
HAL Id: hal-01135918
https://hal.science/hal-01135918

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Towards More Precise Rewriting Approximations
Yohan Boichut, Jacques Chabin, Pierre Réty

To cite this version:
Yohan Boichut, Jacques Chabin, Pierre Réty. Towards More Precise Rewriting Approximations.
Proceedings of Language and Automata Theory and Applications (LATA), Mar 2015, Nice, France.
�hal-01135918�

https://hal.science/hal-01135918
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Towards more Precise Rewriting Approximations†

Yohan Boichuta,∗, Jacques Chabina, Pierre Rétya

aLIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France

Abstract

To check a system, some verification techniques consider a set of terms I that

represents the initial configurations of the system, and a rewrite system R that

represents the system behavior. To check that no undesirable configuration is

reached, they compute an over-approximation of the set of descendants (succes-

sors) issued from I by R, expressed by a tree language. Their success highly

depends on the quality of the approximation. Some techniques have been pre-

sented using regular tree languages, and more recently using non-regular lan-

guages to get better approximations: using context-free tree languages [1] on

the one hand, using synchronized tree languages [2] on the other hand. In this

paper, we merge these two approaches to get even better approximations: we

compute an over-approximation of the descendants, using synchronized-context-

free tree languages expressed by logic programs. We give several examples for

which our procedure computes the descendants in an exact way, whereas the

former techniques compute a strict over-approximation.

Keywords: term rewriting, tree languages, logic programming, reachability,

rewriting approximations.

∗Principal corresponding author.
Email addresses: yohan.boichut@univ-orleans.fr (Yohan Boichut),

jacques.chabin@univ-orleans.fr (Jacques Chabin), pierre.rety@univ-orleans.fr (Pierre
Réty)

†A preliminary version of this paper appeared in the Proceedings of the 9th International
Conference on Language and Automata Theory and Applications (LATA), LNCS 8977, 2015.

Preprint submitted to Elsevier January 4, 2017

© 2017 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022000017300065
Manuscript_9943b6fea105bb6bb15d89ffba1a6cde

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022000017300065
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022000017300065

1. Introduction

To check systems like cryptographic protocols or Java programs, some ver-

ification techniques consider a set of terms I that represents the initial con-

figurations of the system, and a rewrite system R that represents the system

behavior [3, 4, 5]. To check that no undesirable configuration is reached, they

compute an over-approximation of the set of descendants2 (successors) issued

from I by R, expressed by a tree language. Let R∗(I) denote the set of de-

scendants of I, and consider a set Bad of undesirable terms. Thus, if a term

of Bad is reached from I, i.e. R∗(I) ∩ Bad 6= ∅, it means that the protocol or

the program is flawed. In general, it is not possible to compute R∗(I) exactly.

Instead, one computes an over-approximation App of R∗(I) (i.e. App ⊇ R∗(I)),

and checks that App∩Bad = ∅, which ensures that the protocol or the program

is correct.

However, I, Bad and App have often been considered as regular tree lan-

guages, recognized by finite tree automata. In the general case, R∗(I) is not

regular, even if I is. Moreover, the expressiveness of regular languages is poor.

Then the over-approximation App may not be precise enough, and we may have

App∩Bad 6= ∅ whereas R∗(I)∩Bad = ∅. In other words, the protocol is correct,

but we cannot prove it. Some work has proposed CEGAR-techniques (Counter-

Example Guided Approximation Refinement) to conclude as often as possible

[3, 6, 7]. However, in some cases, no regular over-approximation works [8].

To overcome this theoretical limit, the idea is to use more expressive lan-

guages to express the over-approximation, i.e. non-regular ones. However, to be

able to check that App ∩ Bad = ∅, we need a class of languages closed under

intersection and whose emptiness is decidable. Actually, if we assume that Bad

is regular, closure under intersection with a regular language is enough. The

class of context-free tree languages has these properties, and an approximation

technique using context-free tree languages has been proposed in [1]. On the

2I.e. terms obtained by applying arbitrarily many rewrite steps on the terms of I.

2

other hand, the class of synchronized tree languages [9] also has these prop-

erties, and an approximation technique using synchronized tree languages has

been proposed in [2]. Both classes include regular languages, but they are in-

comparable. Context-free tree languages cannot express dependencies between

different branches, except in some cases, whereas synchronized tree languages

cannot express vertical dependencies.

We want to use a more powerful class of languages that can express the

two kinds of dependencies together: the class of synchronized-context-free tree-

(tuple) languages [10, 11], which has the same properties as context-free lan-

guages and as synchronized languages, i.e. closure under union, closure under

intersection with a regular language, decidability of membership and emptiness.

In this paper, we propose a procedure that always terminates and that com-

putes an over-approximation of the descendants obtained by a linear rewrite sys-

tem, using synchronized-context-free tree-(tuple) languages expressed by logic

programs. Compared to our previous work [2], we introduce “input arguments”

in predicate symbols, which is a major technical change that highly improves

the quality of the approximation, and that requires new results and new proofs.

This work is a first step towards a verification technique offering more than

regular approximations. Some on-going work is discussed in Section 6 in order

to make this technique be an acceptable verification technique.

The paper is organized as follows. Term rewriting and synchronized-context-

free tree languages are introduced in Section 2. Then technical results needed in

the sequel are established in Section 3. Our main contribution, i.e. computing

approximations, is presented in Section 4. Finally, in Section 5 our technique

is applied to examples, in particular when R∗(I) can be expressed in an exact

way neither by a context-free language, nor by a synchronized language.

Comparison with [1, 2, 3, 4, 5]: If no input arguments are used, this paper

is equivalent to [2], which actually also needed the rewrite system to be left-

and-right linear (the erratum of [2] is given in [12]), due to the semantics of

logic programs. An extension of [2] to deal with non right-linear rewrite system

3

is proposed in [13].

If no input arguments are used, predicate symbols have only one argument,

and assuming some additional restrictions, the logic program can be viewed as

a finite tree automaton (predicate symbols are considered as states), which then

generates a regular language. In this particular case, the procedure presented in

this paper works as the tree automaton completion of [3, 4, 5]. However, [3, 4, 5]

only need left-linearity, and [3] uses a set of equation E as an heuristics for

guiding the approximation, whereas our procedure does not because equations

do not make sense when working with predicate symbols with several arguments,

i.e. with tree-tuples. On the other hand, our procedure always terminate, but

[3, 4, 5] could also always terminate if a bound for the number of states was

fixed.

The completion procedure of [1] computes an over-approximation of the

descendants using a context-free tree language defined by an indexed linear

tree grammar (ILTG). Actually, ILTGs look like and are equi-expressive with

(top-down) pushdown tree automata. The rewrite system is assumed to be left-

linear, and the procedure always terminate. Roughly speaking, when rewriting

a term t generated by the current grammar (to get the descendants of t), the

substitution (which is a match) is stored into the stack. However, to make the

stack alphabet finite, substitutions are pruned, which amounts to merge various

substitutions. Compared to our procedure, [1] is more automated, because it

does not need additional heuristics to guide the approximation. However, it is

limited by the use of context-free tree languages. Unfortunately, it is difficult

to compare our procedure with that of [1], because they are quite different and

use different formalisms.

Other Related Work: The class of tree-tuples whose overlapping coding is

recognized by a tree automaton on the product alphabet [14] (called “regular

tree relations” by some authors), is strictly included in the class of rational tree

4

relations [15]. The latter is equivalent to the class of non-copying3 synchronized

languages [16], which is strictly included in the class of synchronized languages.

Context-free tree languages (i.e. without assuming a particular strategy for

grammar derivations) [17] are equivalent to OI (outside-in strategy) context-free

tree languages, but are incomparable with IO (inside-out strategy) context-free

tree languages [18, 19]. The IO class (and not the OI one) is strictly included in

the class of synchronized-context-free tree languages. The latter is equivalent to

the “term languages of hyperedge replacement grammars”, which are equivalent

to the tree languages definable by attribute grammars [20, 21]. However, we

prefer to use the synchronized-context-free tree languages, which use the well

known formalism of pure logic programming, for its implementation ease.

Much other work computes the descendants in an exact way using regular

tree languages (in particular the recent paper [22]). In general the set of descen-

dants is not regular even if the initial set is. Consequently strong restrictions

over the rewrite system are needed to get regular descendants, which are not

suitable in the framework of protocol or program verification.

2. Preliminaries

Consider a finite ranked alphabet Σ = {a, b, f, g, h, . . .} and a set of variables

Var = {x, y, z, . . .}. Each symbol f ∈ Σ has a unique arity, denoted by ar(f).

The notions of first-order term, position and substitution are defined as usual.

Given σ and σ′ two substitutions, σ ◦ σ′ denotes the substitution such that for

any variable x, σ◦σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without

variables) over Σ. For a unary functional symbol f ,

n times︷ ︸︸ ︷
f(f(. . . f(t))) is denoted

by fn(t). For a term t, Var(t) is the set of variables of t, Pos(t) is the set of

positions of t. For p ∈ Pos(t), t(p) is the symbol of Σ∪Var occurring at position

p in t, and t|p is the subterm of t at position p. The term t is linear if each

variable of t occurs only once in t. The term t[t′]p is obtained from t by replacing

3Clause heads are assumed to be linear.

5

the subterm at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var},
PosNonVar(t) = {p ∈ Pos(t) | t(p) 6∈ Var}. Note that if p ∈ PosNonVar(t),

t|p = f(t1, . . . , tn), and i ∈ {1, . . . , n}, then p.i is the position of ti in t. For

p, p′ ∈ Pos(t), p < p′ means that p occurs in t strictly above p′. Let t, t′ be

terms, t is more general than t′ (denoted t ≤ t′) if there exists a substitution

ρ s.t. ρ(t) = t′. Let σ, σ′ be substitutions, σ is more general than σ′ (denoted

σ ≤ σ′) if there exists a substitution ρ s.t. ρ ◦ σ = σ′.

A rewrite rule is an oriented pair of terms, written l→ r. We always assume

that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite

set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The

rewrite relation →R is defined as follows: t →R t′ if there exist a position

p ∈ PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l)

and t′ = t[θ(r)]p. →∗R denotes the reflexive-transitive closure of →R. t′ is a

descendant of t if t →∗R t′. If E is a set of ground terms, R∗(E) denotes the

set of descendants of elements of E. The rewrite rule l → r is left (resp. right)

linear if l (resp. r) is linear. R is left (resp. right) linear if all its rewrite rules

are left (resp. right) linear. R is linear if R is both left and right linear.

In the following, we consider the framework of pure logic programming, and

the class of synchronized-context-free tree-tuple4 languages [10, 11], which is

presented as an extension of the class of synchronized tree-tuple languages de-

fined by CS-clauses [9, 23]. Given a set Pred of predicate symbols; atoms, goals,

bodies and Horn-clauses are defined as usual. Note that both goals and bodies

are sequences of atoms. We will use letters G or B for sequences of atoms,

and A for atoms. Given a goal G = A1, . . . , Ak and positive integers i, j, we

define G|i = Ai and G|i.j = (Ai)|j = tj where Ai = P (t1, . . . , tn). Let G be a

sequence of atoms, A an atom occuring in G and B a new atom. We denote by

G[A← B] the replacement of the atom A by B in G.

Definition 1. The tuple of terms (t1, . . . , tn) is flat if t1, . . . , tn are variables.

4For simplicity, “tree-tuple” is sometimes omitted.

