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Joint decompositions with flexible couplings

Rodrigo Cabral Farias⋆, Jérémy Emile Cohen, Christian Jutten, and Pierre
Comon

GIPSA-Lab, UMR CNRS 5216, Grenoble Campus, 38400 Saint Martin d’Hères,
France

Abstract. A Bayesian framework is proposed to define flexible coupling
models for joint decompositions of data sets. Under this framework, a
solution to the joint decomposition can be cast in terms of a maximum
a posteriori estimator. Examples of joint posterior distributions are pro-
vided, including general Gaussian priors and non Gaussian coupling pri-
ors. Then simulations are reported and show the effectiveness of this
approach to fuse information from data sets, which are inherently of dif-
ferent size due to different time resolution of the measurement devices.

Keywords: Tensor decompositions, coupled decompositions, data fu-
sion, multimodal data.

1 Introduction

In some domains such as brain imaging, metabolomics and link prediction, dif-
ferent and diverse instrumentation and data gathering devices are used to collect
information on some underlying phenomena. Since no device has a complete view
of the phenomena, data fusion can be used to blend the different views provided
by each device, thus allowing a broader understanding. It is then not surprising
that multimodal data fusion, i.e. fusion of heterogeneous data, has become an
important topic of research in these domains [18,2,7].

One way of defining a framework for multimodal data fusion is to state it
as a problem of latent variable analysis. Variations of the hidden variables are
supposed to explain most of the variations in the measured data sets. Since the
data sets are considered to be different views of the same phenomena, a part
of the hidden variables can be supposed to be related to each other. In a more
simple way, we can say that the latent models are coupled through subsets of their
variables. By exploiting this coupling in the joint estimation of the latent models,
we expect that the information from one data set will help in the estimation of
the latent variables related to the other data set.

Although the framework described above dates back to the coupled (or
linked) tensor model described in [8], it was repopularized recently in [14], where
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the problem of joint matrix factorization was considered under the constraint
that one of the factors is shared by all matrices. In both cases the coupling occurs
through equality constraints on latent factors. Following the work in [14], the
framework of coupled tensor decompositions was revisited in [5,11], variations
on this framework, such as tensor-matrix factorizations [3,1] and more general
latent models [15]. Uniqueness properties and the development of algorithms for
the exact coupled tensor decomposition problem are proposed in [16] and [17],
while algorithms for the coupled tensor approximation problem under general
cost functions are developed in [19,7].

A more flexible model for the coupling of the models has been proposed in
[2]. Instead of considering equality constraints for the entire factors of a tensor
model, only a few components are constrained. In [13] the problem of coupled
nonnegative matrix factorization is considered and a flexible coupling is proposed
by assuming that the shared components are similar in L1 or L2 sense and not
equal. In this paper, we propose a generalization of the flexible models for joint
decompositions above using a Bayesian approach. After presenting our frame-
work, we present some examples of non trivial couplings and some simulation
results. We show some results on the coupling of two tensor models where the
coupled factors do not have the same size due to different sampling. This type of
coupling cannot be dealt with the flexible models presented in [2] or [13]. Note
also that this type of model appears naturally in multimodal data fusion since
nothing guarantees that measurement devices of different nature will generate
data sets with the same resolution.

In this paper the following notation is used: scalars and vectors are denoted
by lower case x and bold lower case x letters respectively. Matrices are denoted
by upper case bold letters X, while tensors by calligraphic letters X . Elements
of a given array are indicated by subscripts X ijk. Vectorization of parameters is
indicated by vec(·). The Kronecker product of two matrices X and Y is denoted
by X ⊗ Y , while the Khatri-Rao product (column-wise Kronecker product) by
X ⊙ Y . The pseudo inverse is given by superscript †, its side indicates the side
of the pseudoinverse.

2 Coupled decompositions: hard and flexible approaches

2.1 Deterministic approach: hard measurements and coupling

Consider two arrays of measurements, Y and Y
′, which can be tensors of possibly

different orders and dimensions. Arrays Y and Y
′ are related to two parametric

models characterized by parameter arrays θ and θ′, respectively.
For instance, if Y is a matrix (a second order tensor) to be diagonalized, the

model can be the SVD Y = UΣV H , so that θ = vec(U ,Σ,V ). If Y ′ is a third
order tensor, its Canonical Polyadic (CP) decomposition [6], [10] writes Y

′ =
(

A′,B′,C ′
)

, meaning that Y ′
ijk =

∑R′

r=1 A
′
irB

′
jrC

′
kr, and θ′ = vec(A′, B′, C ′).

