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1 Introduction

We would like to investigate the asymptotic behaviour of random walks in a particular random environ-
ment, where the latter is partially the trajectory of the walk itself (the past) which acts as a (possibly)
reinforcement: we consider a walker that at each step keeps the same direction (or changes) with a prob-
ability that directly depends on the time already spent in the direction the walker is currently moving.

Classical random walks are defined by

St :=
t

∑
n=1

Xn, (1.1)

for t ∈ N and for i.i.d. increments (Xn)n∈N. When the increments (Xn)n∈N are defined as a one-order
Markov chain, a short memory in the dynamics of the stochastic paths is introduced and the random
walk S itself is is no longer Markovian; such a process is called in the literature a persistent random
walk or also a Kac walk (see Eckstein et al. [4], Renshaw and Henderson [9], Weiss [12; 13]).

In order to take into account possibly infinite reinforcements, we consider here a process (Xn)n∈N
with a variable memory, for which the dependency from the past is unbounded.

A Variable Length Markov Chain (VLMC) can be defined as follows (this probabilistic presentation
comes from Cénac et al. [1], the model was introduced in Rissanen [10] and an overview on VLMC can
be found in Galves and Löcherbach [7]). Let L = A −N be the set of left-infinite words on the alphabet
A . Consider a complete (each node has 0 or |A | children) A -ary tree whose finite leaves C are words
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on the alphabet A . To each leaf c (not necessarily finite) is attached a Bernoulli distribution denoted by
qc. Each leaf is called a context and this probabilized tree is called a context tree. Different context trees
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Figure 1.1: Context tree of the double infinite comb.

correspond to different probabilistic impacts of the past and different dependencies; the model of (very)
persistent random walk we propose here appears to correspond to a so called double infinite comb (see
Figure 1.1). The set of leaves C is defined with a binary alphabet A := {u,d} consisting of the letters
′u′ for moving up and ′d′ for moving down. The increments Xn, for n ∈ N, take thus place in A and the
set of leaves C is defined by

C := {und, n≥ 0}∪{u∞}∪{dnu, n≥ 0}∪{d∞}

where und represents the sequence uu . . .ud composed with n characters up ′u′ and one character down
′d′. By convention u0d= d. The set of leaves contains two infinite leaves u∞ and d∞ and a countable set
of finite leaves und, dnu. The prefix function

←−
pref : L = A −N→ C indicates the length of the last run:

for instance, after n = 3 consecutive moves up, one has to consider the prefix

←−
pref (. . .duuu) = uuud= u3d.

For a general context tree and for any left-infinite word U , we define
←−
pref (U) in a similar way as the

first suffix of U reading from right to left appearing as a leaf of the context tree. The associated VLMC
is the L -valued Markov chain (Un)n>0 defined by the transitions

P(Un+1 =Un`|Un) = q←−pref (Un)(`) (1.2)

where ` is any letter of the alphabet A . Notice that the VLMC is entirely determined by the data
qc,c ∈ C . Moreover the order of dependence (the memory) depends on the past itself.

For a given VLMC (Un)n>0, define Xn as the last letter of Un for any n ≥ 0. When the context
tree associated with (Un) is infinite, then the letter process (Xn)n>0 is non Markovian, because the tran-
sition probabilities (1.2) indicate that Xn+1 depends on a variable and unbounded number of previous
letters. The corresponding random walk (St) defined by (1.1) is no longer Markovian, it is somehow
very persistent.

In this paper, we want to study some asymptotic properties of this (very) persistent random walk.
On which conditions on the ”transition” probabilities (to keep on the same direction or to change) the
corresponding persistent random walks are recurrent or transient ?
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In Cénac et al. [2], a strong law of large numbers is established for (St), as well as a central limit the-
orem under stronger assumptions on the distributions qc,c ∈ C attached to each leaf of the context tree,
expressed in terms of conditions on the first and second moments on some (random) persistence time in
the same direction. In this paper, we first provide recurrence vs transience conditions for the persistent
random walk (St) without assuming that the latter admits any stationary probability. A summary of the
different situations is given after Theorem 3.2, in Table 3.1.

In particular, examples are exhibited when this process is recurrent even if the parameters qc,c ∈ C
are chosen slightly asymmetrical. In fact, in the case when the time taken to change directions is inte-
grable, the condition of recurrence is a condition of null drift. When these time changes of direction are
not summable, we can slightly perturb the symmetric configuration while remaining recurrent. Contrary
to the well defined drift case for which a small perturbation on the parameters of a recurrent persistent
random walk will lead in general to a transient behaviour, in the case of an undefined drift the persistent
random walk may stay recurrent as long as the perturbation remains controlled asymptotically.

