and urvature

diretions.

Other urvature tensor estimation methods inlude [44℄ where the tensor is

estimated by building a linear system binding the tensor oe�ients. This linear

system expresses the onstraints that multiplying the tensor by an edge diretion

should give the di�erene of the edge's endpoints normals. The same method is

applied to �nd the urvature derivatives. Normals are also used in [48℄ to give a

pieewise linear urvature estimation (see also [49℄).

To avoid the omputation of derivatives with irregular samples, a new kind of

integral urvature estimation method has been proposed in [52℄, [43℄ and [42℄. The

intersetion of the surfae with either a sphere or a ball entered at a vertex is

analyzed: the ovariane matrix of this domain is omputed and eigenvalues are

expressed in terms of prinipal urvatures. By inreasing the neighborhood radius,

the urvature estimate an be made multisale. A very interesting feature of these

methods is that they do not rely on high order derivatives and are therefore more

stable.

Surfae motions have also been studied as part of a mesh fairing proess. A key

method was introdued by Taubin in [47℄ who onsidered a disrete Laplaian for

a mesh V with verties vi,
∂V
∂t = λL(V ), L being a disretization of the Laplaian

L(vi) =
1

cardN(vi)

∑

j ∈ N(vi)(vj − vi) where N(vi) is the set of verties linked

by an edge to vi (1-ring neighborhood). This formulation is widely used. For

example, [16℄ uses a similar �umbrella� operator. [20℄ also omputes the disrete

Laplaian for all mesh verties its eigenvetors and eigenvalues. By removing the

smallest eigenvalues, a fair mesh (i.e. a denoised mesh) is obtained.

A well known formulation of the Laplae Beltrami operator is the famous

otangent formula [38℄,

∆vi =
1

2

∑

j∈Nvi

(cotanαij + cotanβij)

where vi is a vertex of the mesh, N1(vi) its one ring neighborhood, αij and βij

are the angle opposite to edge vivj in the two triangles adjaent to vivj . This

has been used to ompute the surfae intrinsi equation. Another de�nition of the

urvatures for triangulated surfaes, based on the theory of normal yles, an be

found in [14℄.
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1.2 Curvature estimation and surfae motions de�ned on point louds

We now examine the rare approahes dealing diretly with point louds. [50℄ intro-

dued a sale spae deomposition method for point louds. The method builds an

adjaeny graph from the input points (in order to ompute easily the geodesis

on the surfae). The geodesis are used to ompute a density normalization kernel

that regularizes the density. The sale spae operator is the operator that moves

eah point to the baryenter of all points weighted by the regularization kernel

and the distane to the enter point. Then the sale spae method is used to selet

�sale-spae extrema�. At eah sale the point motion is onsidered. Introduing

a salar funtion on the displaement norm, the authors laim a reovery of the

harateristi sales of the surfae (the introdued funtion is extremal at the

harateristi sales).

Estimating urvatures often neessitates the omputation of surfae deriva-

tives. Yet derivating a potentially noisy surfae an generate unstable estimates.

Instead, it was notied that loal integral quantities ontain all the information of

the di�erential operators. This idea was used for example in [37℄, with a method

to ompute urvatures and normals based on de�ning Voronoi ovariane matri-

es. More pratially, a serious e�ort was made for de�ning integral invariants for

surfaes.

Our study will onsider the simplest loal integral invariants. The most famous

prinipal integral invariants were de�ned as follows: all D the interior of a surfae

M, then the area Ar of the intersetion of D with a sphere of radius r is an

invariant. The seond invariant is the volume Vr of the intersetion of a ball of

radius r with D. Both invariants were proved to be related to the mean urvature

([24℄, [11℄) so that:

Vr =
2π

3
r3 − πH

4
r4 +O(r5)

Ar = 2πr2 − πHr3.

Suh invariants were used in [19℄ for surfae registration, or for feature detetion

([13℄, [12℄). Nevertheless a serious numerial drawbak of suh integral invariants

expansions is that the dominant term never ontains the atual surfae informa-

tion. The dominant �rst term is atually ompletely independent of the surfae

lous. This makes the method impratial beause the term of interest (here the

mean urvature H) is obtained as the di�erene of two lower order terms. Yet,

sine Vr and Ar are not exat but approximate volumes and areas, H annot a-

tually be obtained aurately from suh formulas. The methods we will analyze in

this paper atually solve the problem by designing the loal operator in suh a way

that the di�erential operator of interest is the dominant term in the asymptoti

expansion.

In terms of mathematial analysis, the analysis whih goes losest to the present

one is due to Pottman et al. in [43℄ and [52℄. These authors analyzed the asymp-

toti behavior of several integral invariants, partiularly the moments of inertia

of various loal intrinsi neighborhoods. Yet, one again, the quantity to estimate

is not ontained in their dominant terms, thus making the obtained asymptoti

formulas numerially impratial. For example Theorem 2 of [43℄ shows that the

prinipal moments of inertia of the neighborhood de�ned as the intersetion of D
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with a ball of radius r have the Taylor expansion

M1
r =

2π

15
r5 − π

48
(3k1 + k2)r

6 + O(r7)

M2
r =

2π

15
r5 − π

48
(3k2 + k1)r

6 + O(r7)

M3
r =

19π

480
r5 − 9π

512
(k2 + k1)r

6 +O(r7)

where k1 and k2 are the prinipal urvatures of the surfae at the onsidered

position. The authors then bypass the di�ulty of not having the estimates in the

dominant term by taking the di�erene M2
r − M1

r = π
24(k1 − k2)r

6 + O(r7). Yet
this only yields the square of the prinipal urvature di�erene.

A more pratial result was proved in [43℄ in theorem 6 : the baryenter of the

surfae path (intersetion of a ball of radius r with the surfae M) is proved to

have oordinates (0, 0, k1+k2

8 r2) + O(r3). In this expression the signs are not lost

and the urvature is indeed the dominant term of the expansion. For the sake of

ompleteness the proof of this result will be realled in Lemma 2.

In [45℄, the proposed framework for urvature estimation at a partiular point

is based on a set of urves representing the loal neighborhood of the point under

onsideration.

For eah pair (pi,pj) of neighbors of p, the set of triplets (pi,p,pj) is built.
Eah of those triplets an be used to de�ne a parametri spae urve p(t) by

quadrati polynomial interpolation with p(0) = pi, p(1) = pj and p(t) = p where

t = |p−pi|
|p−pi|+|pj−p| . This allows for the approximation of maximum and minimum

urvature values as the minimum and maximum normal urvature values for all

possible point triplets. This method an be used either on meshes or point louds.

In [25℄, the authors proposed a statistial estimation of the urvature of point

sampled surfaes based on M-estimators

1

. The position di�erene vetor ∆p and

normal di�erene vetor ∆n are used to de�ne a linear system yielding a �rst

estimate of the urvature tensor. Then residuals are omputed and used to weigh

the samples and the objetive funtion is minimized by iterative reweighing of

point samples. This yields the �nal urvature tensor estimate.

Finally in [6℄, an algorithm to ompute the Laplaian of a funtion de�ned on

point louds in R
d
was proposed along with onvergene proofs. Yet the model

is not tested on real surfaes. Neighborhood ovarianes being used already for

normal estimation, the idea to express fundamental forms as ovarianes matries

was introdued. The next setion reviews the ovariane tehniques onsidered in

the literature.

1.3 Curvature estimation using ovariane tehniques

There are few ovariane approahes and they have seldom been analyzed math-

ematially yet, (with the notable exeption of [43℄ and [52℄ whih will be detailed

in this setion). Nevertheless, ovariane methods an be an elegant alternative to

1

M-estimation: robust �tting of a model by minimization of an objetive funtion of the

residuals with an Iterative Reweighed Least Squares (IRLS) sheme
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surfae regression. Three papers [7℄, [33℄ and [40℄ use ovariane matries for the

urvature estimation.

The �rst one [7℄ onsiders the neighbors (pi) of a point p. The seond funda-

mental form analog is then de�ned as the ovariane matrix of the vetors ppi

projeted onto the tangent plane of the surfae at p. An analog of the Gauss map is

also introdued: it is the ovariane matrix of the neighbors unit normals projeted

onto the surfae tangent plane at point p. The eigenvetors are said to give the

prinipal diretions. In fat these two ovariane matries are inspired from [33℄.

