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Abstract

The theory of cognitive development from Jean Piaget (1923)
is a constructivist perspective of learning that has substan-
tially influenced cognitive science domain. Indeed it seems
that constructivism is a possible trail in order to overcome
the limitations of classical techniques stemming from cogni-
tivism or connectionism and create autonomous agents, fitted
with strong adaptation ability within their environment, mod-
elled on biological organisms. Potential applications con-
cern intelligent agents in interaction with a complex environ-
ment, with objectives that cannot be predefined. There are
numerous interesting works in developmental robotics going
in this direction. In this work we investigate the application
of these principles to a close domain: Ambient intelligence,
which is extremely challenging but which also presents in-
teresting aspects to exploit, like the participation of human
users. From the perspective of a constructivist theory, the
learning agent has to build a representation of the world that
relies on the learning of sensori-motor patterns starting from
its own experience only. This step is difficult to set up for
systems evolving in continuous environments, using raw data
from sensors without a priori modelling, primarily because
they face a bootstrap problem. In this paper we address this
particular issue and propose a decentralized approach based
on a multi-agent framework, where the system’s representa-
tions are constructed through a self-organization process that
handles the dynamics between experience discretization and
learning.

Introduction
Embodiment is a paradigm in cognitive science and AI con-
sidering that cognition arises from the interaction between
an agent and its environment. Contrary to computational
theory of mind, an agent has to be embodied and situated,
and does not have a predefined representation. On the other
hand an agent (for example a robot) must be able to con-
struct its own representation of the regularities through its
interaction with the environment, whatever its body’s capac-
ities and the environment where it is situated. More gen-
erally, embodiment is embraced by constructivist theory of
cognition, as explained by Ziemke (2001). Constructivism
in cognitive science is bound to constructivist epistemology.
Particularly Riegler (2001) explains why the radical con-

structivism proposed by Von Glasersfeld (1984) is neces-
sary to go further in the understanding of cognition mech-
anisms. There is a growing interest in AI for constructivist
theories, for example such as Enaction (Varela et al. (1991))
stemming from the biology field, or constructivist theory of
learning (Piaget (1954)) coming from the psychology field.
While it is true that constructivist approaches of learning in
AI are usually still theoretical, there are also more practi-
cal domains that take inspiration from these concepts such
as developmental robotics. This article addresses some fun-
damental issues related to the application of constructivist
learning methods to continuous environments. In the follow-
ing, we will first introduce constructivist methods for artifi-
cial learning and the issues related to real application such as
in an ambient intelligent system. In this article we focus on
the problem of bootstrapping the learning of sensori-motor
regularities starting from raw signals, which is a first step in
the more general model of a constructivist learning. Then
we will present our approach to this problem, based on a
decentralized approach using a self-organizing multi-agents
system, and provide some preliminary results.

Research issues and related works
Before going any further, let us consider an illustrative ex-
ample of the addressed research problem. Unknown sen-
sors {s1; s2...sn} and actuators {a1; a2...an} are connected
to an ambient intelligent system S. S is considered as an
autonomous agent that must be able to learn the effects of,
for instance, ax on sy and sz . If S receives an objective
from the user that involves one of these perceptions/actions,
it should be able to take the knowledge of those interactions
into account. For example, let us say that ax is a wireless
actionable plug with an unknown device D connected on
it. If D is an electric heating, S should become aware that
it can affect both temperature (sy) and energy consumption
(sz) by switching ax, whereas it can affect luminosity and
energy consumption if D is a lamp. These are simple reg-
ularities that may seem trivial to learn. This is true if the
system’s designer defines an a priori representation, for ex-
ample the definition of events and of how to manage time
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relations. By doing so, a learning agent may directly focus
on what is relevant, and find attended regularities out of a
reduced search space. Here we consider the case where the
agent has no a priori representation and must both discover
how to grasp raw signals and how to learn from them at the
same time.