The paper is organized as follows. Section 2 is devoted to the presentation of the model and the
assumptions. In Section 3 we give the recurrence/transience criteria.

2 Persistent random walk in one dimension

2.1 The model

Let us consider the alphabet A = {u,d}, where the letter u codes for a rise and is associated with a jump
of length +1 on Z and the letter d codes for a way down and is associated to a jump of length −1 on
Z. With each letter ` ∈ A we associate a sequence (α`

n)n≥1 of real numbers belonging to [0,1], called
an admissible sequence, where α`

n stands for the probability of changing letter after a run of length n of
letter `. Defining

qund(d) = 1−qund(u) := α
u
n and qdnu(u) = 1−qdnu(d) := α

d
n , (2.1)

one builds a VLMC on the double infinite comb (Un)n∈N defined for all n ≥ 1 by the transitions prob-
abilities (qc)c∈C above. Furthermore, denote by (Xn)n∈N the sequence of coding numbers of the last
letters of (Un)n∈N, i.e. Xn :=+1, if the last letter of Un is ′u′, and Xn =−1, if the last letter of Un is ′d′.
Then we can introduce the main object of our study which is the random walk with unbounded variable
memory (St) defined by (1.1).

2.2 Settings and assumptions

In the sequel, we assume qu∞(u) 6= 1, and qd∞(d) 6= 1 so that the trivial situations where the persistent
walk stays a.s. frozen in one of the two directions are thus excluded.

Let us consider the sequence of breaking times (Tn)n∈N defined by

T0 = inf{k ≥ 0 : Xk+1 6= Xk} , (2.2)

and ∀n≥ 1, Tn = inf{k > Tn−1, Xk+1 6= Xk} . (2.3)

Figure 2.1 illustrates one realization of (St) and the above notations. For the sake of simplicity, we deal
throughout this paper with the conditional probability of the event:

T0 = 0, X0 =+1 (and thus X1 =−1). (2.4)

Conditioning by (2.4), the length of rises (τun )n≥0 and of descents (τdn )n≥0 can be defined by

∀n≥ 0, τ
d
n := T2n+1−T2n and τ

u
n := T2n+2−T2n+1. (2.5)
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Figure 2.1: One realization of the random walk (St).

Due to the renewal properties of the chosen variable length Markov chain (see Proposition 2.3 in Cénac
et al. [2]), it turns out that (τdn )n∈N and (τun )n∈N are independent sequences of i.i.d. random variables.
Besides, an easy computation leads to their tail distributions and expectations, given for any letter `∈A
and all integer n≥ 1 by

T `(n) := P(τ`
0 ≥ n) =

n−1

∏
k=1

(1−α
`
k) and Θ` := E[τ`

0] =
∞

∑
n=1

n−1

∏
k=1

(1−α
`
k). (2.6)

Remark 2.1. As a matter of facts, the persistent random walk (Sn)n≥0 can be equivalently defined either
via the distribution tails (T `(n))n≥1 or probabilities (α`

n)n≥1. Thus, depending on the context, we will
choose the more suitable description of the parameters of the model.

In the sequel, we make the following assumption.

Assumption 2.1 (finiteness of the length of runs).

∀` ∈A ,
∞

∏
k=1

(1−α
`
k) = 0. (2.7)

Assumption 2.1 is equivalent to

∀` ∈A ,
(
∃n≥ 1, α

`
n = 1

)
or

(
∞

∑
k=1

α
`
k = ∞

)
. (2.8)

Thanks to Assumption 2.1 and to the renewal properties of the chosen variable length Markov chain,
the condition (2.4) can be done without loss of generality and has no fundamental importance in the
study of the asymptotic behaviour of S in terms of recurrence/transience criteria or scaling properties.

