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Introduction

The term of rogue wave was introduced in the scientific community by Draper in 1964 [1]. The usual criteria for rogue waves in the ocean, is that the vertical distance from trough to crest is two or more times greater than the average wave height among one third of the highest waves in a time series (10 to 30 min). The first rogue wave recorded by scientific measurement in North Sea was made on the oil platform of Draupner in 1995, located between Norway and Scotland. Rogue waves in the ocean have led to many marine catastrophes; it is one of the reasons why these rogue waves turn out to be so important for the scientific community. It becomes a challenge to get a better understanding of their mechanisms of formation. The rogue waves phenomenon currently exceed the strict framework of the study of ocean's waves and play a significant role in other fields; in nonlinear optics [2], Bose-Einstein condensate [START_REF] Bludov | Matter rogue waves[END_REF], atmosphere [START_REF] Stenflo | Rogue waves in the atmosphere Jour[END_REF] and even finance [START_REF] Yan | Financial rogue waves[END_REF]. Here, we consider the one dimensional focusing nonlinear Schrödinger equation 1 (NLS) to describe the phenomena of rogue waves. The first results concerning the NLS equation date back the works of Zakharov and Shabat in 1968 who solved it using the inverse scattering method [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF][START_REF] Zakharov | Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media Sov[END_REF]. The case of periodic and almost periodic algebro-geometric solutions to the focusing NLS equation were first constructed in 1976 by Its and Kotlyarov [START_REF] Its | Explicit expressions for the solutions of nonlinear Schrödinger equation Dockl[END_REF][START_REF] Its | Exact integration of nonlinear Schrödinger equation Teore[END_REF]. In 1977 Kuznetsov found the first breather type solution of the NLS equation [START_REF] Kuznetsov | Solitons in a parametrically unstable plasma Sov[END_REF]; a simular result was given by Ma [START_REF] Ma | The perturbed plane-wave solutions of the cubic nonlinear Schrödinger equation Stud[END_REF] in 1979. The first quasi rational solutions to NLS equation were constructed in 1983 by Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF]. In 1986 Akhmediev, Eleonski and Kulagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions Sov[END_REF]. Other analogues of Peregrine breathers of order 3 were constructed and initial data corresponding to orders 4 and 5 were described in a series of articles by Akhmediev et al., in particular in [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF] using Darboux transformations. Quite recently, many works about NLS equation have been published using different methods. In 2010, rational solutions to the NLS equation were written as a quotient of two wronskians [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF]. In 2011, the present author constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] another representation of the solutions to the NLS equation in terms of a ratio of two wronskians of even order 2N composed of elementary functions using truncated Riemann theta functions depending on two parameters; rational solutions were obtained when some parameter tended to 0. In 2012, Guo, Ling and Liu found another representation of the solutions as a ratio of two determinants [START_REF] Guo | Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions[END_REF] using generalized Darboux transform; a new approach was proposed by Ohta and Yang in [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation Pro[END_REF] using Hirota bilinear method; finally, the present author has obtained rational solutions in terms of determinants which do not involve limits in [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves Jour[END_REF] depending on two parameters. With this extended method, we present multi-parametric families of quasi rational solutions to the focusing NLS equation of order N in terms of determinants (determinants of order 2N ) dependent on 2N -2 real parameters. With this representation, at the same time the well-known ring structure, but also the triangular shapes also found by Ohta and Yang [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation Pro[END_REF], Akhmediev et al. [START_REF] Kedziora | Triangular rogue wave cascades[END_REF] are given. The aim of this paper is to prove the representation of the solutions to the focusing NLS equation depending this time on 2N -2 parameters; the proof presented in this paper with 2N -2 parameters has been never published. This is the first task of the paper; then we deduce its particular degenerate representations in terms of a ratio of two determinants of order 2N . The second task of the paper is to give the proof of the structure of the solution at the order N as the ratio of two polynomials of order N (N + 1) in x and t by an exponential depending on t. This representation makes possible to get all the possible patterns for the solutions to the NLS equation. It is important to stress that contrary to other methods, these solutions depending on 2N -2 parameters give the Peregrine breather as particular case when all the parameters are equal to 0 : for this reason, these solutions will be called 2N -2 parameters deformations of the Peregrine of order N . The paper is organized as follows. First of all, we express the solutions of the NLS equation using Fredholm determinants from these expressed in terms of truncated functions theta of Riemann first obtained by Its, Rybin and Salle [START_REF] Its | Exact integration of nonlinear Schrödinger equation Teore[END_REF]; the representation given in theorem 2.1 is different from those given in [START_REF] Its | Exact integration of nonlinear Schrödinger equation Teore[END_REF]. From that, we prove the representation of the solutions of the NLS equation in terms of wronskians depending on 2N -2 parameters. We deduce a degenerate representation of solutions to the NLS equation depending a priori on 2N -2 parameters at the order N . Then we prove a theorem which states the structure of the quasi-rational solutions to the NLS equation. It was only conjectured in preceding works [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves Jour[END_REF]. Families depending on 2N -2 parameters for the N -th order as a ratio of two polynomials of x and t multiplied by an exponential depending on t are obtained; it is proved that each of these polynomials have a degree equal to N (N + 1).