Indeed, [33℄ �rst proposed to ompute the ovariane matrix of the normals at the

neighbors of p, and to extrat the prinipal eigenvalues whih orrespond to the

prinipal urvatures of the surfae at p. The last ovariane method, introdued

in [40℄ is not laimed to be expliitly linked to surfae urvatures or fundamental

forms, yet it is used to aount for the surfae geometri variations. Consider the

ovariane matrix of vetors pi where is the baryenter of the neighborhood of

p. The surfae variation is de�ned as the ratio of the least eigenvetor over the

sum of all eigenvetors of this ovariane matrix. This quantity has the nie prop-

erty that it is bounded between 0 (�at ase) and 1/3 (isotropi ase). All of these

methods will be detailed and analyzed in setion 3.

1.4 Moving Least Squares Surfaes

MLS (Moving least square) surfaes were introdued in [30℄ as follows. Given a data

set of points {pi}i (possibly aquired by a 3D sanning devie) and belonging to

a smooth surfae M, the goal is to replae the points p de�ning M by a redued

set R = {ri} de�ning a so alled MLS M′
surfae whih approximates M. The

surfae M is assumed to be a C∞
2-manifold. The authors �x a bounding error ε

suh that d(M,M′) < ε, where d is the Hausdor� distane.

The projetion of a point on the MLS surfae is de�ned as follows: given a

point p, �nd a loal referene domain (plane) for p. The loal regression plane H
is obtained by minimizing a loal weighted sum of square distanes of the points

pi to the plane. The weights attahed to pi are de�ned as funtions of the distane

of pi to the projetion of p on plane H, rather than their distane to p.

Assume Q is the projetion of p onto H, then H is found by loally minimizing

with respet to n and D the quadrati ost

N
∑

i=1

(< n,pi > −D)2θ(‖pi −Q‖)

where θ is a smooth, monotone dereasing positive funtion. We an set Q = p+tn
for some t ∈ R, whih leads to the minimization of

N
∑

i=1

(< n,pi − p− tn >)2θ(‖pi − p− tn‖).

The loal referene domain is then given by an orthonormal oordinate system on

H with origin Q. The referene domain for p is used to ompute a loal bivariate

polynomial approximation to the surfae in a neighborhood of p. Let Qi be the

projetion of pi onto H, and fi =< n,pi −Qi >. In this loal oordinate system,
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let (xi, yi) be the oordinates of Qi on H. The oe�ients of the polynomial are

omputed by minimizing the least square error

∑N
i=1(g(xi, yi)− fi)

2θ(‖pi −Q‖)
The projetion of p onto M is de�ned by the polynomial value at the origin, i.e.

Q+ g(0, 0)n = p+ (t+ g(0, 0))n. Thus, given a point p and its neighborhood, its

projetion onto the MLS surfae an be omputed. The approximation power of

MLS surfaes was evaluated in [31℄ and the �rst appliations were introdued in

[2℄, [5℄ and [32℄.

MLS surfaes are not only theoretially powerful; they also provide �ne imple-

mentations for rendering, up-sampling or down-sampling point sets [3℄,[40℄. Finer

variants of MLS were subsequently proposed for a better preservation of sharp

edges in surfaes de�ned by point louds [39℄, [34℄, [18℄, [21℄ and [1℄.

The same framework was used to build a sale spae for point louds in [41℄.

The surfae is evolved through a di�usion proess

∂p
∂t − λ · ∆p = 0, where p

is a point of the surfae, λ a di�usion parameter and ∆p = Hn is the Laplae

Beltrami Operator (H is the urvature and n the normal at point p, this is the

deomposition proess). By remembering the set of displaements Di(p) of eah
point p we have a reonstrution operator. The hoie of the Laplaian disretiza-

tion is very important: a �rst possibility is to use the standard mesh Laplaian

tehniques [47℄ adapted for point louds using the k-nearest neighbors instead of

the one ring neighborhood. Another possibility is to use the weighted least squares

projetion [23℄, [26℄: the surfae is iteratively projeted onto the plane de�ned by

the weighted baryenter o and the normal estimated using the weighted neighbor-

hood ovariane matrix. The weights are a Gaussian funtion of the distane to

p, and the size of the Gaussian kernel is a parameter that ontrols the amount of

smoothing. This projetion proess is in fat an order 1 projetion motion (MLS1)

that will be analyzed in the following setions.

To make the projetion more e�ient, [41℄ proposed to sub-sample the point

loud. This yields a sale spae deomposition where at eah level the surfae is

smoothed and sub-sampled. The sale spae deomposition is then applied to the

multi-sale freeform deformation and to the morphing problem, with satisfatory

results.

The moving least squares (MLS) were used to estimate urvatures. For exam-

ple, in [51℄, the authors use the MLS framework to build a losed form solution

for urvature estimation. Indeed, surfaes implied by point louds an be seen as

the zero level set of an impliit funtion f whose gradient and Hessian Matrix are

built. Finally, using formulas for the Gaussian and the mean urvature depending

on the Hessian and gradient of f , those urvatures an be omputed.

In [10℄, the problem of estimating di�erential quantities on point louds is re-

ast to that of �tting the loal representation of the manifold by a jet. A jet is

simply a trunated Taylor expansion. A n jet is a Taylor expansion trunated at

order n. A jet of order n ontains di�erential information up to the n-th order. In

partiular it is stated that a polynomial �tting of degree n estimates any kthorder
di�erential quantity to auray O(hn−k+1). This implies that the oe�ient of

the �rst fundamental form and unit vetor normal are estimated with O(hn) pre-
ision and the oe�ients of the seond fundamental form and shape operator

are approximated with auray O(hn−1), and so are the prinipal diretions. In

order to haraterize urvature properties, the method resorts to the Weingarten

map A of the surfae, also alled the shape operator, that is the tangent map of
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the Gauss map. Reall that the �rst and seond fundamental forms I, II and A
satisfy II(t, t) = I(A(t), t) for any vetor t of the tangent spae. Seond order

derivatives are omputed by building the Weingarten map of the osulating jet

whose eigenvalues are the prinipal urvatures. Note that the desribed methods

an be used either with a mesh or with a point loud. Jets are in fat very related

to MLS surfaes. Indeed, to estimate di�erential quantities a polynomial �tting

of degree n is done, whih is exatly what MLS does. Therefore the analysis in

setion 4 giving the equation governing MLS1 and MLS2 motions are valid for the

jets too.

Nevertheless, we shall prove that none of the above mentioned moment based

methods for omputing the urvatures without a surfae regression gives bak

the signed urvatures. We shall also prove experimentally that in order to be

stable, those integral estimates as well as the surfae regression estimates require

a large neighborhood, whih leads to larger omputation time. In terms of Signal-

to-Noise Ratio, it will turn out to be better to onsider a sale-spae approah:

applying the sale spae iterations with a small neighborhood and then extrating

the di�erential operator analogue.

This setion has reviewed the main methods aiming at estimating loally the

surfae shape, thus impliitly omputing loal equivalents of the in�nitesimal ur-

vature tensor. We have seen that two sorts of methods, logially, dominate: the

polynomial regressions on one side, and the loal moments on the other. (It is a-

tually di�ult to imagine other kinds of loal methods on a raw point set). These

kinds have very di�erent tehniques, but we shall be able to ompare them in

two unifying frameworks. We shall �rst give their asymptoti equivalents, whih

are funtions of the surfae prinipal urvatures. Then we shall ompare their

reliability by a numerial set up in the experimental setion.

In partiular setion 3 �nds the form of the di�erential operators underlying

the four mentioned disrete shemes based on loal loud point statistis, and

proposing disrete analogues of the �seond fundamental forms� or of the �prinipal

urvatures�. These disrete shemes have very simple and robust form, being based

on the omputation of loal moments and eigenvalues of the point loud. The

next setion 2 provides the tools to analyze numerially point loud motions. The

analysis is in spirit lose to the image �lter analysis performed in [8℄.

2 Tools for numerial analysis of point loud surfae motions

We always assume the existene of a smooth surfae M supporting the point set.

These surfaes are the boundaries of solid objets and an therefore be assumed

to be loally Lipshitz graphs. However, for a mathematial analysis of smoothing

algorithms and urvature estimations on the surfae, we shall always assume that

the surfae is a C∞
embedded manifold, known from its samples denoted by MS.