Denoting for any integer p≥ 1 the composition p times of the function log by logp := log◦· · · ◦ log,
the right hand side of (2.8) holds for instance if

1
n log(n) · · · logp(n)

= O(α`
n) as n→ ∞, (2.9)

whereas it is not satisfied if there exists ε > 0 and ` ∈A such that

α
`
n = O

(
1

n log(n) · · · logp−1(n)(logp(n))1+ε

)
as n→ ∞. (2.10)
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In order to deal with a more tractable random walk built with possibly unbounded but i.i.d. incre-
ments, we consider the underlying skeleton random walk (Mn)n≥1 of even breaking times defined by

Mn :=
n

∑
k=1

Yk, where ∀n≥ 1, Yn := τ
u
n − τ

d
n . (2.11)

In the case when Θu or Θd is finite, let us define the drift of M, resp. of S by:

dM := Θu−Θd ∈ R resp. dS :=
Θu−Θd

Θu+Θd
∈ [−1,1]. (2.12)

For instance, they are well-defined if there exist ` ∈A , p≥ 0 and ε > 0 such that for n sufficiently large

α
`
n ≥

1
n
+

1
n log(n)

+ · · ·+ 1
n log(n) · · · logp−1(n)

+
1+ ε

n log(n) · · · logp(n)
, (2.13)

and there are undefined if for any ` ∈A there exists p≥ 0 such that for n sufficiently large

α
`
n ≤

1
n
+

1
n log(n)

+ · · ·+ 1
n log(n) · · · logp(n)

. (2.14)

3 Recurrence and transience

3.1 Equivalent criteria and comparison lemma

Let us recall that a stochastic process (Sn)n≥0 on Z is said to be recurrent if

∀x ∈ Z, sup{n≥ 0 : Sn = x}= ∞ a.s., (3.1)

and transient (resp. transient to ∞, transient to −∞) if

lim
n→∞
|Sn|= ∞

(
resp. lim

n→∞
Sn = ∞, lim

t→∞
Sn =−∞

)
a.s. (3.2)

Also recall the following well-known Theorem 3.1. We can refer for instance to Feller [6, Theorem
1., Chap. XII and Theorem 4., Chap. VI].

Theorem 3.1. Any random walk M on Z is either almost surely constant or of type:

a) oscillating when
limsup

n→∞
Mn = ∞ and liminf

n→∞
Mn =−∞ a.s.; (3.3)

b) drifting to ∞ when
lim
n→∞

Mn = ∞ a.s.; (3.4)

c) drifting to −∞ when
lim
n→∞

Mn =−∞ a.s.. (3.5)

Furthermore, if the drift dM is well-defined, then M is oscillating if and only if dM = 0. Moreover, one
has almost surely

lim
n→∞

Mn

n
= dM. (3.6)

Our strategy to study recurrence versus transience consists in reducing the determination of the
type of the persistent random walk defined in Section 2 by studying some properties of the underlying
skeleton random walk (Mn)n≥1. This is made clear by the following lemma.
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Lemma 3.1. The persistent random walk S defined by (1.1) is either recurrent or transient according to
the type of the underlying skeleton random walk M of even breaking times (see (2.11)). More precisely,
one has:

a) S is recurrent if and only if M is oscillating;

b) S is transient to ∞ if and only if M is drifting to ∞;

c) S is transient to −∞ if and only if M is drifting to −∞;

Proof of Lemma 3.1. If M is oscillating then S is recurrent. Also, if M is drifting to −∞, then so is S,
since due to condition (2.4), the trajectory of S is always under the breaking line formed by the Mn’s.

Let us introduce the skeleton at odd breaking times as follows

Mo
n = M0− τ

d
1 +

n

∑
k=1

(
τ
u
k − τ

d
k+1

)
. (3.7)

Up to the random variable −τd1 , Mo and M are equal in distribution. The second point follows using the
same argument as above.

With respect to the considerations above, it seems natural to distinguish the following three different
cases :

• Θu and Θd are both finite,

• Θu or Θd is finite,

• both are infinite.

The first and second cases correspond to the cases in which the drift dM is well-defined. They
will be considered together in Section 3.2. The third case, when the definition of the drift in (2.12) is
meaningless, will be considered apart in Section 3.3.

Finally, let us end this part with a comparison lemma which will be useful for the second case and
in section 3.4 for the perturbations of the parameters.