6

The sequence of atoms B is flat if for each atom P (t1, . . . , tn) of B, (t1, . . . , tn)

is flat. B is linear if each variable occurring in B (possibly at subterm position)

occurs only once in B. Note that the empty sequence of atoms (denoted by ∅) is

flat and linear.

A Horn clause P (t1, . . . , tn)← B is:

• empty if P (t1, . . . , tn) is flat, i.e. ∀i ∈ {1, . . . , n}, ti is a variable.

• normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occur-

rence of function-symbol. A program is normalized if all its clauses are

normalized.

Example 1. Let x, y, z be variables. The sequence of atoms P1(x, y), P2(z)

is flat, whereas P1(x, f(y)), P2(z) is not flat. The clause P (x, y) ← Q(x, y) is

empty and normalized. The clause P (f(x), y)← Q(x, y) is normalized whereas

P (f(f(x)), y)← Q(x, y) is not.

Definition 2. A logic program with modes is a logic program such that a mode-

tuple ~m ∈ {I,O}n is associated to each predicate symbol P (n is the arity of P).

In other words, each predicate argument has mode I (Input) or O (Output).

To distinguish them, output arguments will be covered by a hat.

Notation: Let P be a predicate symbol. ArIn(P) is the number of input

arguments of P , and ArOut(P) is the number of output arguments. Let B be

a sequence of atoms (possibly containing only one atom). In(B) is the input

part of B, i.e. the tuple composed of the input arguments of B. ArIn(B) is

the arity of In(B). V arin(B) is the set of variables that appear in In(B).

Out(B), ArOut(B), and V arout(B) are defined in a similar way. We also define

V ar(B) = V arin(B) ∪ V arout(B).

Example 2. Let B = P (t̂1, t̂2, t3), Q(t̂4, t5, t6). Then, Out(B) = (t1, t2, t4) and

In(B) = (t3, t5, t6).

Definition 3. Let B = A1, . . . , An be a sequence of atoms. We say that

Aj � Ak (possibly j = k) if ∃y ∈ V arin(Aj) ∩ V arout(Ak). In other words an

7

input of Aj depends on an output of Ak. We say that B has a loop if Aj �+ Aj

for some Aj (�+ is the transitive closure of �).

Example 3. Q(x̂, s(y)), R(ŷ, s(x)) (where x, y are variables) has a loop because

Q(x̂, s(y)) � R(ŷ, s(x)) � Q(x̂, s(y)).

Definition 4. A Synchronized-Context-Free (S-CF) program Prog is a logic

program with modes, whose clauses H ← B satisfy:

- In(H).Out(B) (. is the tuple concatenation) is a linear tuple of variables,

i.e. each tuple-component is a variable, and each variable occurs only once,

- and B does not have a loop.

A clause of an S-CF program is called S-CF clause.

Example 4. Prog = {P (x̂, y) ← P (ŝ(x), y)} is not an S-CF program because

In(H).Out(B) = (y, s(x)) is not a tuple of variables. Prog′ = {P ′(ŝ(x), y) ←
P ′(x̂, s(y))} is an S-CF program because In(H).Out(B) = (y, x) is a linear tuple

of variables, and there is no loop in the clause body.

Definition 5. Let Prog be an S-CF program. Given a predicate symbol P with-

out input arguments, the tree-(tuple) language generated by P is LProg(P) =

{~t∈(TΣ)ArOut(P) |P (~t)∈Mod(Prog)}, where TΣ is the set of ground terms over

the signature Σ and Mod(Prog) is the least Herbrand model of Prog. LProg(P)

is called Synchronized-Context-Free language (S-CF language).

Example 5. Let us consider the S-CF program without input arguments Prog =

{P1(ĝ(x, y))←P2(x̂, ŷ). P2(ĉ(x, y), ̂c(x′, y′))←P2(x̂, ŷ′), P2(ŷ, x̂′). P2(â, â)← .}.
The language generated by P1 is LProg(P1) = {g(t, tsym) | t ∈ T{c\2,a\0}}, where

tsym is the symmetric tree of t (for instance c(c(a, a), a) is the symmetric of

c(a, c(a, a))). This language is synchronized, but it is not context-free.

Example 6. Prog={S(ĉ(x, y)) ← P (x̂, ŷ, a, b). P (f̂(x), ĝ(y), x′, y′) ← P (x̂, ŷ,

h(x′), i(y′)). P (x̂, ŷ, x, y)←} is an S-CF program. The language generated by

S is LProg(S) = {c(fn(hn(a)), gn(in(b))) | n ∈ IN}, which is not synchronized

(there are vertical dependencies) nor context-free.

8

S-CF languages are closed under union, intersection, and emptiness is decid-

able [11]. Emptiness is linear in the number of clauses of the S-CF program. On

the other hand, consider a S-CF program Prog′′ that computes the intersection

of a S-CF program Prog with a regular program Prog′. Let Pred, Pred′, Pred′′

be the set of predicate symbols of Prog, Prog′, Prog′′ respectively. A bound for

the size of Pred′′ is |Pred′′| ≤ |Pred|.2ArMax(Pred).|Pred′|, where ArMax(Pred)

is the biggest arity of the elements of Pred.

Definition 6. The clause H←B is non-copying if the tuple Out(H).In(B) is

linear. An S-CF program is non-copying if all its clauses are non-copying.

Example 7. The clause P (d̂(x, x), y)←Q(x̂, p(y)) is copying.

P (ĉ(x), y)←Q(x̂, p(y)) is non-copying.

Remark: An S-CF program without input arguments is actually a CS-program

(composed of CS-clauses) [9], which generates a synchronized language5. A non-

copying normalized CS-program such that every predicate symbol has only one

argument is called regular program. It is equivalent to a finite tree automaton.

Indeed, clauses are of the form P0(̂f(x1, . . . , xn)) ← P1(x̂1), . . . , Pn(x̂n), which

is equivalent to the transition f(P1, . . . , Pn)→ P0 where P0, P1, . . . , Pn are con-

sidered as states. Consequently it generates a regular tree language. Conversely,

every regular tree language can be generated by a regular program.

Given an S-CF program, we focus on two kinds of derivations.

Definition 7. Given an S-CF program Prog and a sequence of atoms G,

• G derives into G′ by a resolution step if there exists a clause6 H ← B in

Prog and an atom A ∈ G such that A and H are unifiable by the most

general unifier σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It

is written G;σ G
′.

5Initially, synchronized languages were presented using constraint systems (sorts of gram-

mars) [24], and later using logic programs. CS stands for “Constraint System”.
6We assume that the clause and G have distinct variables.

9

We consider the transitive closure ;+ and the reflexive-transitive closure

;∗ of ;. If G1 ;σ1
G2 and G2 ;σ2

G3, we write G1 ;∗σ2◦σ1
G3.

• G rewrites into G′ (possibly in several steps) if G ;∗σ G
′ s.t. σ does not

instantiate the variables of G. It is written G→∗σ G′.

Example 8. Prog = {P (x̂1, ĝ(x2))← P ′(x̂1, x̂2). P (f̂(x1), x̂2)← P ′′(x̂1, x̂2).},
and consider G = P (f(x), y). We have P (f(x), y) ;σ1 P

′(f(x), x2) with σ1 =

[x1/f(x), y/g(x2)] and P (f(x), y)→σ2
P ′′(x, y) with σ2 = [x1/x, x2/y].

In the remainder of the paper, given an S-CF program Prog and two se-

quences of atoms G1 and G2, G1 ;∗Prog G2 (resp. G1 →∗Prog G2) also denotes

that G2 can be derived (resp. rewritten) from G1 using clauses of Prog. Note

that for any atom A, if A → B then A ; B. On the other hand, A ;σ B

implies σ(A)→ B. Consequently, if A is ground, A; B implies A→ B.

It is well known that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈Mod(Prog) iff A;∗Prog ∅.

3. Technical Lemmas

Before describing in Section 4 our technique for computing non-regular ap-

proximations, we need some technical lemmas for proving our results.

Lemma 1. Let t and t′ be two terms such that V ar(t) ∩ V ar(t′) = ∅. Suppose

that t′ is linear. Assuming that t and t′ are unifiable, let σ be the most general

unifier of t and t′. Then, one has: ∀x, y : (x, y ∈ V ar(t)∧x 6= y)⇒ V ar(σ(x))∩
V ar(σ(y)) = ∅ and ∀x : x ∈ V ar(t)⇒ σ(x) is linear.

For the next lemmas, we introduce two notions allowing the extraction of

variables occurring once in a sequence of atoms.

Definition 8. Let G be a sequence of atoms. V arinLin(G) is a tuple of variables

occurring in In(G) and not in Out(G), and V aroutLin(G) is a tuple of variable

occurring in Out(G) and not in In(G). In both cases, tuples of variables are

10

built in such a way that the number of occurences of variables is preserved for

the concerned variables i.e. if a variable occurs n times in V arinLin(G) (resp.

V aroutLin(G)) then the same variable occurs n times in In(G) (resp. Out(G)).

Example 9. Let G= P (̂g(f(x′, z′)), y′), Q(v̂′, g(z′)). Then V arinLin(G) = (y′)

and V aroutLin(G) = (x′, v′).

Note that for a matter of simplicity, we denote by x ∈ V arinLin(G) (resp.

x ∈ V aroutLin(G)) that x occurs in the tuple V arinLin(G) (resp. V aroutLin(G)). The

following lemma focuses on a property of a sequence of atoms obtained after a

resolution step.

Lemma 2. Let Prog be a non-copying S-CF program, and G be a sequence

of atoms such that Out(G) is linear, In(G) is linear and G does not contain

loops. We assume7 that variables occurring in Prog are different from those

occurring in G. If G ;σ G
′, then G′ is loop free, σ(V arinLin(G)).Out(G′) and

σ(V aroutLin(G)).In(G′) are both linear.

Example 10.

Let Prog = {P (ĝ(x), y, z) ← Q(x̂, f(y), z)} and G = P (̂g(f(x′)), y′, z′), R(ẑ′).

Then G ;σ G
′ with σ = (x/f(x′), y/y′, z/z′), G′ = Q(f̂(x′), f(y′), z′), R(ẑ′).

Note that G′ is loop free, σ(V arinLin(G)).Out(G′) = (y′, f(x′), z′) is linear,

σ(V aroutLin(G)).In(G′) = (x′, f(y′), z′) is linear.

Proof. First, we show that σ(V arinLin(G)). Out(G′) and σ(V aroutLin(G)).In(G′)

are linear. Thus, in a second time, we show that G′ is loop free.

Suppose that G ;σ G′. Thus, there exist an atom Ax in G = A1, . . . ,

Ax, . . . , An, an S-CF-clause H ← B ∈ Prog and the mgu σ such that σ(H) =

σ(Ax) and G′ = σ(G)[σ(Ax)← σ(B)].

Let V arinLin(G) = x1, . . . , xk, . . . , xk+n′ , . . . , xm built as follows:

• x1, . . . , xk−1 are the variables occurring in V arin(A1, . . . , Ax−1) and not

in V arout(G);

7If it is not the case then variables are relabelled.

11

• xk, . . . , xk+n′ are the variables occurring in V arin(Ax) and not in V arout(G);

• xk+n′+1, . . . , xm are variables occurring the atoms V arin(Ax+1, . . . , An)

and not in V arout(G).

