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Abstract. We consider a highly idealized model for EI 1 Introduction and motivation
Nifio/Southern Oscillation (ENSO) variability, as introduced
in an earlier paper. The model is governed by a delay differ-

ential equation for sea-surface temperatliri@ the Tropical The EI-Nito/Southern-Oscillation (ENSO) phenomenon is
Pacific, and it combines two key mechanisms that parﬂmpateihe most prominent signal of seasonal-to-interannual climate

in ENSO dynamics: delayed negative feedback and seasonal

. . . variability. Its crucial role in climate dynamics and its socio-
forcing. We perform a theoretical and numerical study of . . . .
economic importance were summarized in the first part of

the model in the three-dlmenslonal s.pace of |t§ phy5|callythis study Ghil et al, 20088, hereafter Part 1; see also
relevant parameters: propagation periodf oceanic waves Philander(1990: Glantz et al.(1991); Diaz and Markgraf
across the Tropical Pacific, a_ttmosphere-ocgan coupling (1992 andCane(2005, among others.

and strength of seasonal forcihg Phase locking of model An international ten-year (1985-1994) Tropical-Ocean-

solutions to the periodic forcing is prevalent: the local max- Global-Atmosphere (TOGA) Program greatly improved

ima and minima of the solutions tend to occur at the same POt e observationMcPhaden et a).1999, theoretical mod-

sition within the seasonal cycle. Such phase locking is a keyeIIing (Neelin et al, 1994 1998, and predictioni(atif et al,

feature of the observed El fip (warm) and La Nia (cold) 1994 of exceptionally strong El Nio events. It has been

events. The phasing of the extrema within the seasonal Cy(_:onfirmed, in particular, that ENSO's significance extends

cle depends sensitively on model parameters when forcing i?ar beyond the Tropical Pacific, where its causes .
weak. We also study co-existence of multiple solutions for An important conclusion of this program was that — in
fixed model parameters and describe the basins of attractiogpite of the great complexity of the phenomenon and the dif-
Qflt.he stable S9IUtI9nS in a one-dimensional space of Cor]Stauﬁlaerences between the spatiotemporal characteristics of any
initial model histories. particular ENSO cycle and other cycles — the state of the
Tropical Pacific's ocean-atmosphere system could be char-
acterised, mainly, by either one of two highly anti-correlated
scalar indices. These two indices are a sea surface tempera-
ture (SST) index and the Southern Oscillation Index (SOI):

they capture the East-West seesaw in SSTs and that in sea-
Correspondence td. Zaliapin level pressures, respectively; see, for instance, FigShah-
BY (zal@unr.edu) ders and Ghi(2001).

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

1.1 Key ingredients of ENSO theory
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To simulate, understand and predict such complex phe-
nomena, one needs a full hierarchy of models, from “toy”
via intermediate to fully coupled general circulation mod-

els (GCMs) Neelin et al, 1998 Ghil and Robertsor200Q
] Dijkstra and Ghil 2005. We focus here on a “toy” model,
300 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 which captures a qualitative, conceptual picture of ENSO dy-
Time, years namics that includes a surprisingly broad range of features.
This approach allows one to gain a rather comprehensive un-

Fig. 1. Temporal evolution of the NINO3.4 index that summa- )
. Co . derstanding of the model’'s, and maybe the phenomenon’s,
rizes sea-surface temperature (SST) anomalies in the region be-

tween 170.W—120 W and 5 S—5 N. The time series is centred UNderlying mechanisms and their interplay, at the cost of not
and normalized, but the horizontal lines do not represent the stanc@Pturing a full spatiotemporal picture of ENSO evolution.

dard deviations: instead, they have ordinates 1.5-ahgsee also We consider the following conceptual ingredients that
Fig. 3. play a determining role in the dynamics of the ENSO phe-

nomenon: (i) the Bjerknes hypothesis, which suggests a pos-
itive feedback as a mechanism for the growth of an inter-

A typical version of the SST index is the so-calledii 1,5 instapility that could produce large positive anomalies of
3.4 index, which summarizes the mean “anomalies” — i-e"SSTs in the eastern Tropical PacifBjérkness 1969; (ii)
the monthly mean deviations from the climatological “nor- delayed oceanic wave adjustments, realized in the form of
mal” — of the spatially averaged SSTs over the regiong,qpyard Kelvin and westward Rossby waves, that compen-
(170 W-120 W, 5° S=5'N) (Hurrell and Trenberth1999 o560 for Bjerknes's positive feedbac&uarez and Schopf
Reynolds and Smit1994 Trenberth1997). 1998; and (iii) seasonal forcingBattisti, 1988 Chang et al.