Lemma 3.2. Consider two persistent random walks S and S̃ defined by (1.1) and built from double
infinite combs. Assume that the distribution tails (T `(n)) and (T̃ `(n)), defined in (2.6), related to S
and S̃ respectively, with ` ∈A , satisfy for all n≥ 1,

T u(n)≤ T̃ u(n) and T d(n)≥ T̃ d(n). (3.8)

Then there exists a coupling (S, S̃) such that, for all t ≥ 1,

St ≤ S̃t a.s. (3.9)

Remark 3.1. The above lemma can equivalently be stated in terms of the transition probabilities with
the same conclusions, by considering instead of (3.8) the equivalent hypothesis that (α`

n) and (α̃`
n) with

` ∈A are admissible sequences such that for all n≥ 1,

α̃
u
n ≤ α

u
n and α̃

d
n ≥ α

d
n . (3.10)
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Proof of Lemma 3.2. For any ` ∈ A and n ≥ 1 let (τ`
n) and (τ̃`

n) be the associated lengths of runs of S
and S̃ (see (2.5)) and introduce G` and G̃` the corresponding left continuous inverse of the cumulative
distributions. Inequalities (3.8) yield for all x ∈ [0,1],

Gu(x)≤ G̃u(x) and Gd(x)≥ G̃d(x). (3.11)

This means that the lengths of rises of S are stochastically bounded below by those of S̃ and the lengths
of descents of S are stochastically bounded above by those of S̃. Then we construct a coupling (see for
example Thorisson [11]) of the lengths of runs such that for all n≥ 1,

τ
u
n ≤ τ̃

u
n and τ

d
n ≥ τ̃

d
n a.s. (3.12)

To this end, consider two independent sequences (V `
n ) of uniform random variables on [0,1] and set

τ
`
n := G`(V `

n ) and τ̃
`
n := G̃`(V `

n ). (3.13)

Then one can build a coupling of the persistent random walks S and S̃ satisfying inequality (3.9) since
there are entirely determined by these runs.

3.2 Well-defined Drift case

In this part, we assume that the drift is well defined, that is Θu or Θd is finite.

Exemple 3.1. Consider the case in which α`
n is equivalent to λ/n, for some λ > 0. Then Θ` is finite if

λ > 1 and infinite otherwise.

Proposition 3.1 (Recurence criterium and LLN). Under assumption 2.1 and assuming that the drift dM

defined in (2.12) is well-defined, the persistent random walk S defined by (1.1) is recurrent if and only if
Θu = Θd. Moreover, one has almost surely

lim
t→∞

St

t
= dS. (3.14)

Proof. First remark that in this well-defined drift case, recurrence criterium is a straightforward conse-
quence of Theorem 3.1 and Lemma 3.1. Besides, the law of large numbers (3.14) when Θu and Θd are
both finite is already proved in Cénac et al. [2, Proposition 4.5, p. 33].

Assume Θu = ∞ and Θd < ∞ (thus dS = 1). To prove (3.14), it is sufficient to prove the minoration
since the majoration is obvious because St ≤ t. To this end, we shall construct for any 0 < ε < 1, a
persistent random walk Sε with finite drift, such that for all t ∈ N∗,

Sε
t ≤ St and lim

t→∞

Sε
t

t
≥ 1− ε a.s. (3.15)

More specifically, we can choose N ≥ 1 such that

ΘN
u −Θd

ΘN
u +Θd

≥ 1− ε, where ΘN
u :=

N

∑
n=1

n−1

∏
k=1

(1−α
u
k ). (3.16)

Thus considering the persistent random walk Sε associated with the admissible sequences

α
u,ε
n :=

{
αu

n if 1≤ n≤ N−1,
1 if n≥ N,

α
d,ε
n := α

d
n ∀n≥ 1.

Lemma 3.2 leads to (3.15). Thus, for all ε > 0, almost surely, liminft→∞
St
t ≥ 1−ε which concludes the

proof of (3.14).
The case when Θd = ∞ and Θu < ∞ can be treated with the same arguments by symmetry.
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3.3 Undefined drift case

In this section, we consider the remaining case in which both Θu and Θd are infinite (for instance,
consider 0 < λ ≤ 1 in the example 3.1). In this case, the information given by the expectation of one
increment is no longer sufficient to discriminate between transience or recurrence. In facts, following
Erickson [5], the oscillating or drifting behaviour of the skeleton random walk is characterized through
the cumulative distribution function of its increments. However, Erickson’s criteria do not fit well to our
context since the distribution of an increment of (Mn)n≥1 is the convolution of the distributions of τu1 and
−τd1 . To avoid these difficulties, we introduce a sequence (ξn)n≥0 of i.i.d. Bernoulli random variables
with parameter p ∈ [0,1], independent of the sequences (τun ) and (τdn ), and define the following random
walk

Mξ
n :=

n

∑
k=1

Jξ

k , with Jξ

k = ξkτ
u
k − (1−ξk)τ

d
k . (3.17)

It turns out that the randomly modified random walk (Mξ
n )n≥1 and the skeleton random walk (Mn)n≥1

share the same behaviour.