Since In(G) and Out(G) are both linear and σ is the mgu of Ax and H, one

has σ(V arinLin(G)) = x1, . . . , xk+1, σ(xk), . . . , σ(xk+n′), xk+n′+1, . . . xm. Note

that the linearity of In(G) involves the linearity of V arinLin(G). And one can

deduce that σ(V arinLin(G)) is linear iff the tuple σ(xk), . . . , σ(xk+n′) is linear.

By hypothesis, Out(H).In(B) and Out(B).In(H) are both linear.

So, a variable occurring in V ar(H) ∩ V ar(B) is either

• a variable that is in Out(H) and Out(B) or

• a variable that is in In(H) and In(B).

A variable occurring in Out(H) and in In(H) does not occur in B. Sym-

metrically, a variable occurring in Out(B) and in In(B) does not occur in H.

Moreover, a variable cannot occur twice in either Out(H) or In(H).

Let us focus on Ax. Ax is linear since it does not contain any loop by

hypothesis. Let us study the possible forms of H given in Fig. 1.

Input Output OutputInput

y y y

(a) Linear (b) non linear

Figure 1: Possible forms of H

Each variable y occurring in B is:

• either a new variable or

12

• a variable occurring once in H and preserving its nature (input or output).

The relation ;Prog ensures the nature stability of variables i.e.

V ar(Out(σ(B))) ∩ V ar(In(σ(H))) = ∅ and (1)

V ar(In(σ(B))) ∩ V ar(Out(σ(H))) = ∅ (2)

Moreover, a consequence of Lemma 1 is that Out(σ(B)) and In(σ(B)) are both

linear.

Let us study the two possible cases:

(a) since the variables of H and those of G are distinct and V arinLin(G) is lin-

ear, σ(V arinLin(G)) = x1, . . . , xk+1, σ(xk), . . . , σ(xk+n′), xk+n′+1, . . . , xm

is also linear. Moreover, considering H as linear and (1) and (2), a conse-

quence is that

⋃

xi,i∈{k,...,k+n′}
V ar(σ(xi)) ⊆ {xk, . . . , xk+n′} ∪ V arin(Ax).

One can also deduce that V arout(G′) ⊆ V arout(G) ∪ (V arout(B)). Con-

sequently, V arout(G′)∩V ar(σ(V arinLin(G))) = ∅ and the tuple σ(V arinLin(

G)).Out(G′) is linear iff Out(G′) is linear.

(b) A variable can occur at most twice in H but an occurrence of such a

variable is necessarily an input variable and the other an output vari-

able. Consequently the unification between Ax and H leads to a vari-

able α of σ(V arinLin(G)) occurring twice in σ(H). But according to the

form of H, these two occurrences of α do not occur in σ(V arinLin(G))

since one of the two occurrences is necessarily at an output position. So

σ(V arinLin(G)) = x1, . . . , xk+1, σ(xk), . . . , σ(xk+n′), xk+n′+1, . . . , xm is a

linear tuple. Moreover, Prog being a non-copying S-CF program, for any

variable xi, with i = k, . . . k + n′,

– if xi ∈ V ar(σ(x)) with x a variable occurring twice in H then

V ar(σ(xi)) ∩V arout(G′) = ∅;

13

– if there exists z ∈ V arout(Ax) s.t. z ∈ V ar(σ(xi)) and z ∈ V ar(σ(x))

with x occurring twice in H then V ar(σ(xi)) ∩ V arout(G′) = ∅;

– if there exists z ∈ V arout(Ax) s.t. xi ∈ V ar(σ(z)) and z ∈ V ar(σ(x))

with x occurring twice in H then V ar(σ(xi)) ∩ V arout(G′) = ∅;

– if there exists x ∈ V arin(H) such that x /∈ V arout(H) then one

has V ar(σ(xi)) ⊆ {xk, . . . , xk+n′} ∪ V arin(Ax). Thus V ar(σ(xi)) ∩
V arout(G′) = ∅.

Consequently, σ(V arinLin(G)).Out(G′) is linear iff Out(G′) is linear.

Let us now study the linearity of Out(G′). First, let us focus on the case

Out(σ(G− Ax)) where G− Ax is the sequence of atoms G for which the atom

Ax has been removed. Note that σ(G−Ax) = G′ − σ(B).

Suppose that Out(G−Ax) is not linear. So there exist two distinct variables

x and y of G such that V ar(σ(x)) ∩ V ar(σ(y)) 6= ∅. Since these variables are

concerned by the mgu σ, they are also variables of Ax at input positions as

illustrated in Fig. 2. Since these variables are distinct and share the same

variable by the application of σ, then there exist two subterms (red and green

triangles in Fig. 2) at input positions in H sharing the same variable α. That is

impossible since, by definition, for each H ← B ∈ Prog, one has In(H).Out(B)

and Out(H).In(B) both linear.

So, the last possible case for breaking the linearity of Out(G′) is that there

exist two distinct variables x and y such that x occurs in Out(B), y occurs

in Out(G− Ax) and V ar(σ(x)) ∩ V ar(σ(y)) 6= ∅. A variable α of V ar(σ(x)) ∩
V ar(σ(y)) is necessarily a variable of H. Since a copy of α is done in the variable

y and y necessarily occurs in Ax at an input position, there is a contradiction.

Indeed, it means that the variable α must occur both in Out(H) and In(H) but

also in Out(B). Thus, H ← B is not a non-copying S-CF clause. Consequently,

Out(G′) is linear.

To conclude, σ(V arinLin(G)).Out(G′) is linear. Note that showing that σ(

V aroutLin(G)).In(G′) is linear is similar.

14

AkAi Aj

x x y y

Input Input InputOutput OutputOutput

Input Output

α α

H

G

Figure 2: G−Ax

The last remaining point to show is that G′ does not contain any loops.

By construction, G′ = σ(G)[σ(Ax)← σ(B)]. There are three cases to study:

• Suppose there exists a loop occurring in G′ − σ(B). By definition, G′ −
σ(B) = σ(A1), . . . σ(Ax−1), σ(Ax+1), . . . σ(Am). Let us reason on the se-

quence of atoms G where G = Ai, Ax, Aj . Note that it can be easily

generalized to a sequence of atoms of any size, but for a matter of simplic-

ity, we focus on a significant sequence composed of three atoms. In that

case, G′ − σ(B) = σ(Ai), σ(Aj). If there exists a loop in G′ − σ(B) but

not in G then there are two possibilities (actually three but two of them

are exactly symmetric):

– Ai 6� Aj and Aj 6� Ai: Then σ has generated the loop. So, one

can deduce that there exist two variables α and β such that α ∈
V arin(σ(Ai)) ∩ V arout(σ(Aj)), β ∈ V arout(σ(Ai)) ∩ V arin(σ(Aj)).

Thus, there exist y ∈ V arout(Ai), y′ ∈ V arin(Ai), z ∈ V arout(Aj)
and z′ ∈ V arin(Aj) such that α ∈ V ar(σ(y′)) ∩ V ar(σ(z)) and β ∈
V ar(σ(y))∩ V ar(σ(z′)). Since those four variables are concerned by

the mgu, one can deduce that they also occur in Ax. More precisely,

according to the linearity of In(G) and Out(G), y′ ∈ V arout(Ax),

y ∈ V arin(Ax), z ∈ V arin(Ax) and z′ ∈ V arout(Ax). In that case,

15

Ai � Ax and Ax � Ai because y′ ∈ V arout(Ax) ∩ V arin(Ai) and

y ∈ V arout(Ai) ∩ V arin(Ax). Consequently, a loop occurs in G.

Contradiction.

– Ai � Aj and Aj 6� Ai: Consequently, σ has generated the loop. Since

Ai � Aj , then there exists a variable y such that y ∈ V arin(Ai) ∩
V arout(Aj). If there exists a loop in G′ − σ(B) then there exists a

variable α s.t. α ∈ V arout(σ(Ai))∩V arin(σ(Aj)). So there exist two

variables y′ and z′ with y′ ∈ V arout(Ai) and z′ ∈ V arin(Aj) s.t. α ∈
V ar(σ(y′))∩V ar(σ(z′)). Since those two variables are concerned by

the mgu, one can deduce that they also occur in Ax. More precisely,

according to the linearity of In(G) and Out(G), y′ ∈ V arin(Ax) and

z′ ∈ V arout(Ax). In that case, one has Ax � Ai and Aj � Ax because

y′ ∈ V arin(Ax) ∩ V arout(Ai) and z′ ∈ V arout(Ax) ∩ V arin(Aj).

Moreover, by hypothesis, Ai � Aj . Consequently, a loop occurs in G

because Aj � Ax � Ai � Aj . Contradiction.

• A loop cannot occur in σ(B): This is a direct consequence of Lemma

1. Indeed, σ is the mgu of Ax which is linear and H. B is constructed

from the variables occurring once in H and new variables. Moreover,

In(B) and Out(B) are linear and the only variables allowed to appear in

both In(B) and Out(B) are necessarily new and then not instantiated by

σ. To create a loop in these conditions would require that two different

variables α and β instantiated by σ would share the same variable i.e.

V ar(σ(α)) ∩ V ar(σ(β)) 6= ∅. Contradicting Lemma 1.

• Suppose that a loop occurs in G′ but neither in G′ − σ(B) nor in σ(B):

Let G be the sequence of atoms such that G = Ai, Ax. In that case,

G′ = σ(Ai), σ(B) with σ the mgu ofAx andH. One can extend the schema

to any kind of sequence of atoms satisfying the hypothesis of this lemma

without loss of generality. We consider B as follows: B = B1, . . . , Bk. If

there exists a loop in G′ but neither in G′ − σ(B) nor in σ(B) then there

exist Bk1 , . . . , Bkn atoms occurring in B such that σ(Ai) � σ(Bk1) � . . . �

16

σ(Bkn) � σ(Ai). So, one can deduce that there exists two variables α and

β such that α ∈ V arin(σ(Ai))∩V arout(σ(Bk1)) and β ∈ V arout(σ(Ai))∩
V arout(σ(Bkn))). Consequently, there exists two variables y, z such that

y ∈ V arin(Ai), z ∈ V arout(Ai), α ∈ V ar(σ(y)) and β ∈ V ar(σ(z)). Both

variables also occur in Ax. Suppose that y does not occur in Ax. Since

σ is the mgu of Ax and H and y not in V ar(Ax), σ does not instantiate

y. Consequently, α = y. However, V ar(σ(B)) ⊆ V ar(H) ∪ V ar(Ax) ∪
V ar(B). Moreover, the sets of variables occurring in Prog and in G are

supposed to be disjointed. So, y cannot occur in σ(B) and then the loop

in G′ does not exist. Thus, y occurs in Ax as well as z. Furthermore,

since In(G) and Out(G) are linear, y ∈ V arout(Ax) and z ∈ V arin(Ax).

Consequently, G contains a loop. Contradicting the hypothesis.

To conclude, G′ does not contain any loop.

Lemma 2 can be generalized to several steps.

Lemma 3. Let Prog be a non-copying S-CF program, and G be a sequence

of atoms such that Out(G) is linear, In(G) is linear and G does not contain

loops. We assume8 that variables occurring in Prog are different from those

occurring in G. If G ;∗σ G
′, then G′ is loop free, σ(V arinLin(G)).Out(G′) and

σ(V aroutLin(G)).In(G′) are both linear.