This is not a limitation, in the sense that any �nite sample set an be anyway

interpolated by an arbitrarily smooth surfae. Let p = p(xp, yp, zp) be a point of

the surfae M. At eah non umbilial point p, onsider the prinipal urvatures

k1 and k2 linked to the prinipal diretions t1 and t2, with k1 > k2 where t1 and

t2 are orthogonal vetors. (At umbilial points, any orthogonal pair (t1, t2) an be

taken.) Set n = t1 × t2 so that (t1, t2,n) is an orthonormal basis. The quadruplet

(p, t1, t2,n) is alled the loal intrinsi oordinate system. In this system we an
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Spherical Neighborhood

Regression Plane

Cylindrical Neighborhood

P

M

Fig. 1 Comparison between ylindrial and spherial neighborhoods

express loally the surfae as a C2
graph z = f(x, y). By Taylor expansion

2

,

z = f(x, y) =
1

2
(k1x

2 + k2y
2) + o(x2 + y2). (1)

Notie that the sign of the pair (k1, k2) depends on the arbitrary surfae orienta-

tion. Points where k1 and k2 have the same sign are alled paraboli, and points

where they have opposite signs are hyperboli.

Consider two kinds of neighborhoods in M for p de�ned in the loal intrinsi

oordinate system (p, t1, t2,n):

� the spherial neighborhood Br = Br(p) ∩ M is the set of all points m of M
with oordinates (x, y, z) satisfying (x− xp)

2 + (y − yp)
2 + (z − zp)

2 < r2

� the ylindrial neighborhood Cr = Cr(p) ∩M is the set of all points m(x, y, z)
on M suh that (x− xp)

2 + (y − yp)
2 < r2.

The spherial neighborhood in the sampled surfae M2 is the only neighborhood

to whih there is a diret numerial aess. It serves for de�ning all numerial

shemes onsidered here. Nevertheless, for the forthoming asymptoti numerial

analysis, the ylindrial neighborhood will prove muh handier than the spherial

one. The next tehnial lemma justi�es its use in theoretial alulations.

Lemma 1 Integrating on M any funtion f(x, y) suh that f(x, y) = O(rn) on

a ylindrial neighborhood Cr instead of a spherial neighborhood Br introdues an

o(rn+4) error. More preisely:

∫

Br

f(x, y)dm =

∫

x2+y2<r2

f(x, y)dxdy +O(r4+n). (2)

Proof The surfae area element of a point m(x, y, z(x, y)) on the surfae M, ex-

pressed as a funtion of x, y, dx and dy is dm(x, y) =
√

1 + z2x + z2ydxdy. One has

zx = k1x+O(r2) and zy = k2y +O(r2). Thus

dm(x, y) =
√

(1 + k21x
2 + k22y

2 +O(r3))dxdy

2

We ould use z = f(x, y) = −

1
2
(k1x2 + k2y

2) + o(x2 + y2) at the ost of hanging the

orientation and sign of k1,k2.
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whih yields

dm(x, y) = (1 +O(r2))dxdy. (3)

Using (3), the integrals we are interested in beome

∫

Br

f(x, y)dm = (1 +O(r2))

∫

§2+y2+z2<r2,(x,y,z)∈M

f(x, y)dxdy; (4)

∫

Cr

f(x, y)dm = (1 +O(r2))

∫

x2+y2<r2, (x,y,z)∈M

f(x, y)dxdy. (5)

The right hand forms are amenable to analyti omputations. Consider polar oor-

dinates (ρ, θ) suh that x = ρ cos θ and y = ρ sin θ with −r ≤ ρ ≤ r and 0 ≤ θ ≤ π.
Then for m(x, y, z) belonging to the surfae M, we have z = 1

2ρ
2(k1 cos

2 θ +

k2 sin
2 θ)+O(r3). Thus z = 1

2ρ
2k(θ)+O(r3), where k(θ) = k1 cos

2 θ+k2 sin
2 θ. The

ondition that (x, y, z) belongs to the neighborhood Br an therefore be rewritten

as ρ2 + z2 < r2, that is

ρ2 +
1

4
k(θ)2ρ4 < r2 +O(r5).

Computing the boundaries ±ρ(θ) of this neighborhood yields ρ(θ)2+ 1
4k(θ)

2ρ(θ)4−
r2 +O(r5) = 0. Thus

ρ(θ)2 =
−1 +

√

1 + k(θ)2(r2 +O(r5))
1
2k(θ)

2
.

This yields ρ(θ) = r − 1
8k(θ)

2r3 + O(r4). We shall use this estimate for the error

term E appearing in

∫

Br

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E

=

∫

Cr

f(x, y)dxdy − E,

with E =:
∫

[0,2π]

∫

[ρ(θ),r]
f(x, y)ρdρdθ. Thus

|E| ≤ 2π sup
x2+y2≤r2

|f(x, y)|max(k21, k
2
2)r

4 +O(r5).

In partiular if f(x, y) = O(rn), then |E| ≤ O(r4+n). Finally we have

∫

Br

f(x, y)dxdy =

∫

Cr

f(x, y)dxdy +O(r4+n). (6)

Combining (4), (5) and (6) yields (2).

This lemma will prove very useful for the rest of the paper and in partiular

in the next setion where analysis are given for various urvature estimates.
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A methodologial objetion to the asymptoti analysis Lemma 1, as well as all

theorems in the remainder of this paper will assume that the surfae is a uni-

form Lebesgue measure. Thus the theoretial analysis will be performed as though

the surfae were a very smooth objet with dense uniform Lebesgue sampling.

This is very far from reality, and ould ast doubts on the pertineny of suh a

theoretial analysis. However, as will be explained later, the objetion will prove

invalid, in that the hosen loal integral operators will always be robust to ir-

regular sampling. For example the loal area ould de�nitely not be omputed

by a loal sample density. In the same way the loal baryenter of the existing

sampled will be heavily biased by the irregular sampling and would have little

to do with the atual loal baryenter of the underlying surfae. Nevertheless,

the moments we shall onsider are far more robust, in theory and in pratie, to

irregular sampling. This is the ase for example for the normal when estimated

as the normal to the loal regression plane or, as we shall see, the mean urva-

ture vetor estimated as the projetion of the sample on its regression plane. On

the numerial side, however, it is reommended to ompensate for the irregular

sampling by an adequate sample reweighing in the omputed loal moments. This

intrinsi density is simply approximated on disrete data by weighting eah point

by a weight inversely proportional to its initial density. More preisely, let p be

a point and Nr(p) = Ms ∩ Br(p). Eah point q should ideally have a weight

0 ≤ w(q) ≤ 1 suh that

∑

q∈Nr(p)
w(q) = 1. This amounts to solve a huge linear

system. For this reason, we shall be ontented in the experimental setion with

ensuring

∑

q∈Nr(p)
w(q) ≃ 1 by taking w(p) = 1

♯(Bp(r))
, as proposed in [50℄.

3 Curvature estimates by ovariane matrix methods

This setion ontains some of the main ontributions of the present paper. It �nds

the form of the di�erential operators underlying four di�erent disrete shemes

based on loal loud point statistis, and proposing disrete analogues of the �se-

ond fundamental form matrix� or of the �prinipal urvatures�. These disrete

shemes have a very simple and robust form, being based on the omputation

of loal moments and eigenvalues of the point loud or of its normals. We shall

see that all of the methods asymptotially ompute nonlinear di�erential opera-

tors linked to the prinipal urvatures. Their priniple is to replae the matrix

of the seond fundamental form by some symmetri matrix that an be dedued

from the loal statistis of the point loud. We shall onsider four matries (2 or

3-dimensional)that are the simplest of suh ovariane matries:

� 2D ovariane matrix of the projetions of

−−→
pip on the tangent plane where pi

are the points of the neighborhood (setion 3.1) ;

� 2D ovariane matrix of the projetions of the unit normals n(pi) on the tan-

gent plane (setion 3.2) ;

� 3D ovariane matrix of the unit normals n(pi) (setion 3.3) ;

� 3D entered ovariane matrix of the

−−→
pio where is the baryenter of the

neighborhood (setion 3.4).
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3.1 A disrete �seond fundamental form� [7℄

Let(pi)i∈1···N be the set of neighbors of a point p with normal n. This paper

proposes to build the �seond fundamental form matrix� as follows. (Although this

ovariane matrix is not, as we shall see, onsistent with the seond fundamental

form, it is thus alled in this paper, and atually has asymptotially, as we shall

see, the prinipal diretions as eigenvetors.) Let si = (pi − p)T · n, let t1, t2 be

two orthonormal vetors in the tangent plane of p, and

αi = si ·
(

(pi − p) · t1
(pi − p) · t2

)

= ((pi − p)T · n) ·
(

(pi − p) · t1
(pi − p) · t2

)

.