Lemma 3.3. If p = 1/2 then the random walks M and Mξ are of the same type in the sense of Theo-
rem 3.1. For arbritary p ∈ (0,1), if Mξ is oscillating then M is also oscillating.

Proof Lemma 3.3. First let p = 1/2. If Mξ is drifting, then so is M, since

Mξ L
= M1−ξ and M = Mξ +M1−ξ .

By symmetry and Theorem 3.1, it is only needed to prove that if the supremum limit of Mξ is ∞, then so
is for M.

Let us define for i ∈ {0,1}, n≥ 1 and t ≥ 0,

Ai
n,t :=

{
τ
u
n ≥

n

∑
k=1

(1−ξk)τ
d
k + t, ξn = i

}
. (3.18)

Introducing the random walk,

Rn :=
n

∑
k=1

(1−ξk)(τ
u
k − τ

d
k ) (3.19)

one can check that the subordinated process (MNn)n≥0, where

Nn := #{1≤ k ≤ n : ξk = 0}, (3.20)

is equal in distribution to Rn. Under the assumption

P(limsupA0
n,0) = 1, (3.21)

the random walk R is infinitely often positive and so is (MNn)n≥0. Consequently, by Theorem 3.1, the
supremum limit of the latter is infinite so that the Lemma is reduced to the statement (3.21).

As a direct consequence of Durrett [3, Theorem 5.3.2, p. 205]) it follows that, for i ∈ {0,1},

limsupAi
n,t =

{
∞

∑
n=1

E
(
1{Ai

n,t}|Fn−1

)
= ∞

}
, (3.22)

where (Fn)n≥1 is the natural filtration associated with the random processes τd, τu and ξ .
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Using independence of τun with respect to Fn−1∨ τdn , we obtain

E
(
1{A0

n,0}|Fn−1

)
= P(ξ1 = 0)E

(
1{τun≥∑n−1

k=1(1−ξk)τ
d
k +τdn }

∣∣∣∣Fn−1

)

= P(ξ1 = 0)E
(
E
(
1{τun≥∑n−1

k=1(1−ξk)τ
d
k +τdn }

∣∣∣∣Fn−1∨ τ
d
n

)∣∣∣∣Fn−1

)

= P(ξ1 = 0)E

(
T u

(
n−1

∑
k=1

(1−ξk)τ
d
k + τ

d
n

)∣∣∣∣Fn−1

)

= P(ξ1 = 0) ∑̀
≥1

P(τdn = `)T u

(
n−1

∑
k=1

(1−ξk)τ
d
k + `

)
.

(3.23)

Summing over n≥ 1 on both sides, we get

∑
n≥1

E
(
1{A0

n,0}|Fn−1

)
= P(ξ1 = 0) ∑

n≥1
∑̀
≥1

P(τdn = `)T u

(
n−1

∑
k=1

(1−ξk)τ
d
k + `

)
. (3.24)

By similar arguments, we obtain, by changing the order of summation

∑
n≥1

E
(
1{A0

n,0}|Fn−1

)
= P(ξ1 = 0) ∑̀

≥1
P(τd1 = `) ∑

n≥1
E
(
1{A1

n,`}|Fn−1

)
. (3.25)

A straightforwards application of Kesten [8, Theorem 5., p. 1190] combined with (3.22) implies the
summand on the right hand side is almost surely infinite for all t ≥ 0 which ends the proof.

In order to obtain the oscillating or drifting property of (Mn)n≥0, it suffices now to apply the criteria
of Erickson [5] to (Mξ

n )n≥0 — with p = 1/2 — whose cumulative distribution function of an increment
has the following simple form :

Fp(t) = pT u(dte)1{t>0}+(1− p)T d(b−tc)1{t≤0}. (3.26)

Roughly speaking, the criteria of Erickson tell that the persistent random walk (Sn)n≥0 will be re-
current if the distribution tails of the positive and negative runs are comparable, transient otherwise. It
turns out that these comparisons can be made through the quantities defined for `1, `2 ∈A by

J`1|`2 :=
∞

∑
n=1

(
1− nT `2(n)

∑n
k=1 T `2(k)

)
T `1(n)

∑n
k=1 T `2(k)

. (3.27)

Theorem 3.2. Under assumption 2.1 and assuming that both Θu and Θd are infinite, the persistent
random walk S defined by (1.1) is recurrent if and only if

Ju|d = ∞ and Jd|u = ∞. (3.28)