The evolution of this index, since 1900, is shownin Fig. 1994 1995 Jin et al, 1994 1996 Tziperman et a).1994
it clearly exhibits some degree of regularity, on the one hand;1995 Ghil and Robertson2000. A more detailed discus-
as well as numerous features characteristic of a determinissjon of these ingredients is given IBhil et al.(20088 and
tically chaotic system, on the other. The regularity mani- references therein.
fests itself as the rough superposition of two dominant oscil-  The past 30 years of research has shown that ENSO dy-
lations — quasi-biennial and quasi-quadrenniédifg et al.  namics is governed, by and large, by the interplay of the
1995 Ghil et al, 2002 — accompanied by a near-symmetry above nonlinear mechanisms and that their simplest version
of the local maxima and minima (i.e., of the positive and neg-can be studied in periodically forced Boolean delay systems
ative peaks). The lack of regularity has been associated withsaunders and Ghi2001; Ghil et al, 20083 and delay dif-
the presence of a “Devil’s staircaseliff et al, 1994 1996  ferential equations (DDE)Suarez and Schopf998 Battisti
Tziperman et a).1994 1999 and does not preclude the su- and Hirst 1989 Tziperman et a).1994. DDE models pro-
perposition of stochastic effects as wadit{il et al, 20089. vide a convenient paradigm for explaining interannual ENSO

While this study mainly focuses on loettremamaxima  variability and shed new light on its dynamical properties. So
and minima) in our ENSO model, one must recall that thefar, though, DDE model studies of ENSO have been limited
major El Nifios of 1982-1983 and 1997-1998 (see Hjg. to linear stability analysis of steady-state solutions, which are
are, in fact, genuinextremesi.e. rare events of unusually not typical in forced systems; case studies of particular tra-
large magnitude. These climatic extremes and the relategectories; or one-dimensional (1-D) scenarios of transition to
hydroclimatological impacts are part of the motivation for chaos, where one varies a single parameter while the others
studying ENSO in general and for this study in particular. are kept fixed. A major obstacle for the complete bifurcation
At the moment, the observational record contains too fewand sensitivity analysis of DDE models lies in the complex
of these truly extreme events to allow studying them by thenature of DDEs, whose analytical and numerical treatment
methods of classical, i.e. statistical extreme value theoryis considerably harder than that of their ordinary differential
Therefore, we hope that the modelling approach develope@quation (ODE) counterparts.
in this study might prove useful in obtaining relevant statisti-
cal data to better understand ENSO-related extreme events.
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Fig. 2. Maximum and period maps for a warm initial histogy(¢) = 1. (a) Maximum map,M = M (k,t) atb =1; (b) maximum map,
M =M(b, ) atk =10; (c) period map,P = P(k, t) atb =1; (d) period map,P = P (b, t) atk =10. Reproduced frorhil et al. (20081,
with kind permission of Copernicus Publications on behalf of the European Geosciences Union (EGU).

1.2 Part 1 results and their physical interpretation period arising naturally as the correct multiple of the sum
of the basin transit times of Kelvin and Rossby waves. An
important finding ofGhil et al. (2008 was the existence

) of regions of stable and unstable solution behaviour in the
model relevant for ENSO phenomenology. In doing so, they , ] .
model’s parameter space; these regions have a complex and

Iso illustrated the complexity of the structures that arise in__ . . .
also illustrated the complexity of the structures that arise possibly fractal distribution of solution properties.

its phase-and-parameter space for even such a simple model _. . , o
) ) - Figure 2 illustrates the model’'s sensitive dependence on
of climate dynamics. Specifically, the authors formulated a . .
highly idealized DDE del for ENSO bl d1 parameters in a region that roughly corresponds to actual
Ighly 1dealize ] modet for ) var.|a ity and fo- ENSO dynamics. The figure shows the behaviour of the
cused on the analysis of model solutions in a broad three-

di ional (3-D) d i of its physicall | ) global maximumM and periodP of model solutions as a
imensional (3-D) domain of its physically relevant para- function of three parameters: the propagation petiodf

meters. They showed that this model can reproduce man¥) . . .
) _ ) ceanic waves across the Tropical Pacific, the atmosphere-
scenarios relevant to ENSO phenomenology, including pro-

ot ¢ El Ni d La N ) ! int ocean coupling strength, and the amplitudé of the sea-
n fia events; ntan inter- . - .
otypes o noa a Nha events, spontaneous inte sonal forcing; for aperiodic solutions we g&t= 0. Although

decadal oscillations and intraseasonal activity reminiscent o{ . "
i T ) ) he model is sensitive to each of these three parameters, sharp
Madden-Julian oscillations or westerly wind burdd&lcroix i . . : . .
variations inM and P are mainly associated with changing

et al, 1993 Gebbie et al.2007 Harrison and Giesel 988 the delayr, which is plotted on the ordinate in all four pan-

Verbleas 1998, ] ~__ els of the figure. In other words, the global maximum, in
This model was also able to provide a good justification . .
T S ) " panels (a) and (b), as well as the period, in panels (c) and
for the observed quasi-biennial oscillation in Tropical Pacific . .
) ) ) (d), may change more than twofold in response to a slight
SSTs and trade wind®hilandey 1990 Diaz and Markgraf variation ofz
1992 Jiang et al.1995 Ghil et al, 2002, with the 2—3-year '