Proof. Let G ;∗σ G′ be rewritten as follows: G0 ;σ1
G1 . . . ;σk

Gk with

G0 = G, G′ = Gk and σ = σk ◦ . . . ◦ σ1. Let Pk be the induction hypothesis

defined such that: If G0 ;∗σ Gk then

• Gk does not contain any loop,

• σ(V arinLin(G0)).Out(Gk) is linear and

• σ(V aroutLin(G0)).In(Gk) is linear.

8If it is not the case then variables are relabelled.

17

Let us proceed by induction.

• P0 is trivially true. Indeed, In(G0) and Out(G0) are linear. Moreover, for

any x ∈ V arinLin(G0) (resp. x ∈ V aroutLin(G0)), one has x /∈ V ar(Out(G0))

(resp. x /∈ V ar(In(G0))). Thus, V arinLin(G0).Out(G0) is linear (resp.

V aroutLin(G0).In(G0)).

• Suppose that Pk is true and Gk ;σk+1
Gk+1. Since Gk ;σk+1

Gk+1,

there exist H ← B ∈ Prog and an atom Ax occurring in Gk s.t. σk+1 is

the mgu of Ax and H, and Gk+1 = σk+1(Gk)[σk+1(H) ← σk+1(B)]. By

hypothesis, one has Out(Gk) and In(Gk) linear. Consequently, Lemma 2

can be applied and one obtains that

– σ(V arinLin(Gk)).Out(Gk+1) is linear,

– σ(V aroutLin(Gk).In(Gk+1) is linear and

– Gk+1 does not contain any loop.

Moreover, for Prog a non-copying S-CF program, if Gi ;σi+1 Gi+1 then

one has: For any variable x, y, if x ∈ V arinLin(Gi) and y ∈ V ar(σi+1(x))

then y ∈ V arinLin(Gi+1) or y /∈ V ar(Gi+1). So, one can conclude that

given σk ◦ . . . ◦ σ1(V arinLin(G0)), for any variable x ∈ V arinLin(G0), for any

y ∈ V ar(σk ◦ . . . ◦ σ1(x)), either y ∈ V arinLin(Gk) or y /∈ V ar(Gk).

Let us study the variables of
⋃
y∈V arinLin(G0)(V ar(σk ◦ . . . ◦ σ1(y)).

– For any variable x s.t. x ∈ ⋃
y∈V arinLin(G0)(V ar(σk ◦ . . . ◦ σ1(y))) \

V ar(Gk), x /∈ V ar(Gk+1). Indeed, an already-used variable cannot

be reused for relabelling variables of Prog while the reduction pro-

cess. Moreover such variables are not instantiated by σk+1 since the

mgu σk+1 of Ax and H only concerns variables of V ar(H)∪V ar(Ax).

So, for any variable y in V ar(σk ◦ . . . ◦ σ1(y)) \ V ar(Gk), one has

σk+1(y) = y and y /∈ V ar(Gk+1). Consequently, for any variable y

in V ar(σk+1 ◦ σk ◦ . . . ◦ σ1(y))) \ V ar(Gk), y /∈ V ar(Gk+1).

18

– For any variable x s.t. x ∈ ⋃
y∈V arinLin(G0)(V ar(σk ◦ . . . ◦ σ1(y))) ∩

V ar(Gk), one can deduce that x ∈ V arinLin(Gk).

Since σk+1(V arinLin(Gk)). Out(Gk+1) is linear, therefore one can de-

duce that for any y ∈ ⋃
y∈V arinLin(G0)(V ar(σk◦. . .◦σ1(y)))∩V ar(Gk),

V ar(σk+1 ◦ σk ◦ . . . ◦ σ1(y)) ∩ V ar(Out(Gk+1)) = ∅.

So, one has σk+1 ◦ σk ◦ . . . ◦ σ1(V arinLin(Gk)).Out(Gk+1) is linear. The

proof of σ(V aroutLin(Gk).In(Gk+1) is in some sense symmetric. To conclude,

considering the hypothesis of Lemma 2, one has: If G;∗σ G
′, then

– G′ is loop free;

– σ(V arinLin(G)).Out(G′) is linear;

– σ(V aroutLin(G)).In(G′) is linear.

4. Computing Descendants

Let us first present the main ideas.

Example 11. Let R = {f(x) → g(h(x))} and I = {pn(f(sn(a))) | n ∈ IN}
generated by Predicate P0 in the S-CF program Prog =

{Q(â) ← . P0(x̂) ← P1(x̂, y), Q(ŷ). P1(p̂(x), y) ← P1(x̂, s(y)). P1(f̂(x), x) ←}.
Note that R∗(I) = I ∪ {pn(g(h(sn(a)))) | n ∈ IN}.

To simulate the rewrite step f(sn(a))→ g(h(sn(a))), we consider the rewrite-

rule left-hand-side f(x). We can see that:

P1(f̂(x), y) ;[Prog,θ=(x/y)] ∅ and θ(P1(f̂(x), y))=P1(f̂(y), y)→R P1(̂g(h(y)), y).

Then the clause P1(̂g(h(y)), y)← is called critical pair9. This critical pair is not

convergent (in Prog) because P1(̂g(h(y)), y) 6→∗Prog ∅. To get the descendants,

the critical pairs should be convergent. Let Prog′ = Prog ∪ {P1(̂g(h(y)), y)←}.
Now the critical pair is convergent in Prog′, and note that the predicate P0 of

9In former work, a critical pair was a pair. Here it is a clause since we use logic programs.

19

Prog′ generates R∗(I). Adding critical pairs into the S-CF program is called

completion.

For technical reasons10, we consider only normalized S-CF programs, and

Prog′ is not normalized. However, the critical pair can be normalized us-

ing a new predicate symbol, and replaced by the following normalized clauses

P1(ĝ(x), y)← P2(x̂, y). P2(ĥ(y), y)←. This is the role of Function norm in the

completion algorithm below.

In general, adding a critical pair (after normalizing it) into the S-CF program

may create new critical pairs, and the completion process may not terminate.

To force termination, two bounds predicate-limit and arity-limit are fixed. If

predicate-limit is reached, Function norm should re-use existing predicates in-

stead of creating new ones. If a new predicate symbol is created whose arity11 is

greater than arity-limit, then this predicate has to be cut by Function norm into

several predicates whose arities do not exceed arity-limit. On the other hand,

for a fixed12 S-CF program, the number of critical pairs may be infinite. Func-

tion removeCycles modifies some clauses so that the number of critical pairs is

finite. Strong coherence is technical and will be defined later. It is used to prove

the results. However, if the initial program Prog is regular or is a CS-program,

i.e. Prog does not have input arguments, then the strong coherence property is

automatically satisfied.

Definition 9 (comp). Let arity-limit and predicate-limit be positive integers.

Let R be a linear rewrite system, and Prog be a finite, normalized and non-

copying S-CF program strongly coherent with R. The completion process is

defined by:

Function compR(Prog)

Prog = removeCycles(Prog)

while there exists a non-convergent critical pair H ← B in Prog do

10Critical pairs are computed only at root positions.
11The number of arguments.
12i.e. without adding new clauses in the S-CF program.

20

Prog = removeCycles(Prog ∪ normProg(H ← B))

end while

return Prog

Critical pairs and strong coherence are defined in Section 4.1, and Theorem 2

shows closure under rewriting when all critical pairs are convergent. Theoretical

notions and results are presented in Section 4.2 in order to define Function

removeCycles. Section 4.3 speaks about normalization, and the final result, i.e.

we get an over-approximation of the descendants, is given in Section 4.4.

4.1. Critical pairs

The notion of critical pair is the heart of our technique. Indeed, it allows us

to add S-CF clauses into the current S-CF program in order to cover rewriting

steps.

Definition 10. Let Prog be a non-copying S-CF program and l → r be a left-

linear rewrite rule. Consider distinct variables x1, . . . , xn such that V ar(l) ∩
{x1, . . . , xn} = ∅. If there are P and k s.t. the kth argument of P is an output,

and P (x1, . . . , xk−1, l, xk+1, . . . , xn) ;+
θ G where13

1. resolution steps are applied only on atoms whose output is not flat,

2. Out(G) is flat and

3. the clause P (t1, . . . , tn) ← B used in the first step of this derivation

satisfies tk is not a variable14

then the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn))← G is called critical pair. if

θ does not instantiate the variables of In(P (x1, . . . , xk−1, l, xk+1, . . . , xn)) then

the critical pair is said strict.

13Here, we do not use a hat to indicate output arguments because they may occur anywhere

depending on P .
14In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-variable

position.

21

Example 12. Let Prog be the S-CF program defined by:

Prog = {P (ŝ(x)) ← Q(x̂, a). Q(f̂(x), y) ← Q(x̂, g(y)). Q(x̂, x) ← .} and con-

sider R = {f(f(x))→ h(x)}. Note that L(P) = {s(fn(gn(a))) | n ∈ IN}.
We have Q(̂f(f(x)), y) ; Q(f̂(x), g(y)) ; Q(x̂, g(g(y))).

Since Out(Q(x̂, g(g(y)))) is flat, this generates the strict critical pair Q(ĥ(x), y)←
Q(x̂, g(g(y))).

The following lemma is very important for completion. It shows that when

the completion process adds a strict critical pair into the current S-CF program,

the resulting program is still S-CF.

Lemma 4. A strict critical pair is an S-CF clause. In addition, if l → r is

right-linear, a strict critical pair is a non-copying S-CF clause.

Proof. Let G0 = P (x1, . . . , xk−1, l, xk+1, . . . , xn). Since l is linear, G0 is linear

and V arinLin(G0) = In(G0). From Lemma 3, θ(In(G0)).Out(G) is linear and

G is loop-free. Note that In(G0) and Out(G) are tuples of variables. Since

the critical pair is strict,we deduce that θ does not instantiate the variables of

In(G0), then θ(In(G0)).Out(G) is a linear tuple of variables. Consequently, a

strict critical pair is an S-CF clause.

Since G0 is linear, V aroutLin(G0) = V arout(G0). Thus, from Lemma 3,

θ(Out(G0)).In(G) is linear. And since r is linear, the critical pair is a non-

copying clause.

Definition 11. A critical pair H ← B is said convergent if H →∗Prog B.

The critical pair of Example 12 is not convergent.

Let us recall that the completion procedure is based on adding the non-

convergent critical pairs into the program. In order to preserve the nature of

the S-CF program, the computed non-convergent critical pairs are expected

to be strict. Moreover, since critical pairs are only computed using output

arguments, each reducible15 symbol should not occur in an input argument. So

15I.e. the top symbol of the left-hand-side of some rewrite rule.

22

we define a sufficient condition on R and Prog called strong coherence.

Definition 12. Let R be a rewrite system. We consider the smallest set of

consuming symbols, recursively defined by: f ∈ Σ is consuming if there exists

a rewrite rule f(t1, . . . , tn)→ r in R s.t. some ti is not a variable, or r contains

at least one consuming symbol.

The S-CF program Prog is strongly coherent with R if:

1) for all l → r ∈ R, the top-symbol of l does not occur in input arguments of

Prog,

2) and no consuming symbol occurs in clause-heads having input arguments.

Note that a CS-program (no input arguments) is strongly coherent with any

rewrite system.

In R = {g(s(y)) → h(y)}, g is consuming. Thus Prog = {P (ĝ(x), x) ← .}
is not strongly coherent with R because item 2 is not satisfied. We have

P (ĝ(s(y)), z) ;[x/s(y),z/s(y)] ∅, which generates the critical pair P (ĥ(y), s(y))←.