The αi are the projetions of the vetors (pi − p) onto the tangent plane to p,

weighted by their distane to this plane. The �seond fundamental form matrix�

is the ovariane of these vetors, namely

Σd =

N
∑

i=1

(αi − αm) · (αi − αm)T (7)

where αm = 1
N

∑N
i=1 αi and in Σd the d stands for �disrete�. To ompute the

underlying di�erential operators, two assumptions will be made throughout this

paper. The �rst one is that the surfae sampling is uniform with respet to the area

measure on the surfae. The seond one is that this sampling is dense enough, so

that the averages taken on neighborhoods an be interpreted as integrals. Under

this interpretation, we an reinterpret the sum in (7) as an integral on a ylindrial

neighborhood of p, assuming the data point set to be a loally smooth manifold.

In the loal intrinsi surfae oordinate system at point p, (p, t1, t2,n), the surfae
an be written as a graph z = 1

2 (k1x
2 + k2y

2) + o(r2). Thus the vetors αi are

replaed by a ontinuous vetor α(x, y) de�ned by

α(x, y) =
1

2
(k1x

2 + k2y
2) ·

(

x
y

)

=
1

2
·
(

k1x
3 + k2y

2x
k1x

2y + k2y
3

)

+ o(r3). (8)

Under the interpretation taken above the �seond fundamental matrix� rewrites

Σ =

∫

Br

(α(x, y)− αm) · (α(x, y)− αm)T dm(x, y) (9)

where

αm =
1

meas(Br)

∫

Br

α(x, y)dm(x, y). (10)

The proposition made in [7℄ is to extrat the surfae prinipal urvatures and

their orresponding diretions at p from this ovariane matrix, as its eigenvalues

and eigenvetors. The next theorem heks if this works asymptotially in the

ontinuous model.

Theorem 1 The eigenvetors of the �seond fundamental form matrix� Σ give the

prinipal diretions with error o(r8). But the eigenvalues of Σ are not the prinipal

urvatures as they satisfy

λ1 =
πr8

256
(5k21 + 2k1k2 + k22) + o(r8) and λ2 =

πr8

256
(k21 + 2k1k2 + 5k22) + o(r8)

where k1 and k2 are the prinipal urvatures at p
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Proof In the ontinuous model αm therefore is lose to zero beause the integrated

funtion is odd on a symmetri domain. More preisely, using Lemma 1 in (10)

and writing αm = (αmx, αmy),

αmx =
1

2πr2

∫

x2+y2<r2

(k1x
3 + k2y

2xi + o(r5))dxdy = o(r3)

and similarly

αmy = o(r3).

By Lemma 1 again, the ovariane matrix (9) satis�es Σ =
∫

x2+y2<r2 α(x, y) ·
α(x, y)Tdxdy + o(r8), and, using (8), we an alulate its four omponents as

follows.

Σ11 =
1

4

∫

x2+y2<r2

(k1x
3 + k2y

2x)2dxdy + o(r8) =
πr8

256
(5k21 + 2k1k2 + k22) + o(r8)

By exhanging the roles of k1, k2, and x, y respetively, we get

Σ22 =
πr8

256
(k21 + 2k1k2 + 5k22) + o(r8).

Σ being a symmetri matrix, Σ12 = Σ21 and the integrated funtion being

odd,

Σ12 =
1

4

∫

x2+y2<r2

(k1x
3 + k2y

2x)(k1x
2y + k2y

3)dxdy + o(r8) = o(r8).

Thus, Σ is equivalent to a diagonal matrix whose prinipal diretions are t1 and

t2, whih validates the theoretial requirements, t1 and t2 being the prinipal

diretions at point p. However, the orresponding eigenvalues are

λ1 =
πr8

256
(5k21 + 2k1k2 + k22) + o(r8)

λ2 =
πr8

256
(k21 + 2k1k2 + 5k22) + o(r8)

whih are de�nitely di�erent from λ1 = k1 and λ2 = k2. Only the absolute values

of k1 and k2 an atually be dedued from Σ.

3.2 Another disrete �seond fundamental form�

Another method was also introdued in [7℄ whih, in a nutshell, omputes the

ovariane matrix of the unit normal vetors projetions onto the loal tangent

plane. By applying again the ontinuous asymptoti analysis of setion 3.1, we shall

see in Theorem 2 that this method atually omputes disrete approximations of

the squares of the prinipal urvatures. The disrete algorithm is as follows. Let

M be a C2
surfae and p be a point of M. Let (pi)i be the neighbors of p in a

ball neighborhood of radius r. Denote by ni the normal at pi and de�ne vi as the
projetion of ni onto the tangent plane at p, then the omputed �urvatures� are
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de�ned as the eigenvalues of the ovariane matrix of the vetors vi. The vetor

vi being the projetion of ni onto the tangent plane, we have

vi =

(

ni · t1
ni · t2

)

.

Set vm = 1
N

∑N
i=1 vi. Then this new disrete ovariane matrix writes Σd =

∑N
i=1(vi − vm) · (vi − vm)T . In the ontinuous framework, the loal points on

the surfae have oordinates m(x, y) = (x, y, 1
2 (k1x

2 + k2y
2) + o(r2)) and the

normal vetor to this surfae is

∂m
∂x (x, y) ∧ ∂m

∂y (x, y) = (−k1x,−k2y, 1) + o(r). It
follows that

v(x, y) =
1

√

1 + k21x
2 + k22y

2

(

−k1x
−k2y

)

+ o(r),

vm =
1

meas(Br)

∫

v(x, y)dm(x, y),

and the ontinuous ovariane matrix is

Σ :=

∫

Br

(v(x, y)− vm) · (v(x, y)− vm)T .

Theorem 2 The eigenvalues of the ovariane matrix Σ of the vetors v(x, y) in
the spherial neighorhood Br are

k21r
4π

4
+ o(r4) and

k22r
4π

4
+ o(r4).

Proof Let us ompute the mean vm of v(x, y) on the spherial neighborhood. By

Lemma 1 the integral on a spherial neighborhood is asymptotially equivalent to

the integral on a ylindrial neighborhood and more preisely, (πr2)vm · t1 = o(r3)
and similarly

(πr2)vm · t2 =

∫

x2+y2<r2

−k2y
√

1 + k21x
2 + k22y

2
dxdy + o(r4) = o(r3).

Thus the oe�ients of Σ satisfy, again by Lemma 1,

Σ11 =

∫

x2+y2<r2

k21x
2

1 + k21x
2 + k22y

2
dxdy + o(r4) =

∫

x2+y2<r2

k21x
2 + o(r4)

=
k21r

4π

4
+ o(r4)

Similarly, Σ22 =
k2

2
r4π
4 + o(r4) and Σ12 = Σ21 = o(r4).

Thus Σ is asymptotially diagonal and its eigenvalues Σ11 and Σ22 are asymp-

totially obtained for the prinipal diretions t1 and t2. Yet, these eigenvalues

asymptotially give an approximation of eah one of the squared prinipal urva-

tures, but not of their sign.
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3.3 A third disrete �fundamental form�

The methods analyzed in setions 3.1 and 3.2 are akin to the original method

introdued in [33℄. Indeed, in [33℄ it was proposed to ompute the ovariane

matrix of the normal vetors of the neighborhood (without projeting them in the

loal regression plane) and therefore get a 3× 3 matrix instead of a 2× 2 matrix.

This is atually the simplest imaginable method and we shall see that it gives a

result similar to setion 3.2.

Theorem 3 Let M be a C2
surfae, let p be a point of M. Then the three eigen-

values of the ovariane matrix C of the unit normals in a neighborhood of radius

r around p are asymptotially respetively equal to 1 and to the squares of the

prinipal urvatures at p.

Proof A normal vetor writes

N =
1

√

1 + k21x
2 + k22y

2





−k1x
−k2y
1



+ o(r).

As in the previous setions, we easily obtain by Lemma 1, Nmx = o(r),Nmy =
o(r),Nmz = 1 + o(r). Thus again by Lemma 1,

C=

∫

x2+y2≤r2

1

1 + k21x
2 + k22y

2





k21x
2 k1k2xy k1x(1−Nmz)

k1k2xy k22y
2 k2y(1−Nmz)

k1x(1−Nmz) k2y(1−Nmz) (1−Nmz)
2



dxdy + o(r4)

and, by alulations exatly analogous to Setion 3.2, C11 =
k2

1
r4π
4 + o(r4), C22 =

k2

2
r4π

4 + o(r4), C12 = C21 = k1k2
∫

x,y
xydxdy = o(r4), C13 = C31 = C23 = C32 =

C33 = o(r4). Thus the eigenvalues are asymptotially equal to

k2

1
r4π

4 and

k2

2
r4π

4 ,

whih also gives bak the squares of the prinipal urvatures of the surfae, but

again not their sign.