Ghil et al. (2008h took several steps toward a comprehen-
sive analysis, numerical as well as theoretical, of a DDE

www.nonlin-processes-geophys.net/17/123/2010/ Nonlin. Processes Geophys., 18512610
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This sensitivity is an important qualitative conclusion Ghil et al.(20089 have recently illustrated a way of combin-
since, in reality, the propagation times of Rossby and Kelvining these two paradigms to obtain richer and more complete
waves are affected by numerous phenomena that are not réasight into climate dynamics in general.
lated directly to ENSO dynamics. Moreover - as soon as The present paper continues the study initiated in Part 1
the atmosphere-ocean couplinganishes or the delayde-  and focuses on (i) the multiplicity of model solutions for
creases below a critical value - the instabilities disappear anthe same parameter values, and on (ii) the behaviour of lo-
the dynamics of the system becomes purely periodic, withcal extrema in these solutions. In particular, we investigate
period one year; see Fi@a, b. Finally, the boundary be- the distribution in time of the model solutions’ maxima and
tween the domains of stable and unstable model behaviour iminima; these extrema are directly connected to the strength
clearly visible in Fig.2, in the lower-right part of panels (b) and timing of the corresponding El fit (warm) or La Niia
and (d). (cold) events. The current analytic theory of DDEs does not

The region below and to the right of this boundary con- allow one to easily answer many practically relevant ques-
tains simple period-one solutions that change smoothly withtions about the behaviour of even such apparently simple
the values of model parameters. The region above and tequations as our Eql) below. The present study, there-
the left is characterised by sensitive dependence on paramésre, combines general theoretical results about the existence
ters. The range of parameters that corresponds to preserdnd continuous dependence of solutions on parameters with
day ENSO dynamics lies on the border between the model'sxtensive numerical investigations.
stable and unstable regions. Hence, if the dynamical phe- The rest of the paper is organized as follows. In SBct.
nomena found in the model have any relation to reality,we summarize the model formulation from Part 1, recall ba-
Tropical Pacific SSTs and other fields that are highly corre-sjc theoretical results concerning this model’s solutions and
lated with them, inside and outside the Tropics, can be exbpriefly review details of the numerical integration method.
pected to behave in an intrinsically unstable manner; theySection3 reports on the phase locking of solutions to the
could, in particular, change quite drastically with global periodic forcing, namely on the tendency for the solutions’
warming. maxima and minima to each occur within a fixed, small in-

There are basically two approaches to ENSO dynamicserval of the seasonal cycle. Existence of multiple solutions
(Neelin et al, 1994 1998, both of which may be useful in  and the attractor basins of the stable solutions are studied in
extending the results of Part 1 above. The model considSect4. In Sect5we investigate the behaviour of the model’s
ered here and iGhil et al.(20081) explains the complexities  |ocal extrema, considered as a discrete dynamical system. A

of ENSO dynamics by the interplay of two oscillators: an discussion of these results in Segtoncludes the paper.
internal, highly nonlinear one, due to a delayed feedback,

and a forced, seasonal one. Our model, thus, falls within the
strongly nonlinear, deterministic approach. 2 Model and numerical integration method

An alternative approach attempts to explain several fea- .
tures of ENSO dynamics by the action of fast, “weather” 2.1 Model formulation and parameters
noise on a linear qr ve_:ry weakly nonlinear “slow” sys- Following Part 1, we consider a nonlinear DDE with additive,
tem, composed mainly in the upper ocean near the equa- . . .

periodic forcing,

tor. Boulanger et al(2004 and Lengaigne et al(2009),
among others, provide a comprehensive discussion on how W (t) = —atantk h(t — 7)] +bcos(2r wt), (1)
weather noise could be responsible for the complex dynam-
ics of ENSO, and, in particular, whether wind bursts trigger whereh'(¢t) = dh(¢)/dt, t > 0, and the parametetst,«,b,
El Nifio events.Saynisch et al{200§ explore this possibil- andw are all real and positive. Equatiod)(is a simpli-
ity in a conceptual toy modehil and Robertsof2000 al- fied one-delay version of the two-delay model considered
ready discussed the arguments about a “stochastic paradigntly Tziperman et al.1994. It includes two mechanisms es-
for ENSO, with linear or only mildly nonlinear dynamics be- sential for ENSO variability: a delayed, negative feedback
ing affected decisively by weather noise, vs. a “deterministi-via the function tanfi z), and periodic external forcing. As
cally chaotic paradigm”, with decisively nonlinear dynamics. shown in Part 1, these two mechanisms suffice in generating

Nonlin. Processes Geophys., 17, 1235 2010 www.nonlin-processes-geophys.net/17/123/2010/
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very rich behaviour that includes several important featurednitial-value problem (IVP) in its rescaled form:
of more detailed models and of observational datasets.