This critical pair is not a S-CF clause.

Lemma 5. If Prog is a normalized S-CF program strongly coherent with R,

then every critical pair cp is strict, and Prog∪{cp} is strongly coherent with R.

Proof. Consider f(~s)→ r ∈ R (~s is a tuple of terms), and assume that

P (~̂x1, f̂(~s), ~̂x2, ~z) ;[P (~̂t1,f̂(~u), ~̂t2,~v)←B, θ] G;∗σ G
′

such that Out(G′) is flat, ~x1, ~x2, ~z, ~u, ~v are tuples of distinct variables and ~t1,

~t2 are tuples of terms (however ~v may share some variables with ~t1.~u.~t2). This

derivation generates the critical pair (σ ◦ θ)(P (~̂x1, r̂, ~̂x2, ~z))← G′.

If l → r is consuming then P has no input arguments, i.e. ~z and ~v do not

exist. Therefore σ ◦ θ cannot instantiate the input variables of P , hence the

critical pair is strict.

Otherwise ~s is a linear tuple of variables, and (x/t means that the variable x

is replaced by t) θ = (~v/~z) ◦ (~x1/~t1, ~s/~u, ~x2/~t2), which does not instantiate ~z nor

the output variables of B. Moreover Out(B) is flat, then Out(G) = Out(θB)

23

is flat. Thus G′ = G and the critical pair is P (θ̂ ~x1, θ̂r, θ̂ ~x2, ~z) ← G, which is

strict.

About strong coherence, the function symbols occurring in the input argu-

ments of the critical pair come from the input arguments of Prog. Therefore

condition 1 of Definition 12 is satisfied.

On the other hand, suppose that P has input arguments. So f is not consum-

ing, then ~s is a linear tuple of variables. Consequently the derivation contains

only one step, i.e. G′ = G. Then ~s is instantiated by variables, and θ(~x1) = ~t1,

θ(~x2) = ~t2, where ~t1 and ~t2 do not contain consuming symbols. Moreover r does

not contain consuming symbols (otherwise f would be consuming). Therefore

condition 2 of Definition 12 is satisfied.

So, we come to our main result that ensures to get the rewriting closure

when every computable critical pair is convergent.

Theorem 2. Let R be a linear rewrite system, and Prog be a non-copying

normalized S-CF program strongly coherent with R. If all strict critical pairs

are convergent, then for every predicate symbol P without input arguments, L(P)

is closed under rewriting by R, i.e. (~t ∈ L(P) ∧ ~t→∗R ~t′) =⇒ ~t′ ∈ L(P).

The proof is very technical. To illustrate the proof, consider Example 12

again, except that the critical pair Q(ĥ(x), y) ← Q(x̂, g2(y)) is added into the

S-CF program. Now

Prog = { P (ŝ(x))← Q(x̂, a). Q(f̂(x), y)← Q(x̂, g(y)). Q(x̂, x)← .

Q(ĥ(x), y)← Q(x̂, g2(y)) }

and R = {f2(x)→ h(x)}. So there is only one critical pair, which is convergent

thanks to the last clause of Prog.

s(f2(g2(a))) ∈ L(P) because the atom A = P (s(f2(g2(a)))) ∈ Mod(Prog),

moreoverA = P (s(f2(g2(a))))→R A
′ = P (s(h(g2(a)))). SinceA ∈Mod(Prog),

we have A;∗ ∅.
More precisely:

24

A = P (s(f2(g2(a)))) ; A′′ = Q(̂f2(g2(a)), a) ; Q(̂f(g2(a)), g(a)) ;

Q(ĝ2(a), g2(a)) ; ∅.
Using the notations of the proof, we have C = s, l = f2(x), r = h(x),

σ = (x/g2(a)), σ′ = (x/g2(a), y/a). Thus A′′ = Q(σ̂(l), a) = σ′(Q(l̂, y)).

On the other hand, since Prog is non-copying, we have

A′ = P (s(h(g2(a)))) ; Q(̂h(g2(a)), a) = Q(σ̂(r), a) = σ′(Q(ĥ(x), y))

where Q(ĥ(x), y) is the head of the critical pair. Since the critical pair is con-

vergent, we have

A′ ; σ′(Q(ĥ(x), y)) ; σ′(Q(x̂, g2(y))) = Q(ĝ2(a), g2(a)) ; ∅

Therefore A′ ∈Mod(Prog), hence s(h(g2(a))) ∈ L(P).

Proof. (of Theorem 2) Let A ∈Mod(Prog) s.t. A→l→r A′. Then A|i = C[σ(l)]

for some i ∈ IN and A′ = A[i← C[σ(r)].

Since resolution is complete, A ;∗ ∅. Since Prog is normalized, resolution

consumes symbols of C one by one. Since Prog is coherent with R, the top sym-

bol of l cannot be generated as an input: it is either consumed in an output argu-

ment, or the whole σ(l) disappears thanks to an output argument. Consequently

G0=A ;∗ Gk ;∗ ∅ and there exists an atom A′′ = P (t1, . . . , tn) in Gk and

an output argument j s.t. tj = σ(l), i.e. A;∗ Gk[A′′ = P (t1, . . . , σ(l), . . . , tn)],

and along the step Gk ; Gk+1 the top symbol of σ(l) is consumed or σ(l) dis-

appears entirely. On the other hand, A′ ;∗ Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)]

since Prog is non-copying.

If tj = σ(l) disappears entirely, it can be replaced by any term, then

A′ ;∗ Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅, hence A′ ∈ Mod(Prog). Other-

wise the top symbol of σ(l) is consumed along Gk ; Gk+1. Consider new vari-

ables x1, . . . , xn such that {x1, . . . , xn}∩V ar(l) = ∅, and let us define the sub-

stitution σ′ by ∀i ∈ {1, . . . , n}, σ′(xi) = ti and ∀x ∈ V ar(l), σ′(x) = σ(x). Then

σ′(P (x1, . . . , xj−1, l, xj+1, . . . , xn)) = A′′, and according to resolution properties

P (x1, . . . , l, . . . , xn) ;∗θ ∅ and θ ≤ σ′. This derivation can be decomposed into:

25

P (x1, . . . , l, . . . , xn) ;∗θ1 G
′ ;θ2 G;∗θ3 ∅ where θ = θ3◦θ2◦θ1, and s.t. Out(G′)

is not flat and Out(G) is flat16.

The derivation P (x1, . . . , l, . . . , xn) ;∗θ1 G
′ ;θ2 G can be commuted into:

P (x1, . . . , l, . . . , xn) ;∗γ1 B
′ ;γ2 B ;∗γ3 G s.t. Out(B) is flat, Out(B′) is not

flat, and within P (x1, . . . , l, . . . , xn) ;∗γ1 B
′ ;γ2 B resolution is applied only

on atoms whose output is not flat, and we have γ3 ◦ γ2 ◦ γ1 = θ2 ◦ θ1. Then γ2 ◦
γ1(P (x1, . . . , r, . . . , xn))← B is a critical pair. By hypothesis, it is convergent,

then γ2 ◦ γ1(P (x1, . . . , r, . . . , xn))→∗ B. Note that γ3(B)→∗ G and recall that

θ3 ◦ γ3 ◦ γ2 ◦ γ1 = θ3 ◦ θ2 ◦ θ1 = θ. Then θ(P (x1, . . . , r, . . . , xn))→∗ θ3(G)→∗ ∅,
and since θ ≤ σ′ we get P (t1, . . . , σ(r), . . . , tn) = σ′(P (x1, . . . , r, . . . , xn))→∗ ∅.
Thus A′;∗Gk[A′′←P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅, hence A′ ∈Mod(Prog).

By trivial induction, the proof can be extended to the case of several rewrite

steps.

4.2. Ensuring finitely many critical pairs

The following example illustrates a situation where the number of critical

pairs is infinite for a given S-CF program.

Example 13. Let f(c(x), y) → d(y) be a rewrite rule, and {P0(f̂(x, y)) ←
P1(x̂, ŷ). P1(x̂, ŝ(y)) ← P1(x̂, ŷ). P1(ĉ(x), ŷ) ← P2(x̂, ŷ). P2(â, â) ← .} be an

S-CF program17 Then P0(̂f(c(x), y)) → P1(ĉ(x), ŷ) ;y/s(y) P1(ĉ(x), ŷ) ;y/s(y)

· · ·P1(ĉ(x), ŷ) → P2(x̂, ŷ). Resolution is applied only on non-flat atoms and

the last atom obtained by this derivation is flat. The composition of substitu-

tions along this derivation gives y/sn(y) for some n ∈ IN. There are infinitely

many such derivations, which generates infinitely many critical pairs of the form

P0(̂d(sn(y)))← P2(x̂, ŷ).

This is annoying since the completion process introduced in Definition 9

16Since ∅ is flat, a goal having a flat output can always be reached, i.e. in some cases G = ∅.
17Note that L(P0) = {f(c(a), sn(a)) | n ∈ IN} is a regular language, whereas the S-CF

program (which is also a CS-program) is not regular. If it were regular, there would be

finitely many critical pairs.

26

needs to compute all critical pairs. This is why we define sufficient conditions

to ensure that a given finite S-CF program has finitely many critical pairs.

Definition 13. Prog is empty-recursive if there exist a predicate symbol P

and two tuples ~x = (x1, . . . , xn), ~y = (y1, . . . , yk) composed of distinct variables

s.t. P (~̂x.~y) ;+
σ A1, . . . , P (~̂x′.~t′), . . . , Ak where ~x′ = (x′1, . . . , x

′
n) is a tuple of

variables and there exist i, j s.t. x′i = σ(xi) and σ(xj) is not a variable and

x′j ∈ V ar(σ(xj)).

Example 14. Let Prog be the S-CF program defined as follows: Prog =

{P (â, b̂) ← . P (x̂′, ŝ(y′)) ← P (x̂′, ŷ′).}. From P (x̂, ŷ), one can obtain the

following derivation: P (x̂, ŷ) ;[x/x′, y/s(y′)] P (x̂′, ŷ′). Consequently, Prog is

empty-recursive since σ = [x/x′, y/s(y′)], x′ = σ(x) and y′ is a variable of

σ(y) = s(y′).

The following lemma shows that the non empty-recursiveness of an S-CF

program is sufficient to ensure the finiteness of the number of critical pairs.

Lemma 6. Let Prog be a normalized S-CF program. If Prog is not empty-

recursive, then the number of critical pairs is finite.

Remark: Note that the S-CF program of Example 13 is normalized and has

infinitely many critical pairs.

However it is empty-recursive because P1(x̂, ŷ) ;[x/x′, y/s(y′)] P1(x̂′, ŷ′).

Proof. By contrapositive. Let us suppose there exist infinitely many critical

pairs. So there exist P1 and infinitely many derivations of the form

(i): P1(x1, . . . , xk−1, l, xk+1, . . . , xn) ;∗α G
′ ;θ G (the number of steps is not

bounded). As the number of predicates is finite and every predicate has a fixed

arity, there exists a predicate P2 and a derivation of the form

(ii): P2(t1, . . . , tp) ;k
σ G′′1 , P2(t′1, . . . , t

′
p), G

′′
2 (with k > 0) included in some

derivation of (i), strictly before the last step, such that:

1. Out(G′′1) and Out(G′′2) are flat and the derivation from P2(t1, . . . , tp) can

be applied on P2(t′1, . . . , t
′
p) again, which gives rise to an infinite derivation.