In the case where θ and θ′ are not coupled, they can be obtained (non
uniquely) by processing the data arrays separately. On the other hand, if they
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are coupled then the data needs to be processed jointly (and parameters uniquely
estimated). The common assumption on the coupling [1,3,15] is that some factors
are equal, for example, B = V and this leads to the problem of exact coupled
decompositions [16], [17].

2.2 Classical estimation approach: flexible measurements and hard

coupling

In general the relation between the measured data arrays Y and Y
′ and the

underlying SVD and CP model is not an equality relation, since the measurement
devices only generate an imperfect random response driven by the parametric
model. Therefore, we are lead to solve an approximation problem instead of an
exact decomposition problem.

By considering a probabilistic relation between Y and θ, we obtain a more
flexible measurement model. This relation can be expressed in terms of the
likelihood of the measurements p(Y ;θ). If θ and θ′ are uncoupled, then they
can be estimated separately using maximum likelihood estimation (MLE), i.e.,
argmaxθ log p(Y ;θ). Note that depending on the likelihood function, we can
obtain different objective functions in the approximation problem.

If B = V and supposing that Y and Y
′ are independent, then the joint

likelihood function factorizes p(Y ,Y ′;θ,θ′) = p(Y ;θ)p(Y ′;θ′) and the approxi-
mation problem becomes a constrained MLE:

maximize log p(Y ;θ) + log p(Y ′;θ′)
with respect to (w.r.t.) θ, θ′,

subject to V = B.
(1)

Different versions of this approach are presented in [14,19,7].

2.3 Bayesian estimation approach: flexible measurements and

coupling

We can go one step further and consider that the coupling between θ and θ′ itself
can be flexible. For example if we want to have V ≈ B, but not equality, or even
V ≈ WB for a transformation matrix W that is known only approximately. To
formalize this we assume that the pair θ, θ′ is random and that we have at our
disposal a joint probability distribution p(θ,θ′).

Maximum a posteriori estimator: since the pair θ, θ′ is random, we have to
move from an MLE setting to a maximum a posteriori (MAP) setting1. The
approximation setting under the MAP criterion becomes

argmax
θ,θ′

p(θ,θ′|Y ,Y ′) = argmax
θ,θ′

p(θ,θ′,Y ,Y ′) = argmin
θ,θ′

Υ (θ,θ′), (2)

1 We could also consider a minimum mean squared error setting but then we would
need to evaluate p(Y ,Y ′) which is normally cumbersome.
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where Υ (θ,θ′) = − log p(θ,θ′,Y ,Y ′). Conditioning on the parameters leads to
a cost function that can be decomposed in a joint data likelihood term plus a
term involving the coupling:

Υ (θ,θ′) = − log p(Y ,Y ′|θ,θ′)− log p(θ,θ′). (3)

Hypotheses: in what follows, we state a few simplification hypotheses that we
consider and the main hypotheses underlying the Bayesian approach:

H1 Conditional independence of the data: the data arrays Y and Y
′ are inde-

pendent of θ′ and θ respectively, if they are conditioned on θ and θ′. We
suppose also that they are conditionally independent between them. This re-
sults in the following p(Y |Y ′,θ,θ′) = p(Y |θ) and p(Y ′|Y ,θ,θ′) = p(Y ′|θ′).

H2 Independence of uncoupled parameters : all parameters except the coupled
parameters are independent. In the joint SVD and CP case this means that
p(θ,θ′) = p(V ,B)p(U)p(Σ)p(A)p(C).

H3 On the priors : trivially, the joint distribution of the coupled parameters, e.g.
p(V ,B) needs to be known or, at least, one of the conditional distributions
(p(V |B) or p(B|V )). The marginal priors on the uncoupled and of the
conditioning parameters (p(U), . . . , p(C)) are assumed either to be known
or to be flat on some domain of definition.

H4 Likelihoods: the conditional probabilities (or likelihoods) p(Y |θ) and p(Y ′|θ′)
are known, at least on their shape. In a MAP setting, this indirectly sets the
weights which will be given to each data array in Υ

(

θ,θ′
)

.