Continuous environment and the discretization
process
In real world environments, if we want to avoid an a priori
definition of a model, the system has to deal with the com-
plexity of raw data coming continuously from sensors. The
perceptual aliasing problem is one of the main issues: the
learning agent has to learn precisely what are the boundaries
of events both in time and space. But the task of separating
an event out of the thread of experience is quite difficult. A
human brain seems to be able to focus on the relevant details
of experience in order to identify a situation and ignore any-
thing else. In classical AI, particularly with logic based sym-
bolic representation, the exhaustive characterization of a sit-
uation is impossible in large environments (Frame Problem),
most importantly when considering a large buffer memory
of past events. More generally, the question of dealing
with the complexity of the real world without using a model
or symbolic representation is also known as the Moravec’s
paradox. This paradox emphasizes the fact that basic senso-
rimotor skills of living organisms are more difficult to repro-
duce artificially than high level cognitive abilities, as argued
by Brooks (1991). Handling continuous experience is a par-
ticularly significant issue for constructivist learning meth-
ods, related to their application to real world problems.

Developmental robotics
The field of developmental robotics proposes interesting
works in accordance with the constructivist principles pre-
sented above and is confronted with the problem of handling
continuous environments (see Lungarella et al. (2003) for a
review). This research field stems from the assessment that
biological organisms go through a period of development
before reaching their final form. One of the main ideas is
that learning must be facilitated by the progressive increase
of the complexity of the environment perceived by the agent
while progressively acquiring highly tuned skills. Indeed,
at the beginning of his growth, an infant has limited sen-
sor and motor abilities, as well as limitation in his nervous
system. At first sight this may be considered as a defect,
but we can also consider that it is an advantage regarding
the learning process, since it enables to decrease or prevent
any data overload, that would not be useful for the first de-
velopment steps. If the agent is precociously facing a huge
quantity of information, learning can be intractable. Thus
the management of the development of an artificial agent
during the learning process could be an improvement. In
developmental robotics, the programmer does not specify a

targeted task; the robot must freely explore its environment
by interaction. For example, an intrinsic motivation could be
expressed in the robot by a certain curiosity which leads it to
focus on interesting things, like situations which are neither
too predictable nor not enough, as proposed for example by
Oudeyer et al. (2007). The capacity of making predictions
is a part of the mechanism of development, from which the
cognition is built. Cognitive functions of higher level, such
as planning, may be seen as a prediction of series of events
based on experience. Thus, in continuous environments the
definition of the notion of event is crucial. Without pre-given
representation, the agent has to learn what an event is, and
at the same time it uses events to learn patterns. Before pre-
senting a possible application of such a developmental ap-
proach to an ambient intelligent system, it is worth intro-
ducing more precisely the constructivist learning paradigm
in AI and works related to the problem of bootstrapping reg-
ularities from raw experience.

Constructivist learning

In psychology the constructivist theory especially developed
by Piaget (1954) postulates that a learning agent constructs
its own representation of its world, which it uses to give a
meaning to its experience (assimilation). Learning, there-
fore, is simply the process of adjusting its mental mod-
els to fit in new experiences (accommodation). Following
Drescher (1991) who takes inspiration from the work of Pi-
aget to propose a model of constructivist learning, many re-
searchers work on the schema learning technique. In this
model the pattern of interaction used to build the represen-
tation of the agent is called a schema. It consists mainly
in three elements: a context, an action and a result. The
meaning of a schema is: if the agent executes the action A in
the context C, it predicts the result R. Schemas are learned
incrementally while the agent performs random actions, in
the manner of an infant fumbling. A schema is an interest-
ing structure for a representation since it relates an action to
its consequences in an environment, based on agents experi-
ence. The learning is not goal-oriented, contrary to classical
reinforcement learning for example, where the agent learns
which action to execute in which context, depending on the
purpose of an external learning task. Here, the agent predicts
the consequences of its action, and this knowledge may be
used for different purposes. The learning model of Drescher
(1991) is very interesting because it offers to agents the pos-
sibility to learn abstract concepts grounded in experience
thanks to the creation of synthetic items (see Perroto et al.
(2010)). However, this model operates on a discrete envi-
ronment and is quite resource consuming, so that it cannot
be applied directly to continuous environments. Also many
other research in constructivist learning methods in AI pro-
vide valuable results but are often designed for simplified
simulated environments (see Guerin (2011) for a survey).
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Related works
There are works that propose solutions to overcome the
problem of handling continuous environments. For exam-
ple we can mention Chaput et al. (2003) who advises to use
a hierarchy of self-organizing maps (SOM) to improve the
schema mechanism of Drescher. In their experiment the en-
vironment is represented by binary vectors and the time is
managed in a step-based manner, but they argue that this
improvement may enable constructivist learning for realistic
environments. Further work of Provost et al. (2006) steps in
this direction with a system that couples a SOM based dis-
cretization process of environment with reinforcement learn-
ing for a robot navigation problem.