27

2. σ is not empty and there exists a variable x in P2(t1, . . . , tp) such that

σ(x) = t and t is not a variable and contains a variable y that occurs in

P2(t′1, . . . , t
′
p). Otherwise σ ◦ . . . ◦ σ would always be a variable renaming

and there would be finitely many critical pairs.

3. There is at least one non-variable term (let tj) in output arguments of

P2(t1, . . . , tp) (due to the definition of critical pairs) such that t′j = tj
18.

As we use an S-CF clause in each derivation step, the output argument t′j

matches a variable (output argument) in the body of the last clause used

in (ii). As t′j = tj , the output argument tj matches a variable (output

argument) in head of the first clause used in (ii). So, for each variable x

occurring in the non-variable output terms of P2, we have σ(x) = x.

4. From the previous item, we deduce that the variable x found in item 2 is

one of the terms t1, . . . , tp, say tk. We can assume that y is t′k. tk is an

output argument of P2 because it matches a non-variable and only output

arguments are non-variable in the head of S-CF clause.

If in derivation (ii) we replace all non-variable output terms by new variables,

we obtain a new derivation19

(iii): P2(x1, . . . , xn, tn+1, . . . , tp) ;k
σ′ G′′′1 , P2(x′1, . . . , x

′
n, t
′
n+1, . . . , t

′
p), G

′′′
2 and

there exists i, k (in {1, . . . n}) such that σ′(xi) = x′i (at least one non-variable

term (in output arguments) in the (ii) derivation), and σ′(xk) = tk, x′k is a

variable of tk. We conclude that Prog is empty-recursive.

Deciding the empty-recursiveness of an S-CF program seems to be a diffi-

cult problem (undecidable ?). Nevertheless, we propose a sufficient syntactic

condition to ensure that an S-CF program is not empty-recursive.

18This property does not necessarily hold as soon as P2 is reached within (ii). We may

have to consider further occurrences of P2 so that each required term occurs in the required

argument, which will necessarily happen because there are only finitely many permutations.
19Without loss of generality, we can consider that the output arguments (at least two) are

the first arguments of P2.

28

Definition 14.

The S-CF clause P (t̂1, . . . , t̂n, x1, . . . , xk) ← A1, . . . , Q(. . .), . . . , Am is pseudo-

empty over Q if there exist i, j s.t.

• ti is a variable,

• and tj is not a variable,

• and ∃x ∈ V ar(tj), x 6= ti ∧ {x, ti} ⊆ V arOut(Q(. . .)).

Roughly speaking, when making a resolution step issued from the following flat

atom P (ŷ1, . . . , ŷn, z1, . . . , zk), the variable yi is not instantiated, and yj is in-

stantiated by something that is synchronized with yi (in Q(. . .)).

The S-CF clause H ← B is pseudo-empty if there exists some Q s.t. H ← B

is pseudo-empty over Q. The S-CF clause:

P (t̂1, . . . , t̂n, x1, . . . , xn′) ← A1, . . . , Q(ŷ1, . . . , ŷk, s1, . . . , sk′), . . . , Am is empty

over Q if for all yi, (∃j, tj = yi or yi 6∈ V ar(P (t̂1, . . . , t̂n, x1, . . . , xn′))).

Example 15. The S-CF clause P (x̂, f̂(x), ẑ) ← Q(x̂, ẑ) is both pseudo-empty

(thanks to the second and the third argument of P) and empty over Q (thanks

to the first and the third argument of P).

Definition 15. Using Definition 14, let us define two relations over predicate

symbols.

• P1 �Prog P2 if there exists in Prog a clause empty over P2 of the form

P1(. . .)← A1, . . . , P2(. . .), . . . , An. The reflexive-transitive closure of �Prog

is denoted by �∗Prog.

• P1 >Prog P2 if there exist in Prog predicates P ′1, P ′2 s.t. P1 �
∗
Prog P

′
1 and

P ′2 �
∗
Prog P2, and a clause pseudo-empty over P ′2 of the form

P ′1(. . .) ← A1, . . . , P
′
2(. . .), . . . , An. The transitive closure of >Prog is de-

noted by >+
Prog.

Prog is cyclic if there exists a predicate P s.t. P >+
Prog P .

29

Example 16. Let Σ = {f\1, h\1, a\0}. Let Prog be the S-CF program such that

Prog = {P (x̂, ĥ(y), f̂(z))←Q(x̂, ẑ), R(ŷ). Q(x̂, ĝ(y, z))←P (x̂, ŷ, ẑ). Q(â, â)← .

R(â)← .}. One has P >Prog Q and Q >Prog P . Thus, Prog is cyclic.

The lack of cycles is the key point of our technique since it ensures the

finiteness of the number of critical pairs.

Lemma 7. If Prog is not cyclic, then Prog is not empty-recursive, consequently

the number of critical pairs is finite.

Proof. By contrapositive. Suppose that Prog is empty recursive. It exists

P s.t. P (x̂1, . . . , x̂n, y1, . . . , yn′) ;+
σ A1, . . . , P (x̂′1, . . . , x̂

′
n, t
′
1, . . . , t

′
n′), . . . , Ak

where x′1, . . . , x
′
n are variables and there exist i, j s.t. x′i = σ(xi) and σ(xj) is

not a variable and x′j ∈ V ar(σ(xj)). We can extract from the previous derivation

the following derivation which has p steps (p ≥ 1):

P (x̂1, . . . , x̂n, y1, . . . , yn′) = Q0(x̂1, . . . , x̂n, y1, . . . , yn′) ;α1

B1
1 . . . Q

1(x̂1
1, . . . , x̂

1
n1
, t11, . . . , t

1
n′
1
) . . . B1

k1
;α2

B1
1 . . . B

2
1 . . . Q

2(x̂2
1, . . . , x̂

2
n2
, t21, . . . , t

2
n′
2
) . . . B2

k2
. . . B1

k1
;α3 . . .;αp

B1
1 . . . B

p
1 . . . Q

p(x̂p1, . . . , x̂
p
np , t

p
1, . . . , t

p
n′
p
) . . . Bpkp . . . B

1
k1

where Qp(x̂p1, . . . , x̂
p
np , t

p
1, . . . , t

p
n′
p
) = P (x̂′1, . . . , x̂

′
n, t
′
1, . . . , t

′
n′).

For each k (after k steps in the previous derivation), αk ◦ αk−1 . . . ◦ α1(xi) is a

variable of Out(Qk(x̂k1 , . . . , x̂
k
nk
, tk1 , . . . , t

k
n′
k
)) and αk ◦ αk−1 . . . ◦ α1(xj) is either

a variable of Out(Qk(x̂k1 , . . . , x̂
k
nk
, tk1 , . . . , t

k
n′
k
)) or a non-variable term containing

a variable of Out(Qk(x̂k1 , . . . , x̂
k
nk
, tk1 , . . . , t

k
n′
k
)).

Each derivation step issued from Qk uses either a clause pseudo-empty over

Qk+1 and we deduce Qk >Prog Q
k+1, or an empty clause over Qk+1 and we

deduce Qk�Prog Q
k+1. At least one step uses a pseudo-empty clause otherwise

no variable from x1, . . . , xn would be instantiated by a non-variable term con-

taining at least one variable in x′1, . . . , x
′
n.

We conclude that P = Q0 op1 Q
1 op2 Q

2 . . . Qp−1 opp Q
p = P with each opi is

>Prog or �Prog and there exists k such that opk is >Prog. Therefore P >+
Prog P ,

so Prog is cyclic.

30

Thus, if Prog is not cyclic, all is fine. Otherwise, we need to transform Prog

into Prog′ such as Prog′ is not cyclic and Mod(Prog) ⊆Mod(Prog′).

The transformation is based on the following observation. If Prog is cyclic,

there is at least one pseudo-empty clause that participates in a cycle. In Ex-

ample 16, P (x̂, ĥ(y), f̂(z))← Q(x̂, ẑ), R(ŷ) is a pseudo-empty clause over Q in-

volved in the cycle. To remove the cycle, we transform it into P (x̂, ĥ(y), f̂(z))←
Q(x̂, x̂2), R(x̂1), Q(x̂3, ẑ), R(ŷ) (x1, x2, x3 are new variables), which is not pseudo-

empty anymore. The main process is described in Definition 19. Definitions 16,

17 and 18 are preliminary definitions used in Definition 19. Example 17 illus-

trates the definitions. If there are input arguments then some variables occurring

in the input arguments of the body should also be renamed in order to get a

non-copying S-CF clause.

Definition 16. Given a S-CF program Prog, the set S of productive predicate

symbols is recursively defined as being the smallest set s.t.

- for each fact (P (· · ·)←) of Prog, P ∈ S,

- and for each clause P (· · ·)← P1(· · ·), . . . , Pn(· · ·) of Prog, if P1, . . . , Pn ∈
S, then P ∈ S.

P is unproductive iff P 6∈ S.

Definition 17 (simplify). Let H ← A1, . . . , An be an S-CF clause, and for each

i, let us write Ai = Pi(. . .).

If there exists Pi such that Pi is unproductive then simplify(H ← A1, . . . , An)

is the empty set, otherwise it is the set that contains only the S-CF clause

H ← B1, . . . , Bm such that

• {Bi | 0 ≤ i ≤ m} ⊆ {Ai | 0 ≤ i ≤ n} and

• ∀i ∈ {1, . . . , n}, (¬(∃j, Bj = Ai) ⇔ (V ar(Ai) ∩ V ar(H) = ∅ ∧
∀k 6= i, V ar(Ai) ∩ V ar(Ak)=∅)).

In other words, simplify deletes unproductive clauses, or it removes the atoms of

the body that contain only free variables.

31

Let H ← B be a non-copying S-CF clause. Note that if the variable x occurs

several times in B then x 6∈ V ar(H).

Definition 18 (unSync). Let H ← B be a non-copying S-CF clause.

Let us write Out(H) = (t1, . . . , tn) and In(B) = (s1, . . . , sk).

unSync(H ← B) = simplify(H ← σ0(B), σ1(B)) where σ0, σ1 are substitutions

built as follows. ∀x ∈ V ar(B):

σ0(x) =

x if x ∈ V arOut(B) ∧ ∃i, ti = x

x if x ∈ V arIn(B) ∩ V arIn(H) ∧ ∃j, (sj = x)

a fresh variable otherwise

σ1(x) =

x if x ∈ V arOut(B) ∧ ∃i, (ti 6∈ Var ∧ x ∈ Var(ti))

x if x ∈ V arIn(B) ∩ V arIn(H) ∧ ∃j, (sj 6∈ Var ∧ x ∈ Var(sj))

a fresh variable otherwise

Definition 19 (removeCycles). Let Prog be an S-CF program. If Prog is

not cyclic then removeCycles(Prog) = Prog. Otherwise removeCycles(Prog) =

removeCycles({unSync(H ← B)} ∪ Prog′) where H ← B is a pseudo-empty

clause involved in a cycle and Prog′ = Prog \ {H ← B}.