Simplified MAP: under hypothesis H1 p(Y ,Y ′|θ,θ′) = p(Y |θ)p(Y |θ). The
simplified MAP estimator is given by minimizing a three-term cost function

argmin
θ,θ′

Υ (θ,θ′) = − log p(Y |θ)− log p(Y ′|θ′)− log p(θ,θ′). (4)

Hypotheses H3 and H4 are assumed so that all terms in this cost function
are defined. H2 is assumed to allow simplifications in the last term. In the next
section we give many examples of possible joint decomposition problems and
their objective functions under this setting.

3 Examples

In what follows we consider that the parametric models underlying the data
arrays are two CP models (A,B,C) and

(

A′,B′,C ′
)

with dimensions I,J ,K
and I ′,J ′,K ′ and number of components (i.e. number of matrix columns) R and
R′ respectively. And we consider that the coupling occurs between matrices C

and C′. We exploit this framework with two different examples: general joint
Gaussian modeling of the parameters and non Gaussian couplings.
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3.1 Joint Gaussian modeling

A general joint Gaussian model comprising coupled and uncoupled variables is
given by the following expression:

M
[

θ⊤θ′⊤
]⊤

= Σu+ µ, (5)

where M is a matrix defining the structural relations between variables, u is
a white Gaussian vector with zero mean and unit variances, Σ is a diagonal
matrix of standard deviations and µ is a constant vector. Observe that a con-
dition for the pair (θ,θ′) to define a joint Gaussian vector is the left invert-

ibility of M . Under this condition we have
[

θ⊤θ′⊤
]⊤

∼ N{†Mµ,Γ }, where

Γ = (†M)ΣΣ(†M⊤) is the covariance matrix of the joint vector. The MAP
objective function is

Υ
(

θ,θ′
)

= − log p(Y |θ)− log p(Y ′|θ′) + {[θ⊤
θ
′⊤]−µ

⊤†
M

⊤}Γ−1{[θ⊤
θ
′⊤]⊤ − †

Mµ}
(6)

Below, we give a few examples of applications of this approach.

Shared components: a usual problem in multimodal data fusion is that some
components are not present in all modalities, thus we have some components
which are shared and some which are specific to each modality. Suppose R =
R′ = 2 in the coupled CP model and that the first component of C (C1) is
approximately equal to the first component of C ′ (C ′

1). Supposing zero mean
marginal Gaussian priors, we have









I 0 0

0 I 0

0 I −I

0 0 I





















θ(u)

θ(u′)

C2

C ′
2













=









σ2
uI 0 0 0

0 σ′2
u I 0 0

0 0 σ2
cI 0

0 0 0 σ2
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u, (7)

where θ(u), θ(u′), σ
2
u and σ′2

u are the uncoupled parameters and their respective
variances, σ2

c is the variance of the couplings and σ2
C′

2

the prior variance of the

C ′
2 elements.

Dynamical models: in some cases, more than two data arrays are present and, as
a consequence, there is a large number of degrees of freedom on the definition of
the couplings. If the data arrays are measured in time, then a natural coupling
can be defined through a dynamical model. For example, if N instances of a CP
model are measured in successive times and that vec(Ck) are related through
a linear dynamic model with state transition matrices Ek and white gaussian
vectors uk, then the k-th line of the joint model corresponding to the coupling
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is given by

[

· · · 0 I −Ek 0 · · ·
]













...

vec(Ck)

vec(Ck−1)
...













= uk. (8)

Sampling a continuous function: another important problem in multimodal data
fusion is related to sampling. Different measurement devices have different sam-
pling frequencies or even different non uniform sampling grids. In some situa-
tions, the continuous functions being measured can be approximated by a com-
mon function c(t). For two sampled vectors c and c′, their relation with the
continuous function can be obtained with an interpolation kernel (see the gen-
eral description in [4])

c(t) ≈
K
∑

k=1

ckh(t, tk) ≈
K′

∑

k′=1

c′kh
′(t, t′k), (9)

for some kernels h(·, ·) and h′(·, ·) and for sampling times {tk, k ∈ 1, · · · , K}
and {tk′ , k′ ∈ 1, · · · , K ′}. Therefore, we can impose a new common sampling
grid of size L where both interpolations should match. This leads to the linear
relations

Hc ≈ H ′c′, (10)

where H lk = h(tl, tk), H
′
lk′ = h(tl, tk′) and {tl, k ∈ 1, · · · , L}. For example,

in the coupled CP models, when C and C ′ have different dimensions due to
different sampling rates, their coupling is given by (10). The approximation can
then be rewritten in the joint Gaussian setting as

[

0 diag(H) −diag(H ′) 0
]













...
vec(C)
vec(C ′)

...