Linaker and Jacobsson (2001) propose a system that fea-
tures an event extraction mechanism (classification system)
which converts raw multi-dimensional and time-step based
sensor data into series of events of a larger time scale. This
discretization of raw data into events enables to learn a pol-
icy of action on a higher level with a reinforcement learning
mechanism. It is clear that the low level event extraction
mechanism will drastically influence the other parts of the
learning system. The major problem for such an approach
lies in the fact that the classification process is unique and
defined a priori. Yet, the possible classes generated by the
discretization mechanism may differ according to the differ-
ent patterns in which the variables are involved. A solution
to this problem is to let the discretization process evolve,
guided by a feedback from the higher levels of learning, so
that the classes are always adapted to the learned pattern.

This is exactly the case in the model of Mugan and
Kuipers (2007) who propose an event extraction mechanism
coupled with a learning system of predictive rules. Events
are extracted from the continuous experience as transitions
between states that are not predefined. Then predictive rules
are learned in order to associate an event to an other. An in-
teresting aspect of this system comes from the feedback pro-
vided by the learning system to the event extraction mecha-
nism that enables to create new states, and thus learn refined
correlations. Thus, the agent learns to perceive in a way that
enables to learn more efficiently. This work enhances the de-
velopmental process that interconnects the discretization of
experience with learning. However, each aspects of this pro-
cess (the discretization algorithm, the predictive rules,...) are
particular implementations that suit with the specific prob-
lem considered. In the following of this paper, our purpose
is to make explicit the fundamental components of such a
process, and propose a generic model that allows multiple
implementations of each aspect, motivated by handling het-
erogeneous unknown environments.

Model presentation
Learning following a constructivist approach is a promising
trail in order to build autonomous agents strongly adapted to
their environment. In particular, since there is no assumption

about the representation and the objectives of the system, it
suits well the problem where both the agent’s sensori-motor
abilities and its objectives are initially unspecified. Ambi-
ent intelligent systems for example present these character-
istics. Like robots, they are considered as autonomous sys-
tems composed of sensors and actuators. Particularly for
AmI systems, constructivist learning is a possible solution
to face the fact that sensori-motor abilities are unknown and
evolve over time (a user may add, move or remove sensors
and actuators at anytime). Moreover, the large variety of
equiment results in countless combinations that make harder
the design of an expert representation. In the previous part
we mentioned the difficulty to handle continuous environ-
ments for constructivist learning methods, in this section we
propose a solution to deal with this problem, with the exam-
ple of an ambient intelligent system.

Description of the problem
Developmental learning relies on agent-environment inter-
actions, that is to say on signals exchanged at the frontier be-
tween the agent and its environment. In this model this fron-
tier is represented by a set of numeric continuous variables
which represents sensors and actuators V = {v1; v2; ...; vn}.
As illustrated on Figure 1 (a), these variables evolve in time
according to their respective allowed values. Let us denote
vi(t) the value of vi at time t. This continuous flow of sig-
nals is interpreted by the agent as an event sequence. In the
following we call experience E = {e1; e2; ...; en} the set
of events constructed by the agent. We assume that there are
some regularities in this experience. A regularity can be rep-
resented as a pattern that the agent is able to isolate within its
experiential space and identify thanks to its recurring nature.