3.4 A fourth disrete fundamental form: the surfae variation

We shall now analyze a last variant introdued in [40℄, the so alled surfae varia-

tion. It is again based on a loal ovariane analysis. Unlike the previous methods,

the surfae variation was not laimed to be a urvature estimate, but to be a mea-

sure of the neighborhood shape. This subsetion establishes again a link between

this disrete quantity and the prinipal urvatures of the surfae.

Let p be a point with given neighborhood Br. Let o be the baryenter of the

neighborhood. In R
3
, the oordinates are written with supersripts e.g. the oordi-

nates of a point u are (u1, u2, u3). Thus, for i = 1, 2, 3, oi = 1
cardBr

∑

pk∈Br
p
i
k. The

entered ovariane matrix Σ = (mij)i,j=1,··· ,3 is de�ned as mij =
∑

pk∈Br
(pi

k −
o
i) · (pj

k − o
j) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ with

orresponding eigenvetors v0, v1, v2. For k = 0, · · · , 2,

λk =
∑

pi∈Br

〈(pi − o), vk〉2. (11)
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Eah eigenvalue gives the variane of the point set in the diretion of the orre-

sponding eigenvetor. Sine v1 and v2 are the vetors that apture most variations,

they de�ne the PCA regression plane. The normal v0 to this plane is the diretion

v minimizing

∑

pi∈Br
〈(pi − o), v〉2. [40℄ de�nes the surfae variation by

σ =
λ0

λ0 + λ1 + λ2
. (12)

This quantity measures the ratio of variane along the normal to the total variane.

If the neighborhood is highly urved, its surfae variation will be high and if the

neighborhood is �at the surfae variation will be small. This quantity has the

property to be bounded between 0 (�at ase) and 1/3 (isotropi distribution ase).

Lemma 2 [43℄ In the loal intrinsi oordinate system, the baryenter of a neigh-

borhood Br of point p has oordinates xo = o(r2), yo = o(r2) and zo = Hr2

4 +o(r2),

where H = k1+k2

2 is the mean urvature at p.

Proof We give the proof for the sake of ompleteness. By Lemma 1 applied to the

numerator and denominator of the following fration, we have

zo =

∫

Br
zdm

∫

Br
dm

=

∫

x2+y2<r2 z(x, y)dxdy +O(r5)
∫

x2+y2<r2 dxdy +O(r3)

=

∫

x2+y2<r2

[

1
2(k1x

2 + k2y
2) + o(x2 + y2)

]

dxdy
∫

x2+y2<r2 dxdy
+O(r3)

=
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos
2 θ + k2 sin

2 θ)ρdρdθ + o(r2)

=
r2

8π
(k1π + k2π) + o(r2) =

Hr2

4
+ o(r2).

A similar but simpler omputation yields the estimates of xo and yo.

Theorem 4 In the loal oordinate system the surfae variation σ satis�es

σ =
r2

16

(

k21 + k22
2

− 1

3
k1k2

)

+ o(r2) (13)

Proof We need to explain what the ovariane eigenvalues stand for. Eah eigen-

vetor vi and assoiated eigenvalue λi represent a prinipal diretion and the

variation along this prinipal diretion,

λi =

∫

m∈Br

〈om, vi〉2dm.

Sine we have λ0 ≤ λ1 ≤ λ2, we an see that λ0 is assoiated to the diretion

with the least variation namely the normal diretion to the surfae oz. Sine the
eigenvetors form an orthonormal basis, we have

λ0 + λ1 + λ2 =

∫

m∈Cr

〈om, v0〉2 + 〈om, v1〉2 + 〈om, v2〉2dm =

∫

m∈Cr

‖om‖2dm
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This yields λ0 + λ1 + λ2 =
∫

x2+y2<r2 x
2 + y2 + (z − zo)

2dxdy and

λ0 + λ1 + λ2 =
πr4

2
+ λ0 + o(r6) (14)

We �rst ompute λ0, applying again Lemma 1 to get bak to the easy ylindrial

neighborhood.

λ0 =

∫

x2+y2≤r2

(z − zo)
2dxdy

=

∫

x2+y2≤r2

z2dxdy + z2o

∫

x2+y2≤r2

dxdy − 2zo

∫

x2+y2≤r2

zdxdy

=

∫

x2+y2≤r2

z2dxdy +
H2r4

16
∗ πr2 − 2

Hr2

4

r4

4
πH + o(r6)

=
1

4
(k21

∫

x2+y2≤r2

x4dxdy + k22

∫

x2+y2≤r2

y4dxdy + 2k1k2

∫

x2+y2≤r2

x2y2dxdy

− H2r6

16
π + o(r6)

=
1

4

r6

6
(
3π

4
(k21 + k22) + k1k2

π

2
)− H2r6

16
π + o(r6)

where H = k1+k2

2 is the mean urvature. Thus

λ0 =
πr6

32
(
k21 + k22

2
− 1

3
k1k2) + o(r6) (15)

Using (14) and (15) we get

σ =
r2

16(
k2

1
+k2

2

2 − 1
3k1k2) + o(r2)

1 + r2

16(
k2

1
+k2

2

2 − 1
3k1k2) + o(r2)

whih �nally yields:

σ =
r2

16

(

k21 + k22
2

− 1

3
k1k2

)

+ o(r2)

The formula of the surfae variation given by Theorem 4 indeed measures a sort

of urvature. To interpret it we an notie that

� the surfae variation is symmetri in k1,k2;

� in the ase of a point lying on a sphere, k1 = k2 = k so σsphere = r6

24k
2
;

� in the ase of a saddle point k1 = k = −k2, σsaddle = r6

12k
2
so σsphere < σsaddle;

� in the ase of a ylinder k1 = k, k2 = 0, σcylinder = r6

32k
2
.

It follows from that the surfae variation is not a disriminating enough informa-

tion about the surfae urvature. It is unable to disriminate very di�erent loal

shapes.
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4 Asymptoti behavior of MLS1 and MLS2

The simplest statistis that an be omputed in a spherial neighborhood are the

baryenter and the regression plane. Lemma 2 stated that sending eah point onto

the baryenter of its neighborhood approximates the mean urvature motion. The

next simplest statisti is the regression plane, and the seond next is the loal

degree 2 regression surfae. The main tool of the sale spae proposed in [17℄ is

the projetion of eah surfae point p on the loal regression plane. This PCA

regression plane is de�ned as the plane orthogonal to the least eigenvetor of the

entered loal ovariane matrix, and passing through the entroid of the neighbor-

hood. The projetion of p on this plane will be alled p
′ = MLS1(p) where MLSn

stands for moving least square of degree n. Indeed, this projetion method is the

simplest instane of the moving least square method by whih eah point of a sur-

fae is projeted to a loal degree n polynomial regression. (The loal baryenter

an atually be onsidered as an MLS of order 0, MLS0.) There is some partiular

interest in MLS1, beause a reent meshing method uses it as the simplest re-

versible smoothing tool for point louds [17℄. On the other hand many loud point

proessing methods involve some variant of the MLS2 method to smooth, interpo-

late, or sub-sample a point loud. MLS1 and MLS2 are smoothing operators and

therefore ould be used as sale spaes, that is, as iterative smoothing operators.

But, following [17℄ MLS1 indeed is a sale spae. MLS2 is not, as illustrated in the

experiments of Setion 5. The theorems of this setion larify what happens with

these loal polynomial regressions by �rst realling brie�y why MLS1 implements

a mean urvature motion, and seond by showing that MLS2 is insensitive to �rst,

seond, and third order intrinsi derivatives, and has an order 4 di�erene to the

original surfae. The study reveals the fourth order intrinsi di�erential operator

assoiated with MLS2.

4.1 The asymptoti behavior of MLS1

The next lemma ompares the normal to the PCA regression plane with the normal

to the surfae, n at p.

Lemma 3 The normal v to the PCA regression plane in a spherial neighborhood

Br at p ∈ M is equal to the surfae normal at point p, up to a negligible fator:

v = n+ O(r).