= Σu, (11)

where diag(H) is a block diagonal matrix with repetitions of H on the diagonal.

3.2 Non Gaussian conditional coupling

Non trivial couplings between the factors C and C ′ can be considered by as-
suming that the coupling is given by a non Gaussian conditional distribution
p
(

C|C ′
)

.

Impulsive additive coupling: as a first example, we can consider that each element
in C is a version of C ′ corrupted by independent and identically distributed
(i.i.d.) impulsive noise:

Cij = Cij + V i,j (12)
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where V i,j follows a Laplacian distribution p(V ij) = (1/2δ) exp(−|V i,j |/δ) with
scale parameter δ or a Cauchy distribution p(V ij) = 1/{πδ[1 + (Vij/δ)

2]}. Sup-
posing that the priors are flat on a constraint set C, the objective functions to
be minimized are respectively

Υ
(

θ,θ′
)

= − log p(Y |θ)− log p(Y ′|θ′) + (1/2δ)‖C −C ′‖1

Υ
(

θ,θ′
)

= − log p(Y |θ)− log p(Y ′|θ′)−
IJ
∑

ij

log{1 + [(Cij −C ′
ij)/δ]

2},
(13)

where ‖·‖1 is the L1 norm. The first penalty was considered in [13] in a collective
matrix factorization context. Both cost functions imply a sparse number of large
discrepancies between C and C ′.

Positive general coupling: when Cij > 0 and C ′
ij > 0, an additive random cou-

pling may not me be the best option, since to ensure positiveness the support
of the additive term has to depend on the values of C ′, which is not realistic.
Therefore, other alternatives naturally ensuring positiveness can be considered,
for example the Tweedie’s distribution [9]. Special cases of this distribution are
the Poisson, Gamma and inverse-Gaussian distributions (the Gaussian distribu-
tion is a limit special case). In general, the PDF of the Tweedie’s distribution
has no analytical form, thus we cannot directly use it to write down a coupling
term in the MAP objective function. However, if we consider that the coupling
between Cij > 0 and C ′ > 0 is strong (dispersion δ is small), then a saddle
point approximation can be used [9]

p(Cij |C
′
ij) ≈ (2πδ2Cβ

ij)
−1/2 exp[−dβ(Ci,j |C

′
i,j)/δ

2] (14)

where β is a shape parameter (β = 1, 2, 3 for the Poisson, Gamma and inverse-
Gaussian distributions respectively) and dβ is the beta divergence [20]

dβ(Ci,j |C
′
i,j) = C

′1−β
i,j /[(1−β)(2−β)]

[

C
2−β
i,j C

′β−1
i,j −Cij(2− β) +C ′

ij(1− β)
]

.

(15)
Under this conditional distribution the coupling term in the MAP objective
becomes

∑

ij

[

(β/2) log (Cij) + (1/δ)dβ(Ci,j |C
′
i,j)

]

.

4 Gaussian problem with flat priors and alternating least
squares (ALS)

From now on we will focus on the specific case of joint Gaussian modeling. Note
that the joint decomposition can be found by minimizing (6). This can be done,
for example, using an all-at-once minimization procedure such as a gradient
algorithm.

If we consider that the priors are flat and that the coupling is of the form

Gvec(C)−G′vec(C ′) =
I

σ2
c

u, (16)
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where G and G′ are two coupling matrices, I is the identity matrix and σc is
a standard deviation related to the coupling intensity. Then the coupling term
becomes a quadratic term on vec(C) and vec(C ′). Moreover, if we suppose that
the two tensors Y and Y

′ are measured each with i.i.d. Gaussian noise with
respective standard deviations σn and σ′

n. Then the objective function to be
minimized is

Υ =
1

σ2
n

‖Y−(A,B,C)‖2F+
1

σ′2
n

‖Y ′−(A′,B′,C ′)‖2F+
1

σ2
c

‖Gvec(C)−G′vec(C ′)‖2F

(17)
To minimize this function we can use an easy to implement algorithm, such
as the alternating least squares (ALS) algorithm. Observe that the alternating
updates for the uncoupled factors are simply the standard ALS steps for CP
approximation, while for the coupled factors the updates are the solution of a
joint least squares problem with a coupling term. The ALS procedure is the
following:

Uncoupled Factors

Âk = Y (1)(Ĉk−1 ⊙ B̂k−1)
† Â′

k = Y ′
(1)(Ĉ

′
k−1 ⊙ B̂′

k−1)
†,

B̂k = Y (2)(Ĉk−1 ⊙ Âk)
† B̂′

k = Y ′
(2)(Ĉ

′
k−1 ⊙ Â′

k)
†,

(18)