The functionk(r) in Eq. (1) represents the thermocline (1) = —tanHxh(t — )] +bcos(2r 1), 1 =0, @)
depth deviations from the annual mean in the eastern Trop- h(t) = ¢(t) for te[—71,0), ¢ @) e X. (3
ical Pacific; accordingly, it can also be interpreted roughly
as the regional SST, since a deeper thermocline corresponds Ghil €t al. 008l proved the following result, which fol-
to less upwelling of cold waters and, hence higher SST/OWs from Hale and Verduyn Lune{1993 and references
and vice versa. The thermocline depth is affected by thenerein.
wind-forced, eastward Kelvin and westward Rossby oceanic
waves. The waves' delayed effects are modelled by the funcPToPOsition 1 (Existence, uniqueness, continuous
tion tanHk i ( — 7)]; the delayr is due to the finite velocity ~dependence)
of these waves and it corresponds roughly to their combined For any fixed positive tripletr, «, b), the IVP(2)«3) has
basin-transit time. a unique solutiork(r) on [0, o). This solution depends con-

The particular form of the delayed nonlinearity plays an tinuously on the initial data (¢), delayr and the right-hand

important role in the behaviour of a DDE modé&llunnich side 0f(2), considered as a continuous mﬁp [O’ TyxX —
et al. (199]) provided a physical justification for the mono- R, for any finiteT .

tone, sigmoid nonlinearity we adopt here. The parameter
which is the linear slope of tarthz) at the origin, reflects From Propositiortl it follows, in particular, that the sys-

the strength of the atmosphere-ocean coupling. The forcingem @)—(3) has a unique solution for all time, which depends
term represents the seasonal cycle in the trade winds, witlgontinuously on the model parametérsk, b) for any finite

the strongest winds occurring in boreal fall. time. This resultimplies that any discontinuity in the solution

The DDE model ) is fully determined by its five parame- profile, as a function of the model parameters, indicates the
ters: feedback delay, atmosphere-ocean coupling strength existence of an unstable solution that separates the attractor
«, feedback amplitude, forcing frequencyw, and forcing  basins of two stable solutions. Our numerical experiments
amplitudeb. By an appropriate rescaling of timeand de-  suggest, furthermore, that all stable solutions2)&(3) are
pendent variablé, we letw =1 anda =1. The remaining  bound and have an infinite number of zeros.
three parameterss « andb — may vary, reflecting different
physical conditions of ENSO evolution. We consider here the2.3 Numerical integration
same parameter ranges as in Part 1 of this studyt & 2 yr,
O<k<00,0<b<00.

To completely specify modell], we need to prescribe
some initial “history”, i.e. the behaviour @f(z) on the inter-
val [—7,0), cf. Hale (1977. In the numerical experiments
of Sect.3 below, we assume, as in Part 1, that) =1,
—1 <t <0, i.e. we start with a warm year. But in Sedt.
we turn to a systematic exploration of the effect of the initia
histories on the number and stability of solutions.

The results in this Part 2 of our study are based on numeri-
cal integration of the DDE2)—(3). We emphasize that there
are important differences between the numerical integration
of DDEs and ODEs, and that these differences require devel-
oping special software; often the problem-specific modifica-
tion of such software also becomes necessary. We used here
| the Fortran 90/95 DDE solvetde _solver  of Shampine
and Thompson2006, available ahttp://www.radford.edu/
~thompson/ffddes/ Technical details ofide _solver , as
2.2 Main theoretical result well as a brief overview of other available DDE solvers, are

given in Appendix C of Part 1.
Consider the Banach spa&e= C ([—7,0),R) of continuous

functionsh : [—7,0) — R and define the norm fare X as
3 Seasonal phase locking of extrema

I A ll=sup{|r®)], t € [-7,0)},
A distinctive feature of the extreme ENSO phases — i.e., of

where| - | denotes the absolute valuel(Hale 1977 Nuss-  the El Nilo and La Niia events — is their occurrence during
baum 1998. For convenience, we reformulate the DDE a boreal winter. This phenomenon is illustrated in Rg.

www.nonlin-processes-geophys.net/17/123/2010/ Nonlin. Processes Geophys., 18512610
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interval[0,7]; in addition, we eliminate the initial transient
interval [0,79). Thus, we consider the global and local ex-
trema of our solutions only on the interJad, /1. The global
extrema so defined might differ in certain cases from their
counterparts on the interv@l), oo), for which our DDE is
formally defined. The difference will only be noticeable for
o very long-periodic, highly fluctuating solutions that are rela-

() tively rare in our model. Hence, the reduced definitions of the
- global and local extrema do not affect the main conclusions
of our analysis.

In this section, we study the phageof the local maxima
and minima of the model solutions that ob&)~(3). The
main result, as we shall see, is that the model’s extrema occur
PoF oM oA M 2 9 A S 0 N D exclusively within a particular season.

We start with several examples that illustrate the analysis

Fig. 3. Histogram of temporal location &) warm and(b) cold in the rest of the section. Figura shows a piece of model
events for the Nio—3.4 index. The event thresholds are shown by solutionf(¢) for r = 0.5, x =11 andb=2. This solution
the dashed horizontal lines in Fig. Notice the preferential occur-  has periodP =1, as illustrated in panel (b), which shows the
rence of both warm and cold events during the boreal winter. scatterplot of the pairgh(s;),h(t; +1)) for i =0,1,... and
t;+1=1t; +1. Given the 1l-periodic character of the solution,
all the points(h(z;),h(t; +1)) coincide. The choice of the
starting pointg will only affect the position of a single point
in the panel (not shown).