From the point of view of the learning system, there is
no difference between variables connected to actuators and
variables connected to sensors. So the patterns learned by
the system might indifferently involve actions and percep-
tions. However, it is clear that some actions have to be
performed in order to appear in some patterns. Contrary to
robotics, the domain of ambient intelligence does not really
allow us to let the agent randomly explore its possible inter-
actions with its environment in the first place. A motor bab-
bling behavior (see Mugan and Kuipers (2007)) might be
lengthy and its consequences would definitely constitute a
nuisance for users, for obvious reasons. Hopefully, an ambi-
ent intelligence system presents an interesting property that
we can exploit to face this problem: a user is able to directly
perform actions. For safety and ethical reasons, a user must
always keep control of its environment. So as a design con-
straint, we consider that for every action that can automati-
cally be performed by the agent, a user should have the pos-
sibility to directly perform it. We make the hypothesis that
the agent is always able to perceive such an action performed
by a user, as a kind of proprioception1, so that if this action

1the sense of internally perceiving our own movements
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Figure 1: (a) The continuous experience of the system expressed as a set of variables.
(b) The 3 types of operations that enable the construction of patterns. A: Find a temporal reference in order to perceive a
variation. B: Find associations between variations. C: In order to reinforce existing structures, modify them or create new ones,
it is necessary to be able to compare elements of representation.

becomes involved in a pattern, the agent would be able to
perform it by itself later. Najjar and Reignier (2013) refer
to this as an observed action. Thus the initial random motor
babbling is replaced by actions driven by the user, which get
involved at the very beginning of the learning process as a
form of motivation for the developing agent.

Constructing patterns and the bootstrapping
problem
A pattern is relevant if it contributes to the creation of new
patterns, so that to enable the construction of a representa-
tion which justifies them. In other words, the agent has to
learn how to perceive efficiently in order to be able to learn
more. This circular definition raises a bootstrapping prob-
lem similar to the one mentioned by Drescher (1991): find-
ing a context to characterize the association between an ac-
tion and a result requires to know formerly this association,
but learning this association is difficult without knowing the
context. This kind of teleological issue is typical of the study
of living systems.

The purpose of the elementary structure of representation
is to express the primary kind of regularity that the agent
is able to learn in the first place. For example schemas
(Drescher (1991)) express a logical and temporal relation
between three elements. The result is likely to be experi-
enced after the action if the context was experienced ini-
tially. But starting with a set of continuous variables as ex-
perience, this raises many questions. What are precisely a
context, an action and a result? What are the duration of
these elements and their relationships? It seems that these
notions are already relative to a form of representation. Of
course this issue is avoided if there is an a priori abstrac-
tion performed by the designer of the system in order to
discretize the environment and guide the learning process.

On the other hand one may consider that the schema or
any similar kind of structure like the functional circle from
Von Uexküll (1992), constitutes an undividable elementary
structure that is intrinsic to the agent. Thus, Georgeon and
Aha (2013) define the sensori-motor interaction as such a
primitive. This is reminiscent of the subsumption architec-
ture from Brooks (1991), but such methods require to for-
merly implement such functional circles, and thus to know
precisely the agent and its environment. Moreover, this pre-
liminary hardcoding of elementary behaviors may be labori-
ous in complex fields such as ambient intelligence systems.

Apart from specifying arbitrary initial actions and percep-
tions, one way to solve this problem is to consider a devel-
opmental approach. At the beginning of the learning process
the agent is fitted with rough sensori-motor abilities which
enable it to learn primary patterns, then its abilities develop
and the learning of a more accurate representation becomes
possible. At one point, the already learned representation
can guide the development of the abilities. In biological or-
ganisms this task is most probably realized both during phy-
logenesis and ontogenesis, but it needs to be expressed as a
single problem for artificial systems. The ”bootstrap learn-
ing” as presented in Kuipers et al. (2006) corresponds to this
critical problem of getting primary patterns from raw data of
uninterpreted sensors (see also Guerin (2011) for a review).