Proof The loal PCA regression plane of point p is haraterized as the plane

passing through the baryenter of the neighborhood Br and with normal v mini-

mizing:

I(v) =

∫

Br

|〈v,pp′〉|2dp′
s.t. ‖v‖ = 1

Denoting by (vx, vy, vz) the oordinates of v,

I(v) =

∫

Br

(vxx+ vyy + vz
1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.

Considering the partiular value v = (0, 0, 1) shows that the minimal value Imin

of I(v) satis�es Imin ≤ O(r6). In onsequene the minimum (vx, vy , vz) satis�es
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vx ≤ O(r) and vy ≤ O(r). Thus, sine ||v|| = 1, vz ≥ 1 − O(r) and therefore

v = n+ O(r).

Theorem 5 Let Tr be the operator de�ned on the surfae M transforming eah

point p into its projetion p
′ = Tr(p) on the loal regression plane. Then

Tr(p)− p =
Hr2

4
n+ o(r2). (16)

Proof By Lemma 2 the baryenter o of Br has loal oordinates
−→
po = (o(r2), o(r2), Hr2

4 +

o(r2)). On the other hand
−−→
pp

′
is proportional to the normal to the regression plane,

v. Thus by Lemma 3,

−−→
pp

′ = λ(O(r),O(r), 1 − O(r)). To ompute λ, we use the

fat that p
′
is the projetion on the regression plane of p, and that o belongs to

this plane by de�nition. This implies that

−−→
pp

′ ⊥
−→
op

′
and therefore

λ2O(r2) + λ(1−O(r))(H
r2

4
+ o(r2) + λ(1−O(r))) = 0,

whih yields λ = Hr2

4 + o(r2) and therefore

−−→
pp

′=(O(r3),O(r3),
Hr2

4
+ o(r2))=

Hr2

4
n+ o(r2).

4.2 The asymptoti behavior of MLS2

Among the many versions of MLS2 proposed in the literature, we shall pik one

whih is a ommon denominator, and prone to a simple asymptoti analysis. In

MLS2 a �rst intrinsi referene frame is �rst alulated, and the mean square

approximation by order 2 polynomials is made in this referene frame. The most

natural frame is found by applying MLS1, and the oordinates (x, y) are therefore
the oordinates in the regression plane in a spherial neighborhood Br. The seond

step is to �nd the losest order 2 polynomial in the spherial neighborhood for the

quadrati distane. Beause of Lemma 1 we an speify, without loss of generality

or preision, that this minimization is made in the ylindrial neighborhood Cr. In
that way, all integrals omputed in the approximation proess are integrals on the

disk x2 + y2 ≤ r2, whih is numerially and formally onvenient. Thus the MLS2

algorithm whih we shall analyze works in the two steps:

1. ompute the regression plane of the manifold in the spherial neighborhood

Br = Br(p) ∩M;

2. all (x, y) the referene oordinates in the regression plane. Consider the re-

strition of the smooth manifold to the disk Dr := x2 + y2 ≤ r2, z = f(x, y).
Then �nd the order 2 polynomial g(x, y) that best approximates f for the

L2(Dr) distane;
3. set (in the referene frame) MLS2(p) := (0, 0, g(0,0)).

The next theorem shows that unlike MLS1, whih reveals the mean urvature, the

di�erene between a point smoothed by MLS2 and its original position is very small

(of order 4) and atually reveals a fourth order intrinsi operator of bi-Laplaian

type. Thus the evolution by an iterated MLS2 is a fourth order equation that is

intuitively well-posed, at least for short times.
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Theorem 6 Consider a smooth manifold and its intrinsi oordinates (x̃, ỹ, z̃)
around a point p(0, 0), so that the Taylor expansion in a neighborhood of p satis�es

z̃ = f̃(x̃, ỹ) =
1

2
k1x̃

2 +
1

2
k2ỹ

2 + f̃3(x, y) + f̃4(x̃, ỹ) + f̃5(x̃, ỹ) +O(r6)

where f̃i are homogeneous polynomials in x̃, ỹ of global degree i. The seond order

approximation MLS2(p) of p in a ylindrial neighborhood of p with radius r
satis�es

< MLS2(p)− p,n >= − r4

48
(3ã04 + ã22 + 3ã40)) +O(r5)

where x̃ and ỹ are the oordinates assoiated with the prinipal urvatures, ã40 =
1
4!

∂4f
∂x̃4 , ã04 = 1

4!
∂4f
∂ỹ4 , ã22 = 1

4!
∂4f

∂x̃2∂2ỹ are the fourth derivatives of the intrinsi

equation at p in the diretions of x̃, ỹ and x̃, ỹ respetively, and n is the normal

to the surfae at p, oriented towards the onavity.

Lemma 4 One an hoose the oordinates x and y in the regression plane at p

so that, z being the oordinate in the diretion of the normal plane, the equation of

the manifold around p has the form z = f(x, y) =
∑5

i,j=0 aijx
iyj + o(|x2 + y2|3),

and in addition aij = ãij+O(r) where z̃ = f̃(x̃, ỹ) =
∑5

i,j=0 ãijx̃
iỹj+o(|x̃2+ ỹ2|3)

is the equation of the manifold in the intrinsi oordinates (x̃, ỹ, z̃) de�ned by the

normal at p and the diretions of the prinipal urvatures.

Proof Consider (x̃, ỹ, z̃) the oordinates in the intrinsi frame suh that x̃ and ỹ
are the oordinates assoiated with the prinipal urvatures at p, and the plane

x̃pỹ is the tangent plane. Consider now oordinates (x, y, z) assoiated with the

regression plane in a spherial neighborhood. Beause the normal at the regression

plane tends to the real normal when the spherial neighborhood shrinks, we an

hoose the oordinate axes (x, y) in the regression plane so that the rotation R
whih sends one frame to the other is lose to the identity, namely

(x̃, ỹ, z̃) = R(x, y, z) (17)

with R → Id when r → 0. More preisely, by Lemma 3, the normal v(r) to the

PCA regression plane in a spherial neighborhood Br at p ∈ M is equal to the

surfae normal at point p, up to a negligible fator: v(r) = n+O(r). Thus we an
pik R(r) satisfying

R = R(r) = I + O(r). (18)

Consider now the order 4 asymptoti expansion of z̃ as a funtion of x̃, ỹ, where g̃
is a degree 4 polynomial. (We assume the manifold to be at least C5

):

z̃ − g̃(x̃, ỹ)−O((x̃2 + ỹ2)
5

2 ) = 0.

By substituting in it the relation (17) the above equation beomes an impliit

equation in z, x, y,R,

Q(x, y, z, R)−O((x2 + y2 + z2)
5

2 ) = 0. (19)
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However, by the hain rule we have

∂Q
∂z (0, 0, 0, Id) = 1. Thus by the impliit

funtion theorem, there is a funtion h of lass C5
suh that in a neighborhood of

(0, 0, 0, Id), (19) is equivalent to

z = h(x, y,R).

Sine h is C5
we an make a Taylor expansion of h and therefore get

z = g(x, y,R) +O(||R− Id||5 + (x2 + y2)
5

2 ).

In partiular for R = Id we have (x, y, z) = (x̃, ỹ, z̃) and we obtain by identi�ation

of the terms with degree lower or equal to 4 that g(x, y, Id) = f̃(x, y). Thus, all
monomials aij(R)xiyj in the expansion of f with respet to x, y satisfy ai,j(R) =
ãi,j(Id) +O(I −R), whih by (18) yields ai,j(r) = ãi,j +O(r).

Proof of Theorem 6. Let us write f(x, y) = f1(x, y)+f2(x, y)+f3(x, y)+f4(x, y)+
f5(x, y) + o(|x2 + y2|5/2) where

f1(x, y) = a10x+ a01y, f2(x, y) = a20x
2 + a11xy + a02y

2

f3(x, y) = a30x
3 + a21x

2y + a12xy
2 + a03y

3,

f4(x, y) = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4,

f5(x, y) = a50x
5 + a41x

4y + a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5.

We look for the order 2 polynomial g that best �ts this surfae in the least squares

sense,

g(x, y) = αx2 + βy2 + γxy + δx+ ǫy + θ.

We therefore must �nd the parameters Θ =
(

α β γ δ ǫ θ)
)

whih minimize

∫

x2+y2<r2

(g(x, y)− f(x, y))2dxdy =

∫

x2+y2<r2

(XΘT − f(x, y))2dxdy

where X =
(

x2 y2 xy x y 1
)

. This is a quadrati minimization and di�erentiating

this integral with respet to Θ yields

∫

x2+y2<r2

XT (XΘT − f(x, y))dxdy = 0.