For each time epochwe define its positiorp within the

No. of local maxima
= N w B ol

o

No. of local minima
o = N w b a (=2

which shows the histograms of the monthly positions of un-
usually warm and unusually cold events, based on tlii@Ni
3.4 index of Fig.1. In our classification, El Nios (see
panel a) are those for which NINO3:4L.5, while La Niias

(see panel b) have NINO3<4—1. This asymmetry in the seasonal cycle ag =r(mod 1); the origin of the seasonal
classification is due to the fact that extreme warm eventsCyCIe in the forcing is taken in October, when the trade winds

are more intense but fewer in number than the extreme col@'® Strongest. Panel (c) shows the values of the local maxima
events Hoerling et al, 1997 Burgers and Stephensdt999 (filled circles) and minima (squares) a{r) as a function
Sardeshmukh et a200Q Kondrashov et aJ2005. Clearly, of their positiong within the seasonal cycle. The six other
the extreme events, both warm and cold, tend to occur duriné’anels in Fig4 show the results of a similar analysis for a
boreal winter solution with periodP =7 (panels d—f) and an aperiodic one

In discussing extrema, we distinguish between local ano(panels g-i). ) .
global ones. Recall that for a functidriz) specified on the In all the ex.anlwples O_f Figd, most of the local max.|ma.
interval[1, 2], its global maximum (minimum) is defined as are located within the first half of the annual cycle, i.e. in

the points so thath(r) is above (below) all the other values boregl W_lnter, while the local minima lie within the sgcond
on that intervalu(¢) > h(s), respectivelyi(r) < (s), for all half, i.e. in boreal summer. Moreover, the global maximum,

. - . . as well as local maxima with large amplitudes, are always
s €[t1,12]. A local maximum (minimum) is a point so that 9 P y

the corresponding value(r) is above (below) all the values located within thegp-interval (0.15, 0.4), while the global

in a vicinity of ¢; for a sufficiently smooth function, the latter minimum, as w_ell_as Iarge-amplltude local minima, are a_ll'
definitions are equivalent to ways located within the interval (0.7, 0.95). We found this

characteristic property of the model holding for most of its

(i) h()=0; and (i) K'()<0 or h"() >0, solutions.
To verify this model property, we analysed the positions of
whereh” = (h’)’ is the second derivative @f(z). the local extrema for a large number of individual solutions

In this paper, we work with numerical solutions of the of Eq. (2) within the parameter regioi® <t <2,0< b <10)
DDE problem R)-(3) that are available only on a finite time and at several values af. The representative results are

Nonlin. Processes Geophys., 17, 1235 2010 www.nonlin-processes-geophys.net/17/123/2010/
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Fig. 4. Seasonal phase locking of local extrema for model trajectof@es:) with period P = 1; (d—f) with period P = 7; and(g—i) aperiodic.

The model solutions in panels (a, d, g) are shown in the stationary regime, after a sufficiently long transient, and the time axis is shifted
so as to start from=0. The parameter values for these solutions are @)0.5, k =11,b=2; (d) t =0.56,x =11, b= 1.4; and (g)

v =0.47,k =10,b =1.0. The scatterplots of the pointa(z;), 2 (z; + 1)) in panels (b, e, h) use the values 0,1, ...,500, which correspond

to rg = 2500 and the parameter settings in panels (a, d, g), respectively. The phase locking is illustrated in panels (c, f, i), which give the
h-value of the local extrema — maxima shown as red filled circles and minima as blue squares — as a function of their position within the
seasonal cycley =t (mod J).

summarized in Figsb and6, where we used 10000 individ- from the point where the external forcing vanishes seems to
ual solutions for each value ef Figure5 shows histograms be independent of the model parameters.

of positions of the local extrema within the seasonal cycle, As the atmosphere-ocean coupling parametercreases,
while Fig. 6 plots the position of the global maximum as a yet another type of sensitive dependence on parameters sets
function of the model parametersandb. in. Namely, at low values of the external forcing< 1.5,

The phase locking of the extrema to the seasonal cycléreversals” in the location of the local extrema do occur, with
is present for most combinations of the physically relevantmaxima suddenly jumping to boreal summer and minima to
model parameters. Moreover, the local maxima tend to ocboreal winter. In Fig7, we zoom into one such reversal re-
cur, depending on the value of at eitherp =0.23 org = gion, marked by a rectangle in Fi§. The dark and light
0.27, while the local minima occur at=0.73 orgp =0.77. blue colours that occupy most of the region indicate that the
We notice that the cosine-shaped seasonal forcing vanishegobal maximum of a model solution occurs in the first half
atp =0.25 andgp = 0.75; hence, the local maxima occur in of the annual cycle, while the red-to-yellow colours that ap-
the vicinity of zero forcing when the latter decreases, andpear around = 0.75 indicate that, within this “island”, the
the local mimina occur in the vicinity of zero forcing when global maximum jumps to the annual cycle’s second half.
the latter increases. The offset in the position of the extrema
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Fig. 5. Seasonal phase locking of local extrema: cumulative results.
Histogram of the phasg of the local maxima (red bars) and minima
(blue bars) of model solutions with= 2.0 (top panel) and =11.0
(bottom panel). Each panel uses 10000 individual solutions with
parameters & r <2 and O< b < 10; see also Fig.