In particular, under assumption (3.28), one has

limsup
t→∞

St

t
= 1 and liminf

t→∞

St

t
=−1 a.s.. (3.29)

The persistent random walk S is transient to ∞ (resp. transient to −∞) if and only if

Ju|d = ∞ and Jd|u < ∞ (resp. Ju|d < ∞ and Jd|u = ∞). (3.30)

Remark 3.2. When Ju|d and Jd|u are both finite, the drift of the persistent random walk S belongs to
(−1,1). Besides, in the symmetric case, that is for all n≥ 1, αu

n = αd
n , S is recurrent.
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Table 3.1: Recurrence/transience criteria.
Θu < ∞ Θu = ∞

Θd < ∞

drifting +∞
drifting +∞

recurrent dS ∈ (0,1)

dS = 1
dS = 0 drifting −∞

dS ∈ (−1,0)

Θd = ∞
drifting −∞ drifting +∞

dS =−1

recurrent ∞ = Ju|d > Jd|u
Ju|d = Ju|d = ∞ drifting −∞

∞ = Jd|u > Ju|d

This theorem ends the characterisation of the type of persistent random walks. In Table 3.1, the
conditions for the recurrence and the transience are summarized.

Proof of Theorem 3.2. For a real sequence ( f (n))n≥0, define the finite difference ∆ f (n), for n ≥ 0, by
∆ f (n) = f (n+1)− f (n). We apply the criteria of Erickson [5] to the randomly modified random walk
(Mξ

n )n≥0 whose cumulative distribution function is given by (3.26). Then, we shall deduce that the
persistent random walk S is recurrent is and only if

J+ :=
∞

∑
n=1

n(−∆T u(n))
∑n

k=1 T d(k)
= ∞ and J− :=

∞

∑
n=1

n(−∆T d(n))
∑n

k=1 T u(k)
= ∞, (3.31)

and transient to ∞ (resp. to −∞) if and only if

J+ = ∞ and J− < ∞
(
resp. J+ < ∞ and J− = ∞

)
. (3.32)

To end the proof of the theorem, we only need to show that J+ = ∞ if and only if Ju|d = ∞ — the
other equivalence is being shown similarly. Summing by parts, we compute

N

∑
n=1

n(−∆T u(n))
∑n

k=1 T d(k)
=−(N +1)T u(N +1)

∑N+1
k=1 T d(k)

+
N

∑
n=0

(
1− nT d(n+1)

∑n
k=1 T d(k)

)
T u(n+1)

∑n+1
k=1 T d(k)

. (3.33)

From this equality, it follows obviously that J+ = ∞ implies that Ju|d = ∞. Conversely, assume that
J+ < ∞ and remark that

N

∑N
k=1 T d(k)

(3.34)

is non decreasing to infinity. In facts, a simple computation gives

∆
(

N

∑N
k=1 T d(k)

)
=

∑N
k=1 T d(k)−NT d(N +1)(

∑N+1
k=1 T d(k)

)(
∑N

k=1 T d(k)
) . (3.35)

But the quantity ∑N
k=1 T d(k)−NT d(N + 1) is nothing but the truncated expectation E(τd1{τd≤N})

which is obviously non negative. Consequently, it follows that for all m≥ n

n(−∆T u(m))

∑n
k=1 T d(k)

≤ m(−∆T u(m))

∑m
k=1 T d(k)

. (3.36)

Thus, summing over m≥ n, we obtain

nT u(n)
∑n

k=1 T d(k)
≤

∞

∑
m=n

m(−∆T u(m))

∑m
k=1 T d(k)

(3.37)
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and the right-hand side tends to 0 as n goes to ∞ since J+ is assumed to be finite.
Assuming Ju|d = ∞, the result of Kesten [8] applies as in lemma 3.3, and it follows that for all c > 0

P

[
τ
u
n ≥ c

n

∑
k=1

(1−ξk)τ
d i.o.

]
= 1, and equivalently P

[
τ
u
n ≥ c

Nn

∑
k=1

τ
d
k i.o.

]
= 1. (3.38)

The conditional Borel-Cantelli lemma and computations similar to those appearing in the proof of lemma
3.3 give rise to

P

[
∞

∑
n=1

T u

(
c

Nn

∑
k=1

τ
d
k

)
= ∞

]
= 1. (3.39)

Since, Nn ≥ n
3 for sufficiently large n≥ 1 and T u is non increasing, one deduces from (3.39)

P

[
∑
n≥1

T u

(
c
bn/3c
∑
k=1

τ
d
k

)
= ∞

]
= 1, or equivalently P

[
∑
n≥1

T u

(
c

n

∑
k=1

τ
d
k

)
= ∞

]
= 1. (3.40)

Thus, for all c > 0

P

(
τ
u
n ≥ c

n

∑
k=1

τ
d
k i.o.