Writing M =
∫

x2+y2<r2 X
TX, the minimizer Θ satis�es

ΘT =

(
∫

x2+y2<r2

(XTX)

)−1 ∫

x2+y2<r2

(XT f(x, y));

ΘT = M−1
∫

x2+y2<r2

XT (f1(x, y)+f2(x, y)+f3(x, y)+f4(x, y)+f5(x, y)+O((x2+y2)3);

where XTX =

















x4 x2y2 x3y x3 x2y x2

x2y2 y4 xy3 xy2 y3 y2

x3y xy3 x2y2 x2y xy2 xy
x3 xy2 x2y x2 xy x
x2y y3 xy2 xy y2 y
x2 y2 xy x y 1

















.
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When integrating on the disk, most terms vanish and we get

M =
πr4

4



















r2

2
r2

6 0 0 0 1
r2

6
r2

2 0 0 0 1

0 0 r2

6 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 4

r2



















; M−1 =
4

πr4

















9
2r2

3
2r2 0 0 0 −3

2
3

2r2

9
2r2 0 0 0 −3

2

0 0 6
r2 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
−3

2 −3
2 0 0 0 r2

















.

Therefore

ΘT =M−1
∫

x2+y2<r2

XT f1(x, y) +M−1
∫

x2+y2<r2

XT f2(x, y)

+M−1
∫

x2+y2<r2

XT f3(x, y) +M−1
∫

x2+y2<r2

XT f4(x, y)

+M−1

∫

x2+y2<r2

XT f5(x, y) +M−1

∫

x2+y2<r2

XTO((x2 + y2)4),

with

∫

x2+y2<r2

XT f1(x, y) =
πr4

4













0
0
0
a10
a01













;

∫

x2+y2<r2

XT f2(x, y) =
πr4

4



















r2

6 (3a20 + a02)
r2

6 (a20 + 3a02)
r2

6 a11
0
0

a20 + a02



















;

∫

x2+y2<r2

XT f3(x, y) =
πr4

4

















0
0
0

r2

6 (3a30 + a12)
r2

6 (a21 + 3a03)
0

















;

∫

x2+y2<r2

XT f4(x, y) =
πr4

4



















r4

16(5a40 + a22 + a04)
r4

16(a40 + a22 + 5a04)
r4

16(a31 + a13)
0
0

r2

6 (3a40 + a22 + 3a04)



















;
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∫

x2+y2<r2

XT (f5(x, y)) =
πr4

4

















0
0
0

r4

16 (5a50 + a32 + a14)
r4

16 (a41 + a23 + 5a05)
0

















;

∫

x2+y2<r2

XT (x2 + y2)3 =
πr4

4



















2r6

5
2r6

5
0
0
0
r4

2



















.

Multiplying all of these results by the matrix M−1
, we get

M−1
∫

x2+y2<r2

XT f1(x, y) =

















0
0
0
a10
a01
0

















; (20)

M−1
∫

x2+y2<r2

XT f2(x, y) =

















a20
a02
a11
0
0
0

















; (21)

M−1
∫

x2+y2<r2

XT (f3(x, y)) =

















0
0
0

r2

6 (3a30 + a12)
r2

6 (a21 + 3a03)
0

















; (22)

M−1
∫

x2+y2<r2

XT (f4(x, y)) =



















r2

8 (6a40 + a22)
r2

8 (a22 + 6a04)
3r2

8 (a31 + a13)
0
0

− r4

48(3a40 + a22 + 3a04)



















; (23)

M−1
∫

x2+y2<r2

XT (f5(x, y)) =

















0
0
0

r4

16 (5a50 + a32 + a14)
r4

16 (a41 + a23 + 5a05)
0

















; (24)
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M−1
∫

x2+y2<r2

XT (x2 + y2)3 =



















33r4

20
33r4

20
0
0
0

−7r6

10



















, (25)

and ombining equations (20), (21), (22), (23), (24) and (25) we �nally obtain the

parameter Θ

ΘT =





















a20 +
r2

8 (a22 + 6a40) +O(r4)

a02 +
r2

8 (a22 + 6a04) +O(r4)

a11 +
3r2

8 (a13 + a31) + O(r4)

a10 +
r2

6 (a12 + 3a30) +
r4

16(5a50 + a32 + a14) +O(r5)

a01 +
r2

6 (3a03 + a21) +
r4

16(a41 + a23 + 5a05) +O(r5)

− r4

48(3a04 + a22 + 3a40) +O(r6)





















so that the MLS2 projetion satis�es g(0, 0) = − r4

48 (3a04 + a22 + 3a40) + O(r6).

Finally Lemma 4 permits to replae g(0, 0) = − r4

48(3a04 + a22 +3a40) +O(r6). by

−(
r4

48
(3ã04 + ã22 + 3ã40) +O(r6))(1 + O(r)) = − r4

48
(3ã04 + ã22 + 3ã40) +O(r5).

�

We shall now analyze experimentally those results.

5 Numerial experiments

This setion performs numerial omparative experiments with the most signi�-

ant algorithms desribed in the previous setions. A simulated randomly sampled

sphere will play the role of numerial pattern. In partiular we evaluate the mean

urvatures given on the sphere by MLS1 projetion and MLS2 projetion followed

by polynomial regression. We also ompute the urvature estimated by the method

desribed in [7℄ and by the surfae variation of [40℄. The results are ompared by

giving the mean estimated urvature and its standard variation. The input data is

a randomly sampled sphere with radius 2 orrupted with added entered Gaussian

noise of variane 0.1.

Iteration

MLS1 MLS2

mean standard variation mean standard variation

0 0.5828 2.8609 0.052 1.2879
1 0.5158 1.2434 0.4920 1.0053
2 0.5079 0.3196 0.5083 0.1259
3 0.5102 0.0253 0.5073 0.1001
4 0.5136 0.0189 0.5068 0.0855
5 0.5171 0.0165 0.5065 0.0749
10 0.5356 0.0156 0.5058 0.0489

Fig. 2 Comparison of the urvature estimation by iteration of the MLS1 projetion and

iterations of the MLS2 projetion, with the same radius.
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By omparing the values in the table of �g 2, two onlusions an be drawn:

�rst, MLS1 is signi�antly more stable than the MLS2 projetion, whih an be

observed by the standard variation on the estimate. The SNR gain is lose to 4 by

using MLS1 instead of MLS2 with the same iteration number. In onformity with

Theorem 5, MLS1 projetion yields an inrease of the mean urvature (i.e., the

sphere radius dereases, whih is expeted from a mean urvature motion). These

results an be ompared to the other two main urvature estimators.

Figs 3, 4 and 5) show various urvature distribution and surfae variation dis-

tributions illustrating the interest of omputing suh operators to lassify surfae

points.

(a) Iteration 1 (b) Iteration 2 () Iteration 3 (d) Iteration 4

Fig. 3 Curvature evolution by iterative projetion on MLS1

Another experiment permits to better judge of the MLS1 smoothing e�et.

First, a onsistently oriented point set was built (see [17℄ for an e�ient way

of doing so). This normal orientation yields the sign of the mean urvature, by

omputing the salar produt of the oriented normal and the displaement vetor.

Eah point was then plotted in a di�erent olor aording to its sign, blue for

positive and red for negative (see Fig 6). This experiment shows that, at the

beginning, the urvature sign aptures essentially noise and small texture. After

several iterations, the shape is smoothed and the sign aptures the geometry of

the shape (large sale variations), whih is the main advantage of the sale spae

strategy.

To ompare the tehniques analyzed theoretially in the previous setions, we

�nally used randomly sampled shapes with added Gaussian noise. We ompared

between omputing the ovariane of the points projeted onto the loal tangent

plane, as desribed in setion 3.1 (alled 2dov1 in the remainder of this setion);

omputing the ovariane of the unit normals projeted on the regression plane, as

desribed in setion 3.2 (alled 2dov2 in the remainder of this setion); omputing
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(a) Iteration 1 (b) Iteration 2 () Iteration 3 (d) Iteration 4

Fig. 4 Curvature evolution by iterative projetion on MLS2 .

(a) Surfae variation (b) Curvature by nor-

mal ovariane analy-

sis

Fig. 5 Other urvature estimates .

the ovariane of the unit normals, as desribed in setion 3.3 (alled 3dov in the

remainder of this setion); and �nally MLS2. The 2dov1 method was immediately

disarded, beause it does not yield a separate estimate of the prinipal urvatures.