Example 17. Let Prog be the S-CF program of Example 16. Since Prog is

cyclic, let us compute removeCycles(Prog). The pseudo-empty S-CF clause

P (x̂, ĥ(y), f̂(z))← Q(x̂, ẑ), R(ŷ) is involved in the cycle. Consequently, unSync

is applied on it. According to Definition 18, one obtains σ0 and σ1 where

σ0 = [x/x, y/x1, z/x2] and σ1 = [x/x3, y/y, z/z]. Thus, one gets the S-CF

clause P (x̂, ĥ(y), f̂(z))← Q(x̂, x̂2), R(x̂1), Q(x̂3, ẑ), R(ŷ). Note that according to

Definition 18, simplify is applied and removes R(x̂1) from the body. Following

Definitions 17 and 19, P (x̂, ĥ(y), f̂(z)) ← Q(x̂, ẑ), R(ŷ) is removed from Prog

and P (x̂, ĥ(y), f̂(z)) ← Q(x̂, x̂2), Q(x̂3, ẑ), R(ŷ) is added instead. Note that the

atom R(x̂1) has been removed using simplify. Note also that there is no cycle

anymore.

removeCycles may enlarge the least Herbrand Model.

32

Lemma 8. Let Prog and Prog′ be two S-CF programs such that Prog is non-

copying and Prog′ = removeCycles(Prog). Then Prog′ is a non-copying and

non-cyclic S-CF program, and Mod(Prog) ⊆Mod(Prog′). Moreover:

- if Prog is normalized, then so is Prog′,

- if Prog is strongly coherent with R, then so is Prog′.

Consequently, there are finitely many critical pairs in Prog′.

Proof. removeCycles applies unSync until the program is not cyclic. When ap-

plying unSync, one pseudo-empty clause is removed and replaced by a non-

pseudo-empty one. Thus, the number of pseudo-empty clauses decreases, and

when there are no more pseudo-empty clauses, the program is not cyclic. Then

removeCycles terminates and returns Prog′, which is not cyclic.

simplify does not changeMod(Prog). On the other hand, unSync may enlarge

Mod(Prog), because of the introduction of free variables in the clause body.

simplify and unSync do not change the clause head. Then if the clause is

normalized, the resulting clause also is. Moreover, the fresh variables introduced

into input arguments by σ0 are distinct from those introduced by σ1. Then if

the clause is non-copying, the resulting clause also is.

The definition of strong coherence (Definition 12) includes two conditions.

Recall that for a S-CF clause, function symbols in input arguments necessarily

occur in the body. Therefore condition 1 is preserved by removeCycles because

removeCycles does not add new function symbols in clause bodies (just new

variables are added). Condition 2 is preserved by removeCycles because remove-

Cycles does not change clause heads.

4.3. Normalizing critical pairs – normProg

If a critical pair is not convergent, we add it into Prog, and the critical

pair becomes convergent. However, a critical pair is not necessarily normalized,

whereas all clauses in Prog should be normalized. In the case of CS-clauses (i.e.

without input arguments), a procedure that transforms a non-normalized clause

into normalized ones has been presented [2]. For example, P (̂f(g(x)), b̂)← Q(x̂)

33

can be normalized into {P (f̂(x), b̂) ← P1(x̂). P1(ĝ(x)) ← Q(x̂).} (P1 is a new

predicate symbol). Since only output arguments should be normalized, this

procedure still works even if there are also input arguments.

As new predicate symbols are introduced, possibly with bigger arities, com-

pletion may not terminate. To make it terminate in every case, two positive

integers are used: predicate-limit and arity-limit. If the number of predicate

symbols having the same arity as P1 (including P1) exceeds predicate-limit, an

existing predicate symbol (for example Q) must be used instead of the new

predicate P1. This may enlarge Mod(Prog) in general and may lead to a strict

over-approximation. If the arity of P1 exceeds arity-limit, P1 must be replaced

in the clause body by several predicate symbols20 whose arities are less than or

equal to arity-limit. This may also enlarge Mod(Prog). See [2] for more details.

In other words normProg(H ← B) builds a set of normalized S-CF clauses N

such that Mod(Prog ∪ {H ← B}) ⊆Mod(Prog ∪N).

However, when starting from a CS-program (i.e. without input arguments),

it could be interesting to normalize by introducing input arguments, in order

to profit from the bigger expressiveness of S-CF programs, and consequently to

get a better approximation of the set of descendants, or even an exact compu-

tation, like in Examples 18 and 19 presented in Section 5. The quality of the

approximation depends on the way the normalization is achieved. Some heuris-

tics will be developed in further work. Moreover, they should preserve strong

coherence when introducing new input arguments. A rule to preserve it could

be as follows. For each function symbol f occurring in the head of a critical

pair:

- if f is consuming, f should be generated as output in a predicate symbol hav-

ing no input arguments,

20For instance, if P1 is binary and arity-limit = 1, then P1(t1, t2) should be replaced by the

sequence of atoms P2(t1), P3(t2). Note that the dependency between t1 and t2 is lost, which

may enlarge Mod(Prog). Symbols P2 and P3 are new if it is compatible with predicate-limit.

Otherwise former predicate symbols should be used instead of P2 and P3.

34

- if f is reducible, i.e. f occurs as the root of a left-hand-side, and f is not

consuming, f should be generated as output.

This rule is applied in Examples 18 and 19.

4.4. Completion

At the beginning of Section 4, we have presented in Definition 9 the comple-

tion algorithm i.e. compR. In Sections 4.1 and 4.3, we have described how to

detect non-convergent critical pairs and how to convert them into normalized

clauses using normProg.

Theorem 3 illustrates that our technique leads to a finite S-CF program

whose language over-approximates the descendants obtained by a linear rewrite

system R.

Theorem 3. Function comp always terminates, and all critical pairs are con-

vergent in compR(Prog). Moreover, for each predicate symbol P without input

arguments, R∗(LProg(P)) ⊆ LcompR(Prog)(P).

Proof. The proof is straightforward.

5. Examples

In this section, completion is applied on several examples. I is the initial set

of terms and R is the rewrite system. Initially, we define an S-CF program Prog

that generates I and that satisfies the assumptions of Definition 9. To make the

procedure terminate shortly, we suppose that predicate-limit=1, which means

that for all i, there is at most one predicate symbol having i arguments, except

for i = 1 we allow two predicate symbols having one argument.

When the following example is dealt with synchronized languages, i.e. with

CS-programs [2, Example 42], we get a strict over-approximation of the descen-

dants. Now, thanks to the bigger expressivity of S-CF programs, we compute

the descendants in an exact way.

35

Example 18. Let I = {f(a, a)} and R = {f(x, y) → u(f(v(x), w(y)))}. The

exact set of descendants is R∗(I) = {un(f(vn(a), wn(a))) | n ∈ N}. We de-

fine Prog = {Pf (f̂(x, y)) ← Pa(x̂), Pa(ŷ). (1), Pa(â) ← . (2)}. Note that

LProg(Pf) = I.

Using clause (1) we have Pf (f̂(x, y))→(1) Pa(x̂), Pa(ŷ) generating the criti-

cal pair: Pf (̂u(f(v(x), w(y))))← Pa(x̂), Pa(ŷ). In order to normalize this criti-

cal pair, we choose to generate symbols u, f as output, v, w as input. Moreover

only one predicate symbol of arity 3 is allowed. It produces three new S-CF

clauses:

Pf (ẑ) ← P1(ẑ, x, y), Pa(x̂), Pa(ŷ). (3), P1(û(z), x, y) ← P1(ẑ, v(x), w(y)). (4)

and P1(f̂(x, y), x, y)← . (5).

Now Pf (̂f(x′, y′))→(3) P1(̂f(x′, y′), x, y), Pa(x̂), Pa(ŷ) ;(5),σ Pa(x̂), Pa(ŷ)

where σ = (x′/x, y′/y). Consequently, it generates the convergent critical

pair Pf (̂u(f(v(x), w(y)))) ← Pa(x̂), Pa(ŷ) again. On the other hand, since

P1(̂f(x′, y′), x, y) ;(5),(x′/x, y′/y) ∅, the critical pair P1(̂u(f(v(x), w(y))), x, y)←
is detected, but it is already convergent.

No other critical pair is detected. Then, we get the S-CF program Prog′

composed of clauses (1) to (5), and note that LProg′(Pf) = R∗(I) indeed.

The run of the completion is summarized in Fig 3. The left-most column

reports the detected non-convergent critical pairs and the right-most column de-

scribes how they are normalized.

Pf (ẑ)← P1(ẑ, x, y), Pa(x̂), Pa(ŷ).

P1(û(z), x, y)← P1(ẑ, v(x), w(y)).

P1(̂f(x, y), x, y)← .

Pf (̂u(f(v(x), w(y))))← Pa(x̂), Pa(ŷ).

Pf (̂f(x, y))← Pa(x̂), Pa(ŷ).

Pa(â)← .

Starting S-CF program

Detected non-convergent critical pairs New clauses obtained by normProg

∅

Figure 3: Run of compR on Example 18

36

The previous example could probably be dealt in an exact way using the

technique of [1] as well, since R∗(I) is a context-free language. It is not the case

for the following example, whose language of descendants R∗(I) is not context-

free (and not synchronized). It can be handled by S-CF programs in an exact

way thanks to their bigger expressivity.

Example 19. Let I = {d1(a, a, a)} and

R =

d1(x, y, z)
1→ d1(h(x), i(y), s(z)), d1(x, y, z)

2→ d2(x, y, z)

d2(x, y, s(z))
3→ d2(f(x), g(y), z), d2(x, y, a)

4→ c(x, y)

R∗(I) is composed of all terms appearing in the following derivation:

d1(a, a, a)
1→n d1(hn(a), in(a), sn(a))

2→ d2(hn(a), in(a), sn(a))
3→k d2(fk(hn(a)), gk(in(a)), sn−k(a))

4→ c(fn(hn(a)), gn(in(a))) .

Note that the last rewrite step by rule 4 is possible only when k = n.

Let Prog = {Pd(̂d1(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ). (1), Pa(â) ← . (2)}.
Thus LProg(Pd) = I.

By applying clause (1) and using rule 1, we get the critical pair:

Pd(̂d1(h(x), i(y), s(z))) ← Pa(x̂), Pa(ŷ), Pa(ẑ). To normalize it, we choose to

generate all symbols as output. Then the following clauses (3) and (4) are

added into Prog: Pd(̂d1(x, y, z)) ← P1(x̂, ŷ, ẑ). (3) and P1(ĥ(x), î(y), ŝ(z)) ←
Pa(x̂), Pa(ŷ), Pa(ẑ). (4). By applying clause (1) and using rule 2, we obtain the

critical pair Pd(̂d2(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ). (5). This critical pair being

already normalized, it is directly added into Prog.

We obtain the critical pair Pd(̂d1(h(x), i(y), s(z)))← P1(x̂, ŷ, ẑ) by applying

clause (3) and rule 1. To normalize it, we generate all symbols as output. It

produces clause (3) again, and P1(ĥ(x), î(y), ŝ(z))← P1(x̂, ŷ, ẑ). (6).

Applying clause (3) and using rule 2, we get the critical pair:

Pd(̂d2(x, y, z)) ← P1(x̂, ŷ, ẑ). (7) which is already normalized. Thus, it is di-

rectly added into Prog. Applying clause (5) and using rule 4, we get the critical

pair Pd(ĉ(x, y))← Pa(x̂), Pa(ŷ). (8) which is already normalized. Consequently,

it is directly added into Prog.