)
= 1 (3.41)

and the first statement follows. The second one is then obvious by symmetry of the problem.

Remark 3.3. Compare to J+, the quantity Ju|d has the advantage to involve only the distribution tails
and not their differences, i.e. their densities. The distribution tails are obviously more tractable in
computations because of their monotonicity.

Remark 3.4. The quantity 1− nT `(n+1)
∑n

k=1 T `(k) in J`′|` may be arbitrarily small, for instance when the distribu-

tion corresponding to T ` is slowly varying. However, when this quantity is well controlled — typically
when it stays away from 0 — then the criteria can be rewritten in terms of

K`1|`2 =
∞

∑
n=1

T `1(n)
∑n

k=1 T `2(k)
. (3.42)

Remark 3.5. Contrary to the well defined drift case for which a small pertubation on the parameters of
a recurrent persistent random walk will lead in general to a transient behaviour, in the case of an unde-
fined drift the persistent random walk may stay recurrent as long as the pertubation remains controlled
asymptotically. To summarize, the criteria is global in the former case and asymptotic in the latter case.

Following this last remark, in the next section, we give some examples of pertubations which exhibit
stability or unstability of the recurrent and transient properties in the context of Θu = Θd = ∞.

3.4 Pertubations

The comparison lemma 3.2 can be relaxed as shown by the following proposition.

Proposition 3.2 (Asymptotic comparison). Assume that the drift is undefined. Let (T `(n)) and (T̃ `(n))
with ` ∈A be distribution tails such that, for n≥ 1 large enough,

T u(n)≤ T̃ u(n) and T d(n)≥ T̃ d(n). (3.43)

Then, Ju|d = ∞ implies J̃u|d = ∞, where J and J̃ correspond to the quantity defined in (3.27) for the tails
T and T̃ respectively.
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Proof. Let N ≥ 1 be such that the inequalities of (3.43) are satisfied for n≥ N. Then we set for ` ∈A

T `
c (n) =

{
T `(n) for n≥ N
1 otherwise,

and T̃ `
c (n) =

{
T̃ `(n) for n≥ N
1 otherwise.

(3.44)

Due to Lemma 3.2, there exists a coupling such that S ≤ S̃ a.s. Whatever the type of S, it follows from
Theorem 3.2 that Jc

u|d = ∞ implies J̃c
u|d = ∞. To end the proof, it remains to show that Jc

u|d = ∞ if and

only if Ju|d = ∞ (and similarly J̃c
u|d = ∞ if and only if J̃u|d = ∞). Since T `(n) and T `

c (n) only differ for
1≤ n < N, it comes that

lim
k→∞

∑k
l=1 T d

c (l)− kT d
c (k)−∑k

l=1 T d(l)+ kT d(k)

∑k
l=1 T d(l)− kT d(k)

= lim
k→∞

∑k−1
l=1 (1−T d(l))

∑k
l=1 T d(l)− kT d(k)

= 0 (3.45)

because the truncated expectation of τd goes to infinity. In addition, we have the asymptotic equivalence

T u(n)

(∑n
k=1 T d(k))2 ∼n→∞

T u
c (n)

(∑n
k=1 T d

c (k))2 . (3.46)

Consequently, it follows
(

1− nT d(n)
∑n
`=1 T d(`)

)
T u(n)

∑n
`=1 T d(`)

∼
n→∞

(
1− nT d

c (n)
∑n
`=1 T d

c (`)

)
T u

c (n)
∑n
`=1 T d

c (`)
. (3.47)

For two non negative sequences (an)n≥0 and (bn)n≥0, we write (an)� (bn) if there exist two positive
constants C0 ≤C1 such that for all n≥ 0 sufficiently large,

C0an ≤ bn ≤C1an. (3.48)

Corollary 3.1 (Comparison of tails). Assume that the drift is undefined. Let (T `(n)) and (T̃ `(n)) be
tails of distribution such that

T `(n)� T̃ `(n). (3.49)

Then, the persistent random walk S and S̃ have the same recurrent or transient behaviour.