In our model, the elementary structure of representation is
composed of two generic notions of events. First, a percep-
tion event is a selected moment in the evolution of a vari-
able, for example a variation or a stable state. Second, an
association event describes a relation between two events,
for example a duration between the occurrences of two per-
ceptions. So it is possible to express a schema-like regular-
ity with a combination of association and perception events.
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More generally, events involved in associations may be as-
sociations, therefore enabling the construction of more com-
plex patterns.

A multi-agent system for the construction of
patterns

Our proposal is based on a self-organizing multi-agent sys-
tem (MAS), where three populations of agents2 will inter-
act with each other, guided by a feedback from the global
system activity in order to construct relevant patterns and
provide a grounded representation. The multi-agent archi-
tecture suits naturally the view considering the construction
of representation as a self-organization process, as well as
the heterogeneity of the domain, and the necessity for the
system to be resilient. In the MAS, agents perform a func-
tion corresponding to their role in the system, that they can
change to explore the possibilities to construct a represen-
tation. Rather than specifying an a priori model of percep-
tion, or using an exhaustive search, this model relies on the
elaboration of collaboration, reinforcement, and internal dy-
namics within the system. Related to the generic notions of
perception and association, we identify three primary func-
tions that are necessary to bootstrap the learning of elemen-
tary patterns from the continuous experience as illustrated in
Figure 1 (b).

• The first operation ”cut” corresponds to the creation of
a perception event. The set of possible cut functions is
F c = {f c1 ; f c2 ; ...; f cn}. A cut function that transforms
values into events is defined as

f ci : vi → {ec1; ec2; ...; ecn}
V → Ec

with Ec the set of perception events.

In the multi-agent system, cut functions are implemented
by Perception agents which are connected to a continuous
variable. These agents create events that represent a particu-
lar time period of the evolution of the variable. For example,
a Temporal Window Agent may produce perceptions based
on sliding windows of a given duration. In this case a pa-
rameter that conditions the behavior of the agent could be
the duration of the window. If the parameter evolves due to
feedback received by the agent, it corresponds to the explo-
ration of a new cut function.

• The second function type, compare functions (F s =
{fs1 ; fs2 ; ...; fsn}) which serve to evaluate the similarity be-
tween two events, is necessary to classify and manipulate

2In the following we will refer to the above-mentioned au-
tonomous learning agent as ”the system” in order to avoid any am-
biguity with the MAS’s agents.

events. A similarity function compares events to deter-
mine if they are similar, and is defined as

fsi : ex, ey → s

E → [0, 1]

where ex, ey are created by the same function (s = 1
means totally similar, s = 0 totally different).

On Figure 2 we present an example of the activity be-
tween a Perception agent and a Similarity agent. A threshold
is defined for s in order to decide the similarity and enable
classification (e.g. 0.9). For example, the temporal win-
dow agent creates an event ec1 which contains the variations
compared to the average value of the sliding window. Later
another event ec2 is created by this agent and may be consid-
ered as similar or different depending on the behavior of the
similarity agent involved. If the similarity agent implements
a general function fs1 (intervals of size 3), the two events
look similar (3 occcurences in each interval), whereas if it
implements a more specific function fs3 (intervals of size 1)
the events are perceived as different.

Figure 2: Interaction between a perception agent and a sim-
ilarity agent.

• Finally the last functions are associate functions (F a =
{fa1 ; fa2 ; ...; fan}) leading to the creation of association
events. An association function that creates an event from
two other events is defined as

fai : ex, ey → eaz

E → Ea

(E = Ec ∪Ea). For example a Binary Duration Agent is
defined for two source events e1 and e2, and creates an as-
sociation event for every occurrence of e1, characterized
by the duration with the previous occurrence of e2.

A Similarity Agent is associated with a perception or an
association agent, in order to classify events created by these
agents. For instance, on Figure 3, events are created from
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the activity of variables v1 and v2 by agents which imple-
ment functions f c1 and f c1′ . Different occurrences of ec1 and
ec1′ (source events) are classified by similarity agents. An as-
sociation agent creates an event ea1 based on the occurences
of events ec1 and ec1′ , and then creates another event ea2 later
when new occurences ec2 and ec2′ are perceived as similar to
ec1 and ec1′ . Another similarity agent implementing a func-
tion fs2 compares the association events generated by the as-
sociation agent fa1 in order to classify them (as presented on
Figure 5).

generates

generates

generates

compares

compares

compares

ec1 ec1' ec2 ec2'

ea1 ea2

v1(t)

v2(t)

Figure 3: Interactions between the three types of agent.