By applying clauses (7) and (4), and using rule 3, we get the critical pair:

37

Pd(̂d2(f(h(x)), g(i(y)), z))← Pa(x̂), Pa(ŷ), Pa(ẑ). To normalize it, we choose to

generate d2, f , g as output, and h, i as input. It produces:

Pd(̂d2(x, y, z))← P2(x̂, ŷ, ẑ, x′, y′, z′), Pa(x̂′), Pa(ŷ′), Pa(ẑ′). (9)

P2(f̂(x), ĝ(y), ẑ, x′, y′, z′)← P2(x̂, ŷ, ẑ, h(x′), i(y′), z′) (10′)

P2(x̂, ŷ, ẑ, x, y, z)← . (11)

Now, clause (10′) may provide an infinite number of critical pairs. Apply-

ing removeCycles makes clause (10′) be substituted by the clause P2(f̂(x), ĝ(y),

ẑ, x′, y′, z′)← P2(x̂, ŷ, ẑ1, h(x′), i(y′), z′1), P2(x̂1, ŷ1, ẑ, h(x′1), i(y′1), z′) (10).

By applying clauses (7) and (6), and using rule 3, we get the critical pair:

Pd(̂d2(f(h(x)), g(i(y)), z)) ← P1(x̂, ŷ, ẑ). We normalize it as previously. We

get Pd(̂d2(x, y, z))←P2(x̂, ŷ, ẑ, x′, y′, z′), P1(x̂′, ŷ′, ẑ′). (12) as well as (10), (11)

again.

With clauses (9 or 12), (10), and rule 3, we get the convergent critical pairs

Pd(̂d2(f(f(x)), g(g(y)), z))←P2(x̂, ŷ, ẑ1,h(h(x′)), i(i(y′)), z′1),Pa(x̂′),Pa(ŷ′),Pa(ẑ)

and Pd(̂d2(f(f(x)), g(g(y)), z))← P2(x̂, ŷ, ẑ1, h(h(x′)), i(i(y′)), z′1), P1(x̂′, ŷ′, ẑ).

By applying clauses (9 or 12) and (11), and using rule 3, we get the con-

vergent critical pairs Pd(̂d2(f(h(x)), g(i(y)), z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ) and Pd(

̂d2(f(h(x)), g(i(y)), z)) ← P1(x̂, ŷ, ẑ). By applying clauses (9) and (11), and

using rule 4, we get the convergent critical pair Pd(ĉ(x, y)) ← Pa(x̂), Pa(ŷ).

Applying clauses (9) and (10), and using rule 4, we obtain the critical pair:

Pd(̂c(f(x), g(y))) ← P2(x̂, ŷ, ẑ, h(x′), i(y′), z′), Pa(x̂′), Pa(ŷ′). Its normalization

gives the clauses: P3(f̂(x), ĝ(y)) ← P2(x̂, ŷ, ẑ, h(x′), i(y′), z′), Pa(x̂′), Pa(ŷ′).

(13) and Pd(ĉ(x, y)) ← P3(x̂, ŷ). (14). Note that the symbols c, f and g have

been considered as output parameters.

No more critical pairs are detected and the procedure stops. The result-

ing program Prog′ is composed of clauses (1) to (14). Note that the subset

of descendants d2(fk(hn(a)), gk(in(a)), sn−k(a)) can be seen (with p = n − k)

as d2(fk(hk+p(a)), gk(ik+p(a)), sp(a)). The reader can check by himself that

LProg′(Pd) is exactly R∗(I).

The run of the completion on this example is also summarized in Fig 4.

38

Black arrows means that the non-convergent critical pair is directly added to

Prog since it is already normalized.

Pd(̂d1(x, y, z))← Pa(x̂), Pa(ŷ), Pa(ẑ).
Pa(â)← .

Pd(̂d1(h(x), i(y), s(z)))← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd(̂d1(x, y, z))← P1(x̂, ŷ, ẑ).

P1(ĥ(x), î(y), ŝ(z))← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd(̂d2(x, y, z))← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd(̂d1(h(x), i(y), s(z)))← P1(x̂, ŷ, ẑ) P1(ĥ(x), î(y), ŝ(z))← P1(x̂, ŷ, ẑ).

Pd(̂d2(x, y, z))← P1(x̂, ŷ, ẑ).

Pd(̂c(x, y))← Pa(x̂), Pa(ŷ).

Pd(̂d2(f(h(x)), g(i(y)), z))← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd(̂d2(x, y, z))← P2(x̂, ŷ, ẑ, x

′, y′, z′), Pa(x̂′), Pa(ŷ′), Pa(ẑ′).

P2(f̂(x), ĝ(y), ẑ, x
′, y′, z′)← P2(x̂, ŷ, ẑ, h(x′), i(y′), z′)

P2(x̂, ŷ, ẑ, x, y, z)← .

P2(f̂(x), ĝ(y), ẑ, x
′, y′, z′)← P2(x̂, ŷ, ẑ1, h(x

′), i(y′), z′1),

Pd(̂d2(f(h(x)), g(i(y)), z))← P1(x̂, ŷ, ẑ)
Pd(̂d2(x, y, z))←P2(x̂, ŷ, ẑ, x

′, y′, z′),

Pd(̂c(f(x), g(y)))← P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

P3(f̂(x), ĝ(y))←P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

Pd(̂c(x, y))← P3(x̂, ŷ).

P2(x̂1, ŷ1, ẑ, h(x
′
1), i(y

′
1), z

′)

A cycle is detected – removeCycles replaces the

blue clause by the red one.

Detected non-convergent critical pairs New clauses obtained by normProg

Starting S-CF program

Pa(x̂′), Pa(ŷ′).

P1(x̂′, ŷ′, ẑ′).

Pa(x̂′), Pa(ŷ′).

Figure 4: Run of compR on Example 19

6. Further Work

Computing approximations more precise than regular ones is a first attempt

towards a verification technique. However, there are at least two steps before

considering our technique as a verification technique: 1) automatically handling

the choices done during the normalization process and 2) extending to work

with any rewrite system.

Concerning item 1, the quality of the approximation highly depends on the

39

choice of the predicate symbol to be reused when predicate-limit is reached. On

the other hand, the choice of generating function-symbols as output or as input

is also crucial. Some automated heuristics will have to be designed in order

to obtain well-customized approximations, for instance by extending the ideas

of [25].

Ongoing work tends to show that the linear restriction concerning the rewrite

system can be tackled. A non right-linear rewrite system makes the computed

S-CF program copying. Consequently, Theorem 2 does not hold anymore. To

get rid of the right-linearity restriction, we are studying the transformation

of a copying S-CF clause into non-copying ones that will generate an over-

approximation. On the other hand, to get rid of the left-linearity restriction,

we are studying a technique based on that of [9]. However, their method does

not always terminate. We want to force termination thanks to an additional

over-approximation.

References

[1] J. Kochems, C.-H. L. Ong, Improved Functional Flow and Reachability

Analyses Using Indexed Linear Tree Grammars, in: RTA, Vol. 10 of LIPIcs,

2011, pp. 187–202.

[2] Y. Boichut, J. Chabin, P. Réty, Over-approximating descendants by syn-

chronized tree languages, in: RTA, Vol. 21 of LIPIcs, 2013, pp. 128–142.

[3] Y. Boichut, B. Boyer, T. Genet, A. Legay, Equational Abstraction Refine-

ment for Certified Tree Regular Model Checking, in: ICFEM, Vol. 7635 of

LNCS, Springer, 2012, pp. 299–315.

[4] T. Genet, Decidable Approximations of Sets of Descendants and Sets of

Normal Forms, in: RTA, Vol. 1379 of LNCS, Springer-Verlag, 1998, pp.

151–165.

[5] T. Genet, F. Klay, Rewriting for Cryptographic Protocol Verification, in:

CADE, Vol. 1831 of LNAI, Springer-Verlag, 2000, pp. 271–290.

40

[6] Y. Boichut, R. Courbis, P.-C. Héam, O. Kouchnarenko, Finer is Better:

Abstraction Refinement for Rewriting Approximations, in: RTA, Vol. 5117

of LNCS, Springer, 2008, pp. 48–62.

[7] A. Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar, Abstract Regular

(Tree) Model Checking, STTT 14 (2) (2012) 167–191.

[8] Y. Boichut, P.-C. Héam, A Theoretical Limit for Safety Verification Tech-

niques with Regular Fix-point Computations, IPL 108 (1) (2008) 1–2.

[9] S. Limet, G. Salzer, Proving Properties of Term Rewrite Systems via Logic

Programs, in: RTA, Vol. 3091 of LNCS, Springer, 2004, pp. 170–184.

[10] P. Réty, J. Chabin, J. Chen, R-Unification thanks to Synchronized-

Contextfree Tree Languages, in: Workshop on Unification (UNIF), 2005.

[11] P. Réty, J. Chabin, J. Chen, Synchronized ContextFree Tree-tuple Lan-

guages, Tech. Rep. LIFO, RR-2006-13, University of Orleans / LIFO (2006).

[12] Y. Boichut, J. Chabin, P. Réty, Erratum of our RTA-13 paper, Tech. Rep.

http://www.univ-orleans.fr/lifo/Members/rety/articles/PatchRTA13.pdf,

LIFO, Université d’Orléans (2014).

[13] Y. Boichut, V. Pelletier, P. Réty, Synchronized tree languages for reachabil-

ity in non-right-linear term rewrite systems, in: D. Lucanu (Ed.), Rewriting

Logic and Its Applications - 11th International Workshop WRLA, Vol. 9942

of Lecture Notes in Computer Science, Springer, 2016, pp. 64–81.

[14] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, M. Tommasi,

Tree Automata Techniques and Applications (TATA) (2007).

[15] J. Raoult, Rational Tree Relations, Bulletin of the Belgian Mathematical

Society Simon Stevin 4 (1997) 149–176.

[16] P. Réty, Langages synchronisés d’arbres et applications. Habilitation Thesis

(in French)., Tech. rep., LIFO, Université d’Orléans (June 2001).

41

[17] W. C. Rounds, Context-free grammars on trees, in: P. C. Fischer, S. Gins-

burg, M. A. Harrison (Eds.), STOC, ACM, 1969.

[18] J. Engelfriet, E. M. Schmidt, IO and OI (I), Journal of Computer and Sys-

tem Sciences 15 (3) (1977) 328 – 353. doi:http://dx.doi.org/10.1016/S0022-

0000(77)80034-2.

[19] J. Engelfriet, E. M. Schmidt, IO and OI (II), Journal of Computer and

System Sciences 16 (1) (1978) 67 – 99. doi:http://dx.doi.org/10.1016/0022-

0000(78)90051-X.

[20] J. Engelfriet, L. Heyker, Context-free Hypergraph Grammars have the same

Term-generating Power as Attribute Grammars, Acta Informatica 29.

[21] J. Engelfriet, J. Vereijken, Context-free Grammars and Concatenation of

Graphs, Acta Informatica 34 (1997) 773–803.

[22] I. Durand, M. Sylvestre, Left-linear bounded trss are inverse recognizability

preserving, in: RTA, Vol. 10 of LIPIcs, 2011, pp. 361–376.

[23] S. Limet, G. Salzer, Tree Tuple Languages from the Logic Programming

Point of View, Journal of Automated Reasoning 37 (4) (2006) 323–349.

[24] V. Gouranton, P. Réty, H. Seidl, Synchronized Tree Languages Revisited

and New Applications, in: FoSSaCS, Vol. 2030 of LNCS, Springer, 2001.

[25] T. Genet, V. Rusu, Equational Tree Automata Completion, Journal of

Symbolic Computation, vol. 45, 2010.

42