Proof. The assumption implies that there exist constants Cu,Cd > 0 such that for large n

T u(n)≤CuT̃
u(n) and T d(n)≤CdT̃

d(n). (3.50)

For sufficiently large n≥ 1, we set

T̂ u(n) =CuT̃
u(n) and T̂ d(n) =CdT̃

d(n). (3.51)

According to Proposition 3.2, we deduce that Ju|d = ∞ implies Ĵu|d = ∞. Furthermore a simple compu-
tation shows that Ĵu|d =

Cu

Cd
J̃u|d. By symmetry, the corollary follows.

Now, let us consider for any ` ∈A some perturbation γ` of α` satisfying for all n≥ 1,

α̃
`
n := α

`
n + γ

`
n ∈ [0,1], n≥ 1, (3.52)

and we denote by S̃ the associated persistent random walk.
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Proposition 3.3 (Bounded perturbations). Assume that the drift is undefined. Then S and S̃ have the
same recurent or transient behaviour if for all ` ∈A ,

{
n

∑
k=1

log
(

1− γ`k

1−α`
k

)
: n≥ 1

}
is bounded. (3.53)

In particular, S and S̃ have the same recurrent or transient behaviour if for all ` ∈A ,

limsup
n→∞

α
`
n < 1 and

∞

∑
n=1
|γ`n|< ∞. (3.54)

The terminology bounded pertubation has to be understood in the sense of (3.53). Also, a pertuba-
tion will be said unbounded if the sequence in (3.53) is unbounded.

Proof. The tail distribution T̃ ` associated to S̃ satisfies

T̃ `(n) �
n→∞

T `(n), (3.55)

since

log(T̃ `(n)) =
n

∑
k=1

log(1− α̃
`
n) = log(T `(n))+

n

∑
k=1

log
(

1− γ`k

1−α`
k

)
. (3.56)

Even though general criteria for the type of the persitent random walk exist in the case of unbounded
pertubations, these criteria are tedious to write precisely and irrelevant to have an insight into the phe-
nomena. The examples of 3.2 should speak for themselves.

Exemple 3.2. The following two persistent random walks associated for n sufficiently large to

α
u
1,n :=

1
2n

, α
d
1,n :=

1
2n

+
c

n log(n)
and α

u
n :=

1
n
, α

d
n :=

1
n
+

c
n log(n) log(log(n))

, (3.57)

are recurrent or transient according to |c| ≤ 1 or |c|> 1.

As previously, the following proposition is not as general as it could be and more particularly the
assumption on αu. Still, the main ideas are contained in this proposition.

Proposition 3.4 (Lacunar perturbations). Assume that there exists 0 < λ < 1 and L⊂ N such that for n
sufficiently large

α
u
n ∼

λ

n log(n)
and α

d
n :=

{
αu

n , if n ∈ L,
0 if n /∈ L.

(3.58)

Then S is recurrent.

Remark 3.6. Note that the admissibility of the sequences (α`
n)n≥1 prevent from choosing L with arbi-

trarily large gaps. Namely, the subset L needs to satisfy

∑
n∈L

α
u
n = ∞, or equivalently ∑

n∈L

1
n log(n)

= ∞. (3.59)

However, the set L can be chosen with zero density in the following sense

lim
n→∞

card L∩ [0,n]
n

= 0. (3.60)

Typically, the resulting persistent random walk is still recurrent if one choose

L = {ln : n ∈ N}, with ln := [n log(n) · · · logk(n)]∨1 (3.61)

for n sufficiently large.
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Proof. First, let us consider the quantity J−. Let (ln)n≥1 be the increasing sequence defining L, one can
check that

J− = ∑
n≥1

nαd
n

∑n
k=1 T u(k)

= ∑
n≥1

lnαu
ln

∑ln
k=1 T u(k)

. (3.62)

Since
n

∑
k=1

T u(k)∼ n

logλ (n)
, (3.63)

it follows the right handside in (3.62) is infinite since the sequence (αd
n )n≥0 is assumed to be admissible

so that

∑
n≥1

1
ln log(ln)

= ∞. (3.64)

Secondly, we need to consider J+. Observe that

N

∑
k=1

T d(k)∼
N

∑
k=1

exp

(
− ∑

l∈L∩[0,n]
α
u
l

)
≤

N

∑
k=1

exp
(
−λcard L∩ [0,n]

n log(n)

)
, (3.65)

dividing by N and remarking that the quantity in the exponential goes to zero when n goes to infinity, it
follows that

N

∑
k=1

T d(k) = O(N) (3.66)

This bound suffices to prove that J+ = ∞.
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