4 Multiple solutions, stable and unstable

The analysis in the previous section was carried out, as in %6
Part 1, for the model2)—(3) with a fixed initial history, 04
¢ (¢t) =1. In this section, we study the model’s solutions for ¢
distinct, yet still constant histories(z) = ¢o.
1 2 3 4 5 6 7 8 9 10

Naturally, different initial history valuego may result in Forcing amplitude, b
different model solutions. This is illustrated in Fijfor the
parameter values=0.5, k=10 andb=1. To produce this fi- Fig. 6. Seasonal phase locking of global extrema: parameter de-
gure, we used 20 distinct initial histories with constant valuespend,ence' The plots show the phasef the global maxima of
that are uniformly distributed betweefh=—2 and ¢o=2; solutions of Eq. 2) for « 22'0. (top panel) and =110 (bom.)m .

) ) e ] ' panel); same number of solutions and parameter range as iB.Fig.
hence, at time=0 there exists 20 distinct solutions. As time The rectangle in the bottom panel highlights the region blown up in
passes, those solutions are attracted by a smaller number gf, 7
stable solutions so that, by=15, there are only four distinct
solutions left, all of which have perio#=2. Furthermore,
we notice that two of the remaining four solutions can be Next, we concentrate on the attractor basins of the model's
obtained by shifting the other two by one unit of time. stable solutions. Figur® shows the model’s solution pro-

In general, it is readily seen that — if the syste®(3) files, after a suitable transient, ferl0 < ¢g < 10, at two
has solutionx (¢) — thenx (¢ + k) with any integerk is also a  points in the model's parameter space: point & =
solution. Hence, if(¢) is a solution with integer perioft = 0.4,x =1,b =2) in the top panel, and pointB(t =0.5,x =
k, then there aré — 1 other solutions obtained from(z) by 10, =1) in the bottom panel. Model behaviour at point B
an integer time shift. We will focus on solutions that cannot was illustrated in Fig8. At point A, the model has a unique
be obtained from each other by such a shift. Thus, we callstable solution that attracts all transient solutions as time
two solutionsx (¢) andy (¢) distinctif x(¢) # y (¢ + k) for any evolves, so that the solution profile becomes constant along
positive integek # P. any vertical line, i.e. at any=ry in this type of figure.

Nonlin. Processes Geophys., 17, 1235 2010 www.nonlin-processes-geophys.net/17/123/2010/



I. Zaliapin and M. Ghil: A delay differential model of ENSO variability — Part 2 131

Phase

0.85¢

L L L L L
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time, t

Delay, t

Fig. 8. Multiple stable solutions. Twenty trajectories that corre-
spond to different initial historieg (1) = ¢g collapse, after a tran-
sient, onto four stable solutions. Two of these solutionslétnct

and the other two can be obtained from the latter by a time shift.
Model parameters are= 0.5, k =10 andb = 1; see also Figo.
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Forcing amplitude, b

0.6

Fig. 7. Reversal in the phase locking of the maxima. The plot ] 02
shows the seasonal cycle positipnof the global maximum for
250000 solutions of Eq2j, for x = 11.0; it represents a blow-up
of the region marked by a rectangle in the lower panel of €ig. 1 02

The model has two distinct stable solutions at pointB:the ~ ° 2 4 6 _ 8 1012 14

boundary between their attractor basins, as plotted ontherea

line of initial-history valuespg, corresponds to points of dis- N I I I q o

continuity in the solution profiles. These points line up into < & | | o2

straight horizontal lines in Figd: one can see 8 horizontal é 0 4 5 5 - " °

lines of discontinuity in the solution profiles and, thus, there = -1 i 02

would appear to be 9 attractor basins. These basins corre N B
6 8 10 12 14

I L
spond, however, as shown in FRy.to only two stable solu- 0 2 4 Time, t
tions that are distinct from each other.

Recall from Sect2.2 that our solutions lie in the infinite-

Fig. 9. Solution profiles for multiple constant historig¢gs) = ¢g.

The top panel corresponds to poinEATr =0.4,« =11,b=2) in
dimensional Banach spacé= C([-,0),R), and that the parameter space, where there exists a unique stable solution. The
solutions with constant initial histories do not span this pottom panel corresponds te-Bt = 0.5,k = 10,5 = 1), the same

space. By using such a particularly simple type of initial point as in Fig.8; here there exist two stable solutions and their
histories, we are merely exploring a 1-D manifold of solu- attractor basins are bound by horizontal discontinuity lines in the
tions, parametrized by the scalas, in the full spaceX. solution profile. The solutions are shown after a sufficiently long
The intersection of the boundary between the attractor basingansient, and the origin of the time is shifted to start from zero;
of the two stable solutions with this 1-D manifold gives the colour bars indicate solution values, here as well as inJg.
8 lines of discontinuity seen in the bottom panel of Hg.