Coupled Factors

[

vec(Ĉk)

vec(Ĉ′
k)

]

=

† 



(F⊤F )⊗I

σ2
n

+ G⊤G
σ2
c

−G⊤G′

σ2
c

−G′⊤G
σ2
c

(F ′⊤F ′)⊗I

σ′2
n

+ G′⊤G′

σ2
c





[

(F ⊗ I)vec
(

Y (1)

)

(F ′ ⊗ I)vec
(

Y (2)

)

]

(19)

where F = B̂k ⊙ Âk, F
′ = B̂′

k ⊙ Â′
k.

5 Simulations

To show the effects of the flexible coupling of two CP models on approximation
performance, we apply the ALS algorithm presented in Sec. 4 to three different
types of coupling: direct coupling of the C factors, coupling of one component
and coupling of C factors with different size through interpolation.

5.1 Similar factors

We start with a straightforward coupling modelG = G′ = I. The two CP models
are generated randomly with dimensions I = I ′ = J = J ′ = K = K ′ = 10 and
R = R′ = 3. The data array Y

′ has low noise σn = 0.001, while Y is noisy
σ′
n = 0.1. We vary the coupling intensity 1

σc

from 2 to 5000. The two CP models
are first approximated separately (disregarding the coupling); in this case an all-
at-once conjugate gradient algorithm is used. After convergence of the algorithm,
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the columns of the resulting factors are permuted so that the components in
the coupling match. The permuted factors are then used to initialize the ALS
procedure described in Sec. 4. We simulate 50 times this procedure with different
noise realizations and we evaluate the total mean squared error (MSE) on the
C and C ′ factors. The results are shown in Fig. 1 .

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Coupling intensity - 1

σc

T
o
ta

l
M

S
E

Uncoupled - C

Uncoupled - C′

Coupled - C

Fig. 1. Total MSE for the factors C and C′ of the coupled CP model as a function
of the coupling intensity 1

σc

. Results are shown for an algorithm that disregards the
coupling and for the ALS algorithm presented in Sec. 4, which considers the coupling.
The CP models are measured with different noise levels (σn = 0.1 and σ′

n = 0.001).

We can see that when the coupling is weak the MSE on C is close to its
uncoupled MSE. By increasing the coupling intensity, the factor is estimated
with a much better performance, since more information comes from the clean
tensor through the coupling. The flexible coupling allows to assess the continuous
transition between uncoupled models and exactly coupled models.

5.2 Shared component

We also simulate the case when only one component is shared between the models
and the noise levels are similar. In this case I = I ′ = J = J ′ = K = K ′ = 10,
R = R′ = 2, G = G′ = [I 0], σc = 0.001, σn = 0.05 and σ′

n = 0.05. The MSE
on all elements of both C and C ′ are evaluated in a similar way as above. The
MSE for the estimation of each element of the factors is shown in Fig. 2.

Note that in Fig. 1, we did not show the MSE for the clean factor, since it
is too close to the uncoupled performance. Although the unshared component is
not improved at all by the coupling, we can see in Fig. 2 that, when the noise
levels are equivalent, the MSE is decreased for the shared components of both
factors.

5.3 Different sampling rates

As a non trivial example of coupling we consider the case when I = I ′ = J =
J ′ = 10, but with different sizes on the third mode K = 37 and K ′ = 53.
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1
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M
S
E
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Uncoupled

Coupled

1

2

3

·10
−3

M
S
E

C
′

Shared components Unshared components

Fig. 2. MSE for the C and C′ factors of the coupled CP models. The models have one
similar component (a shared component) on their C factors while the other component
is not similar.

We suppose that the components on C and C ′ are sampled versions of the
same underlying continuous functions, however, the sampling periods to obtain
the factors are different so that the elements in the factors cannot be similar, at
least, in most of the points. Since the factors are not similar, we cannot apply the
direct coupling model and we must use an interpolation approach as explained
at the end of Sec. 3.

In this example we consider functions which are band limited and periodic.
For an odd number of samples, the interpolation kernel is given by the Dirichlet
kernel [12]

H lk =
sin{Kπ[(l − 1)Ti − (k − 1)T ]/[(L− 1)Ti}

K sin{π[(l − 1)Ti − (k − 1)T ]/[(L− 1)Ti}
, (20)

where T is the original sampling period and Ti is the sampling period of the
interpolation. As a consequence we have G = I ⊗H and G′ = I ⊗H ′.