The evaluation of representation and feedback
process
The search space of the system is the set of possible func-
tions F = FC ∪ CA ∪ FS . The relevance of a function can
be evaluated according to its participation to the construction
of patterns, which is necessarily performed in collaboration
with other functions’ types. We can represent this feedback
by a fitness function Q : f ∈ F → [0, 1] that defines a
function’s quality. Then the goal of the system is to find a
combination of functions that enables to construct relevant
patterns. In other words select the optimal set of functions
that maximize the overall quality evaluation. This can be de-
fined as F ′ ⊂ F = {f ′ ∈ F ′|Q(f ′) > TQ} where TQ is a
threshold for the fitness function.

As illustrated on Figure 4, the mechanism is a circular
process initiated by the creation of representation elements
from the experience discretized by the cut operations. Each
time a new element is created, it is compared with previ-
ously created elements coming from the same source, and it
is fused with a similar existing element or constitutes a new
distinction, to form classes of events. Then events are used
to create new events with the associate operations, which
in turn are compared and so on. These generic functions
and the associated structures enable to model a basis for the
mechanism of extracting sensori-motor patterns, but there
are many ways to instantiate each of them. A given ver-
sion of a function may suit well the learning of a specific
aspect of the system’s experience at a certain level, and fail
to describe another one. So in this model these different
possibilities are processed in parallel, and the best ones are

reinforced because they enable the construction of a stable
representation. Each instance of a function (an agent) has to
evaluate if it contributes to a viable representation or not.
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Figure 4: Process of bootstrapping pattern construction ac-
cording to three types of functions.

The evaluation of patterns may correspond to their ability
to make reliable predictions, as used by Mugan and Kuipers
(2007). Indeed the adequacy of the representation is tied to
the notion of prediction as stated by Von Glasersfeld (1984):

”Quite generally, our knowledge is useful, relevant,
viable, or however we want to call the positive end of
the scale of evaluation, if it stands up to experience
and enables us to make predictions and to bring about
or avoid, as the case may be, certain phenomena (i.e.,
appearances, events, experiences). If knowledge does
not serve that purpose, it becomes questionable, unre-
liable, useless, and is eventually devaluated as super-
stition.”

But in the case of the bootstrapping problem, it is not pos-
sible to evaluate the prediction abilities of patterns until we
have patterns to consider as a predictive structure. Thus,
we introduce a transitional evaluation of interest, in order to
drive agents to promising areas of the search space and use
predictions as a more important feedback in a second step.
The interest of primary events is defined according to the
notions of specificity and stability. If functions are much too
accurate, the classes of events are likely to multiply without
being reinforced, and will not constitute regularities. On the
contrary, if the operations are much too general, the repre-
sentation might be quite stable but also unexpressive. There-
fore, in order to give feedback to agents, the representation
must be evaluated in terms of a tradeoff between accuracy
and stability. This intuitive idea is used in order to overcome
the bootstrapping problem. Indeed, it enables to guide the
activity of the initial rough functions, before first patterns are
formed. The specificity of an event can be expressed in rela-
tion with a reference event, which corresponds to the more
general class, that is to say all occurences of the event. For
example for a Binary duration agent, the reference is a set
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of durations between random events. The specificity of an
event is: s(e) = 1−fs(e, ref) defined between 0 and 1. Let
us note |e| the number of occurences of the event e ∈ Eα,
and Eα is the set of event classes generated by the similar-
ity agent among all occurences. The weight of an event is
defined according to the repartition of the occurences of this
event in relation with the other specific events:

w(e) = |e|∑
s(ei)>ε;ei∈Eα

|ei|

The interest of an event is i(e) = min(s(e), w(e)). As
illustrated on Figure 5, an association event which has both
a high specificity value and weight value, may represent a
regularity of the duration between two events, and give a
positive feedback to agents that construct these events.

cl1 cl2 cl3 cl4 cl5

reinforcement

associations

generated by

classification

generated by

relevant regularity

(time between 

associated events)

++
++ ++

Figure 5: Feedback from an association to participating
agents.