We therefore only ompared the other three methods.

To do so the estimators were ompared on three kinds of noisy surfaes: a

sphere, a ylinder and a torus with added gaussian noise in the normal diretion.
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Fig. 6 Evolution of the motion diretion with projetion iterations.

The goal was not to ompute the atual urvatures of the noiseless surfae, but to

ontrast the robustness of these loal surfae geometri indiators whih replae

the in�nitesimal urvatures. The asymptoti theorems 2, 3, 1 and 2 show that the

onsidered intrinsi loal integral estimators retain the same struture properties

as the real di�erential operators. Thus, our goal is to selet among them the ones

that have the best SNR. On the other hand the SNR depends of ourse of the radius

on whih these operators are omputed. The smaller the radius, the more faithful

these operators will be to loal urvature operators. Thus, all things being equal, it

is better to ompute them with small radii. But of ourse the SNR dereases with

the radius. Thus, to ompare the power of these loal integral operators, the best

way is to ompare the SNR's with �xed radius or, equivalently, to ompare their

radii for �xed SNR. Yet there are two parameters for MLS1: the radius r and the

number of iterations N . But both parameters an be an equivalent radius. Indeed,

applying N iterations of MLS1 with radius r is roughly equivalent to applying

one iteration of the sale spae with radius rq =
√
Nr (this equivalene is drawn

by analogy with iterated linear �lters). The numerial tables give the equivalent

radius value for MLS1.

A sphere and a ylinder were used beause they have onstant urvatures on the

whole surfae. We also onsidered a torus, beause one an ompute the operators

on invariant irles of the torus, where urvatures should be onstant in absene

of noise. As just explained, the radii were set so that eah method gives the same

standard variation for the estimate of the same urvature.

One should �rst notie that 3dov and 2dov2 give very similar results. This is

not surprising sine both methods rely on the normal ovariane matrix (atually,

even their asymptoti behavior is the same, see theorems 2 and 3).

Tables 7, 8, 9 show the results after this alibration of the experiment by

the standard deviation. Two onlusions an be drawn from these experiments.

First, the radii needed for getting a small standard variation are slightly larger

for 2dov2, 3dov and signi�antly larger for MLS2, than for MLS1. This has

the diret onsequene that omputation times are signi�antly higher for those

methods than for MLS1: it is indeed faster to iterate a method working on a

small neighborhood than to do a single iteration of a method requiring a large

neighborhood. Nevertheless, MLS1 only provides us with an estimated equivalent
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parameters stdev SNR

MLS1 N = 5, r = 0.14, req = 0.31 0.026 20.0
2dov2 r = 0.3 0.027 17.6
3dov r = 0.3 0.027 17.6
MLS2 r = 0.6 0.029 15.6

Fig. 7 Comparison of the mean urvature estimates on a noisy sphere with radius 2 and noise

variane 0.05. Calibration is done by setting the parameters so that the standard deviation is

similar. The parameters are the neighborhood radius r and the number of iterations N in the

ase of MLS1. The best SNR is obtained with MLS1, whih is also the fastest method. But

2dov2 and 3dov have similar performane, while MLS2 is learly worse (its radius doubles

for a lower SNR.)

parameters stdev SNR

MLS1 N = 5, r = 0.16, req = 0.36 0.040 16.2
2dov2 r = 0.37 0.032 16.9
3dov r = 0.3 0.031 16.9
MLS2 r = 0.6 0.036 13.2

Fig. 8 Comparison of the mean urvature estimates on a noisy ylinder with radius 1 and

noise variane 0.05. The radius r or equivalent radius req are set so that the standard deviation

beomes similar. The onlusions are the same as in �g 7.

parameters stdev SNR

MLS1 N = 4, r = 0.07, req = 0.14 0.032 34.2
2dov2 r = 0.15 0.031 31.8
3dov r = 0.15 0.031 31.8
MLS2 r = 0.32 0.030 1.2

Fig. 9 Comparison of the mean urvature estimates for an invariant irle of a noisy torus

with radii 2 and 0.5 and noise variane 0.02. Here again, the �ltering radii were hosen so that

the standard deviation beomes similar, and the SNR's and radii an therefore be ompared.

Here again MLS1 wins by a small margin on 2dov2 and 3dov, and by a large margin over

MLS2.

to the mean urvature but does not give an estimated equivalent of the prinipal

urvatures nor of the prinipal diretions. As a matter of fat only MLS2 provides

this information: 2dov2 and 3dov only provide the prinipal diretions and the

squared prinipal urvatures. Yet we saw that in order for MLS2 to be resilient to

noise a large neighborhood must be used whih leads to huge omputation times.

Sine we proved that MLS1 is onsistent with an intrinsi heat equation, it

plays the speial role among the onsidered operators of simulating a sale spae

semigroup. Using the sale spae paradigm, it an be used previously to the om-

putation of other di�erential operators. We did again the same omputations using

the MLS1 iterations (sale spae) before applying the more omplex methods. We

used the same number of iterations for MSLS1 as found in tables 7, 8, 9 and per-

formed the next analysis using the same radius. The new tables (Tabs 10, 11 and

12) show how the sale spae makes it possible to ompute reliably the same mo-

ments with a smaller proessing radius. Computation times being the bottlenek

of all numerial methods, we ompare on Tab. 13 the omputation times obtained

on the ylinder when applying all the methods (with the same parameters as in
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MLS2 2dov2 3dov

without sale spae 276s 196s 188s
with sale spae 90s 85s 87s

Fig. 13 Computation time for the ylinder experiments.

�gs 8 and 11: it is straightforward that applying the MLS1 iterations is a muh

better strategy to get manageable numerial experiments.

H k1 k2
SNR std SNR std SNR std

2dov2 19.19 0.016 0.349 0.048 0.048 0.037
3dov 19.19 0.016 0.349 0.048 0.048 0.034
MLS2 0.645 0.053 1.283 0.0871 0.036 0.037

Fig. 10 Sphere example: applying sale spae iterations before further analysis. The param-

eters of MLS1 iterations are the ones found in the alibration proess: r = 0.14 and N = 5.

H k1 k2
SNR std SNR std SNR std

2dov2 55.55 0.026 56.55 0.030 4.03 0.029
3dov 55.67 0.026 55.70 0.030 3.92 0.029
MLS2 46.58 0.026 59.91 0.029 1.30 0.029

Fig. 11 Cylinder example: applying sale spae iterations before further analysis. Parameters

of MLS1 iterations are the ones found in the alibration proess: r = 0.16 and N = 5. The
SNR for k2 is of ourse not meaningful, the asymptoti theoretial mean of k2 being 0.

H k1 k2
SNR std SNR std SNR std

2dov2 39.56 0.041 34.73 0.0741 12.90 0.035
3dov 39.54 0.041 34.73 0.0740 12.90 0.036
MLS2 35.00 0.0563 11.09 0.0713 37.67 0.067

Fig. 12 Torus example: applying sale spae iterations before further analysis. Parameters of

MLS1 iterations are the ones found in the alibration proess: r = 0.07 and N = 4.

These numerial experiments on�rm that the only way to reover a robust

signed integro-di�erential operator, equivalent to the mean urvature, is to apply

the sale spae (iterations of MLS1) and then MLS2. If the sign is not needed,

any of the 2dov2 or 3dov an be used. Sine 3dov is simpler to ompute, this

would, in this ase, be our best hoie.
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Conlusion

In this paper, we analyzed the loal intrinsi moments of smooth surfaes proposed

in the literature, and linked them by an asymptoti analysis to the surfae prinipal

urvatures. The interest of suh loal moments is that they an be omputed

diretly on raw point louds and therefore allow for a diret numerial analysis of

suh raw data. We showed that these lever methods only reover the equivalent

of squared prinipal urvatures, and loose their signs.

The alternative method to ompute urvatures on the surfae is the order 2

regression MLS2. An asymptoti analysis of MLS2 on�rms that is is aurate with

order 4 and also unovers a new intrinsi fourth order partial di�erential operator

arising naturally from this order 2 regression.

Finally the analysis of the MLS1 projetion (realled from [17℄) yields a mean

urvature motion. One iterated this sale spae operator, proven very robust to

irregular sampling, gives an alternative way to ompute urvatures by ombining

sale spae and MLS2. Numerial experiments herewith have shown this to be the

most reliable method, in agreement with the sale spae methodology already estab-

lished in image analysis.
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