We simulate two random CP models with R = R′ = 3. The components on
the C factors are generated by sampling cr(t) =

∑3
i=1 γir sin(2πfit) where γir

are generated randomly and f1 = 2, f2 = 2.5, f3 = 3.5. The sampling periods
are T = 1/9 and T ′ = 1/13. An example of continuous-time component with its
sampled points on different grids is shown in Fig. 3.

We fix σ′
n = 0.1, while σn varies from 0.001 to 0.1, so that the ratio σ′

n/σn

varies in the interval [0.1 10]. Since the signals are band limited and since we
observe them over a finite time duration, interpolation can only approximate
the continuous signal and it is necessary to set a nonzero σc even if the contin-
uous signals are the same for both data sets. We set L = 100, σc = 0.01 and we
evaluate the total MSE on the coupled factors in the same way as presented pre-
viously. The results are shown in Fig. 4. When the noise ratio increases, the total
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0 1 2 3 4

Sampling grid for C
′
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t - Sampling grid for C
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p
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C1(t) C1 C
′

1

Fig. 3. Underlying continuous function c1(t) for the first components of the C factors
and their corresponding sampled versions c1 and c′1 obtained with different sampling
grids.

MSE for the uncoupled approach increases sharply, while the coupled approach
has a smooth increase. This shows that even though the coupled factors are not
similar, information can still be exchanged between them through interpolation.

As a last simulation, we consider that both data arrays are noisy σn = σ′
n =

0.1 and that the number of interpolation points for the coupling L is varied from
5 to 70. We set σc = 0.001 in the ALS algorithm. The total MSE is shown in
Fig. 5.
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Fig. 4. Total MSE for the estimation of
the C factors for different noise levels ra-
tios σn/σ

′
n. The CP models are coupled

through interpolation.
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Fig. 5. Total MSE for the estimation of
the C factors as a function of the number
of interpolation samples.

Note that only the points t = {0, 1, 2, 3, 4} coincide in the original factors.
Thus in a standard coupling approach only these points can be coupled and
the total MSE that we obtain is the first point in the curve. By increasing the
number of interpolation points the information exchanged within the model is
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larger and MSE decreases almost linearly. Above L = 53, only a small quantity of
information can be exchanged because this is the maximum resolution present in
the data and the total MSE curve becomes flat. Since the complexity of the joint
factor update is dependent on the number of interpolation points, in practice
when the dimensions are originally large, the choice of L depends on a trade off
between MSE (large L) and complexity (small L).

6 Conclusions

Since the expression of a phenomenon can be different in different data sets it
is clear that the link between factorizations of the data sets must be somehow
flexible. To give a meaning to this flexibility we have proposed in this paper
a Bayesian setting for the coupling between factors. Under this setting we can
propose not only trivial flexible links between factors, e.g. an i.i.d. Gaussian
model for the differences between factors, but also joint Gaussian models, sparse
similarity models and nonnegative similarity models.

Through simulations, we have shown that the flexible coupling between fac-
tors allows to explore the entire range of possibilities between exactly coupled
and uncoupled models. We have also shown that coupling allows not only to
retrieve accurately a factor from noisy data by exploiting its coupling to another
data set which has low noise, but also that if the two data sets are noisy then the
accuracy on the estimation of both factorizations is increased. As an example of
multimodal data fusion, we have presented the problem of fusing two data sets in
which one dimension is different due to different sampling. Although the factors
are almost completely different, the underlying hypothesis that they come from
the some continuous-time function allows to exchange information between the
data sets in an interpolated domain.

In the simulation examples we have focused on a joint Gaussian modeling for
the couplings, in future work we can concentrate on non Gaussian couplings such
as the Tweedie’s coupling for nonnegative variables presented only briefly here.
Moreover, since the CP approximation problem is an estimation problem, we can
evaluate the Cramér-Rao bounds (CRB) for the coupled problem so that we can
assess approximately the estimation performance without resorting to extensive
simulation. In the hard coupling case a constrained CRB can be considered,
while in the fully Bayesian and Bayesian with flat priors cases, the Bayesian and
hybrid CRB can be considered. Finally, since there is an information flow from
one data array to the other through the coupling, an interesting point for future
research is to quantify and analyze this flow through the analysis of the mutual
information between the data arrays and the factors.
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