Proposition 1 also implies that a discontinuity in the solu-
tion profile atgy suggests that there exists an unstable sotween the two attractor basins is a highly curved, but still
lution starting frome (1) = ¢o. Hence, the boundary that smooth manifold. It is known for finite-dimensional prob-
separates the two attractor basins from each other is formelgms that such boundaries can become quite complex and
by unstable model solutions. This boundary is a mani-possibly fractal Grebogi et al.1987).
fold of codimension one inX, and Fig.9 merely reveals Figure 10 shows two slightly more complex situations
the intersection of this manifold with the 1-D manifold of along the same lines, namely one with still only two distinct
solutions that have constant initial histories. The presence ofolutions, having both periol = 2, but a more intricate pat-
8 such intersections suggests, in turn, that the boundary baern of solution profiles (panels a, b), and one with 61 distinct
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Fig. 11. Local maxima (red) and minima (blue) of model solutions
as a function of delay; the other parameter values are fixed at
x =11 andb = 2. Notice the aperiodic regimes between periodic
windows of gradually increasing period.

History, <|>0

h'(t;) =0. The local maximgM;,i =1,2,...} are charac-
terised by the additional condition that (z;) < 0, while at
the local minimam;,i =1,2,...} one has”(t;) > 0.

Figure 11 shows the position of the local extrema as a
function of delay O< t < 2 for fixedx =11 andb =2. The
figure illustrates convincingly the increase in complexity of
model solutions as the delayincreases. For small delay
values, O< t < 0.5, each solution is a periodic sine-like wave

Time, t
with period P = 1, which contains a single maximum and a
Fig. 10. Multiple stable solutions. Solution profile fd¢a, c) dif- single mimimum within each cycle.
ferent initial historiesp (r) = ¢o, and(b, d) the corresponding dis- Within the interval 06 < r < 0.8, the solutions become

tinct solutions. For visual convenience, the trajectories are Shiﬂe%ore complex: the solution period hereRs=3, and each
to have their global maxima at=0. Panels (a, b): model be- . T
g (@ b) cycle has three local maxima and three local minima. In gen-

haviour at point G (zr = 0.5,k =11, b = 1.7842), where there exist . .
P ( t 2 eral, the time elapsed between a local maximum and the next

2 distinct solutions; and panels (c, d): model behaviour at point_ ) ber: this eff ] d by th |
D= (r =1.4579« = 11,b = 4), where there exist 61 distinct solu- Is an integer number; this effect Is caused by the seasonal

tions. forcing, and the same is true for local minima. Often, the
recurrence interval for extrema of the same kind is just unity
and the number of local maxima (or minima) coincides with
the periodP of a given solution.

The period in Figllincreases by jumps of 2, frod =1
to P =3 and so on, a® =2k + 1. The transitions from one
odd-periodic dynamics to the next are associated each time
with a region of aperiodic behaviour, for example, the one
from P =1 to P =3 occurs in the interval 81 < r < 0.59.
Here, we focus on the dynamics of the local extrema in theThus, asr increases, the number of local extrema becomes
model solutions. For each solutidrir), we consider the se- larger and each increase in the number of extrema is preceded
quence of its local extremia; } := {h(#;),i =1,2,...}, where by a region of aperiodic, presumably chaotic behaviour.

solutions, having alP = 10 (panels c, d). For visual conve-
nience, we shift all the solutions so that their global maxima
occur atr =0.

5 Dynamics of local extrema
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Figure 12 zooms in on the distribution of local maxima 1.2
within the first aperiodic region of Figll, namely 051 <
7 < 0.59. In this region, ther-intervals of aperiodic be- I o
haviour alternate with shorter periodic windows: in the for- v
mer the local maxima are distributed continuously within an
interval, while in the latter several distinct local maxima oc-
cur within a comparable range of values. This distribution
of the maxima resembles the behaviour of chaotic dynamical
systems in discrete time — e.g., period doubling for smooth
maps Feigenbaum1978 Kadanoff 1983 — and suggests
that the model’'s aperiodic dynamics are, in fact, chaotic. An
even richer behaviour — with multiple, overlapping cascades 02t 05 o053 o054 055 0856 057 058 050
— seems to emerge for®5< . Delay, ©

Local maxima

Fig. 12. Distribution of local maxima as a function of delayvithin
6 Concluding remarks the interval 05 < < 0.59; the other parameters are as in Hity.