The purpose of this architecture is to investigate the dy-
namics of bootstrapping regularities from continuous signals
as a developmental process, without committing to a spe-
cific implementation. This is the first step in a more general
model of constructivist learning. We let the opportunity to
incorporate a variety of agents at different levels into the sys-
tem for each of the operations involved, in line with the ideas
developed by Minsky (1991). In the last section we present
preliminary results focusing on the bootstrapping step with
a system composed of very simple agents in order to exper-
iment the global mechanism.

Results and conclusion
The experimental setup consists of a simple set of three in-
teracting numeric variables V1;V2;V3. V1 is an interruptor
that actions V2 and V3, which vary at different paces and
scales. Activations of V1 are repeated randomly between 2
and 6 seconds after the end of the series of effects on other
variables, as represented on Figure 6. The purpose is to ver-
ify that structures generated by the system can stabilize on
relevant associations, which can enable to bootstrap the pat-
tern learning.

In this experiment, the system is initially composed of
a minimal number of elementary agents: one perception
agent per variable (a temporal window agent mentioned
above which collects variations in a sliding window), and
one similarity agent. Each event is represented by a vector
(histogram), storing the distribution of the collected values.

v1 v2 v3
200 ms 50 ms

2 s .. 6 s

0

1

0

70

50

200

cycle : a a ab b b .........c c

Figure 6: Experimental setup.

Thus the similarity agent compares the intersection percent-
age between two vectors. At the beginning there is no asso-
ciation agent, since there is no event to connect with. Events
that go beyond a certain threshold of interest lead to the cre-
ation of an association agent, but only if the pair of agents
(perception agent & similarity agent) is stable. A mesure
of stability takes into account the changes of important cri-
teria for the pair, such as the number of event classes and
the respective interest of each events. Stable pairs that do
not include any interesting event arouse a negative feedback
on their agents, and lead to the creation of new agents for
exploration and encourage agents to use other functions.

So when an association agent is connected to two events
that match with a regularity, it must appear as an interesting
event. For example Figure 7 shows the first interesting asso-
ciation event that is found (after 34 activations of V 1). This
association forms a three-events pattern which corresponds
to the regularity involving the variation of V 1 followed by
the variation of V 2.

As expected this kind of rough pattern can enable to boot-
strap a more elaborated learning mechanism since it contains
necessary information about the events and their relation in
time to construct a predictive structure. In a second step,
there can be a feedback from the prediction mechanism to
the discretization process, so that event perception learning
is oriented according to its utility for predictions. Further
work will be mainly dedicated to the implementation of this
mechanism, but also includes: investigate the application of
this generic process to higher level in the representation ; and
also study the possible internal dynamics within the popula-
tion of agents that can be exploited to improve the perfor-
mance of the system, and develop self-organization process.
In this article, we point out the fundamental problem of boot-
strapping learning of sensori-motor patterns from continu-
ous environments in a constructivist perspective of learn-
ing. We propose to tackle this problem with an unconven-
tional decentralized approach. The multi-agent architecture
is used to model the self-organization process of the con-
struction of representation and the dynamic between learn-
ing and the discretization of experience. This model is still
in an early stage of development but presents interesting the-
oric and applicative perspectives. We show that the proposed
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Figure 7: Example of a pattern.

mechanisms lead to the recognition of significative events
and regularities without any a priori knowledge. Despite its
apparent simplicity, the problem we address is complex if
not avoided thanks to an abstraction effort in the design of
a preliminary representation. These results are very encour-
aging and reveal a great potential for such an approach. Go-
ing deeper in the understanding of such mechanisms will al-
low to efficiently address many problems. Applicative fields
such as Ambient Intelligence features both learning issues
related to the undeterminism of the system, and the practical
constraint to handle continuous environments.
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