In the present paper, we continued our study of a periodically
forced delay differential equation (DDE) introduced by Ghil
et al. £008HY; the DDE (L) serves as a toy model for ENSO ing b, the position of the global maxima and minima depends
variability. We studied the model solutions numerically in a Sensitively on other parameter values: it may exhibit signif-
broad 3-D domain of physically relevant parameters: oceanidc@nt jJumps in response to vanishingly small changes in the
wave delayr, ocean-atmosphere coupling strengthand parameter values (Fig). In particular, an interesting phe-
seasonal forcing amplitude In Part 2 of our investigation, nomenon of “phase reversal” of the global extrema may oc-
we focussed on multiple model solutions as a function of ini- Uf: Cf- Fig.7.
tial histories, and on the dynamics of local extrema. We explored a 1-D manifold of solutions for a set of
We found that the system is characteriseghbgise locking ~ 9Iven, prescribed point® = (z,«,b) in the model's param-
of the solutions’ local extrema to the seasonal cycle (Figs. ©ter space. Such a manifold was generated, for adby
and5): solution maxima — i.e., warm events (Elfdis) — solutions with constant initial histories(r) = ¢o.
tend to occur in boreal winter, while local minima—i.e., cold ~ We found multiple solutions coexisting for physically rel-
events (La Nias) — tend to occur in boreal summer. The evant values of the model parameters; see Bgs0. Some
former model feature is realistic, since observed warm event§f these solutions are generated by shifting a single solution
do occur by-and-large in boreal winter; in fact, this property in time, using integer multiples of the period of the forcing,
is one of the main features of the observed Hidlevents, taken here to be unity. We have often found a set sblu-
this given rise to the name of the phenomenBhifander  tions so obtained from a single solution of periBe- k.
199Q Glantz et al. 1997, Diaz and Markgraf1992. Typically, each stable solution has a bounded, but infinite-
The phase locking of cold events in the model to borealdimensional attractor basin in the solution spAcgescribed
summer is not realistic, since La s also tend to occur in in Sect.2.2 This attractor basin is separated from that of
boreal winter, rather than in phase opposition to the warmanother stable solution by a manifold of codimension one,
ones; see again Fig. It is not clear at this point which one which is generated by unstable solutions (see Proposition 1
of the lacking features of our DDE model gives rise to this and the following remarks). The intersections of such a man-
unrealistic phase opposition; it might be the lack of a positiveifold with the 1-D manifold of solutions, explored herein,
feedback mechanism, present with a separate, distinct delagppear as the straight horizontal lines in the solution-profile
in the Tziperman et al(1994 model. On the other hand, panels of Figs9 and10.
even GCMs, with many more detailed features, may have In Part 1, we found that the solution period generally
their warm events in entirely the wrong season;Géé and increases with the oceanic wave detayFiguresl1 and12
Robertson(2000 for a review. here provide much more detailed information: the period

At the same time, for small-to-intermediate seasonal forc-
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P of model solutions increases in discrete jumps, like Cane, M.: The evolution of El Nio, past and future, Earth Planet.
{P=2k+1k=0,1,2,...}, separated by narrow, apparently  Sc. Lett., 230(3—4), 227-240, 2005.
chaotic “windows” inT. This increase inP is associated Cane, M., Munnich, M., and Zebiak, S.E: A study of self-excited
with the increase of the number of distinct local extrema, ©scillations of the tropical ocean-atmosphere system. Part I: Lin-
all of which tend to occur at the same position within the 2" @nalysis, J. Atmos. Sci., 47(13), 1562-1577, 1990.
seasonal cycle. The distribution of the maxima in Fig. Chang, P., Wang, B., Li, T., and Ji, L. I,me,racnons between
. . . . the seasonal cycle and the Southern Oscillation: Frequency en-
resembles, in fact, the behaviour of chaotic dynamical

O } i trainment and chaos in intermediate coupled ocean-atmosphere
systems in discrete timeFéigenbaum 1978 Kadanoff model, Geophys. Res. Lett., 21, 2817—2820, 1994.

1983 and suggests that the model's aperiodic dynamics iSchang, p., Ji, L., Wang, B., and Li, T.: Interactions between the
in fact, chaotic. seasonal cycle and El b — Southern Oscillation in an inter-

It is quite interesting that, for plausible values of the de- mediate coupled ocean-atmosphere model, J. Atmos. Sci., 52,
lay t, the periods lie roughly between 2 and 7 years, a range 2353-2372, 1995.
that is commonly associated with the recurrence of relativelyDiaz, H. F. and Markgraf, V. (Eds.): El Ro: Historical and Pale-
strong warm eventsPhilander 199Q Glantz et al. 1991; oclimatic Aspects of the Southern Oscillation, Cambridge Univ.
Diaz and Markgraf1992 Neelin et al, 1998. The sensitive Press, New York, 1993.
dependence of the period on the model's external parametef/70, T, Eldin, G., McPhaden, M., and Masfe, A.: Effects of

(.k,b) is consistent with the irregularity of occurrence of westerly wind Ibursts upon the western equatorial Pacific Ocean,
~ . - . February—April 1991, J. Geophys. Res., 98(C9), 16379-16385,
strong El Nfios, and can help explain the difficulty in pre-

- . . . 1993.
dicting them (atif et al, 1994 Ghil and Jiang1998. Dijkstra, H. A.: Nonlinear Physical Oceanography: A Dynamical
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