2 Expression of solutions to the NLS equation in terms of wronskians

Solutions to the NLS equation in terms of θ functions

For r = 1, 3, we define

θ r (x, t) = k∈{0;1} 2N exp 2N µ>ν, µ,ν=1 ln γν -γµ γν +γµ 2 k µ k ν + 2N ν=1 iκ ν x -2δ ν t + x r,ν + 2n µ=1, µ =ν ln γν +γµ γν -γµ + πiǫ ν + e ν k ν , (1) 
In this formula, the symbol k∈{0;1} 2N denotes summation over all 2N-dimensional vectors k whose coordinates k ν are either 0 or 1. The terms κ ν , δ ν , γ ν and x r,ν are functions of the parameters λ ν , 1 ≤ ν ≤ 2N ; they are defined by the formulas :

κ ν = 2 1 -λ 2 ν , δ ν = κ ν λ ν , γ ν = 1-λν 1+λν ,; x r,ν = (r -1) ln γν -i γν +i , r = 1, 3. (2) 
The parameters -1 < λ ν < 1, ν = 1, . . . , 2N , are real numbers such that

-1 < λ N +1 < λ N +2 < . . . < λ 2N < 0 < λ N < λ N -1 < . . . < λ 1 < 1 λ N +j = -λ j , j = 1, . . . , N. (3) 
The condition (3) implies that

κ j+N = κ j , δ j+N = -δ j+N , γ j+N = γ -1 j , x r,j+N = x r,j , j = 1, . . . , N. (4 
) Complex numbers e ν 1 ≤ ν ≤ 2N are defined in the following way :

e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, a, b ∈ R. (5) 
ǫ ν ∈ {0; 1}, ϕ, ν = 1 . . . 2N are arbitrary real numbers. With these notations, the solution of the NLS equation

iv t + v xx + 2|v| 2 v = 0, (6) 
can be expressed as ( [START_REF] Its | Exact integration of nonlinear Schrödinger equation Teore[END_REF])

v(x, t) = θ 3 (x, t) θ 1 (x, t) exp(2it -iϕ), (7) 

From θ functions to Fredholm determinants

To get Fredholm determinants, we have to express the functions θ r defined in (1) in terms of subsets of [1, .., 2N ]

θ r (x, t) = J⊂{1,..,2N } ν∈J (-1) ǫν ν∈J, µ / ∈J γ ν + γ µ γ ν -γ µ × exp ν∈J iκ ν x -2δ ν t + x r,ν + e ν . (8) 
In ( 8), the symbol J⊂{1,..,2N } denotes summation over all subsets J of indices of the set {1, .., 2N }.

Let I be the unit matrix and C r = (c jk ) 1≤j,k≤2N the matrix defined by :

c νµ = (-1) ǫν η =µ |γ ν + γ η | η =ν |γ ν -γ η | exp(iκ ν x -2δ ν t + x r,ν + e ν ), (9) 
ǫ j = j 1 ≤ j ≤ N, ǫ j = N + j, N + 1 ≤ j ≤ 2N. (10) 
Then det(I + C r ) has the following form

det(I + C r ) = J⊂{1,...,2N } ν∈J (-1) ǫν ν∈J µ / ∈J γ ν + γ µ γ ν -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ). ( 11 
)
Comparing this last expression [START_REF] Ma | The perturbed plane-wave solutions of the cubic nonlinear Schrödinger equation Stud[END_REF] with the formula (8) at the beginning of this section, we have clearly the identity

θ r = det(I + C r ). (12) 
We can give another representation of the solutions to NLS equation. To do this, let's consider the matrix D r = (d jk ) 1≤j,k≤2N defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ). (13) 
We have the equality det(I + D r ) = det(I + C r ), and so the solution of NLS equation takes the form

v(x, t) = det(I + D 3 (x, t)) det(I + D 1 (x, t)) exp(2it -iϕ). ( 14 
)
Theorem 2.1 The function v defined by

v(x, t) = det(I + D 3 (x, t)) det(I + D 1 (x, t)) exp(2it -iϕ). ( 15 
)
is a solution of the focusing NLS equation with the matrix D r = (d jk ) 1≤j,k≤2N defined by

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ).
where κ ν , δ ν , x r,ν , γ ν , e ν being defined in( 2), ( 3) and ( 5).

From Fredholm determinants to wronskians

We want to express solutions to NLS equation in terms of wronskian determinants. For this, we need the following notations :

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (16) 
with the arguments

Θ r,ν = κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν /2, 1 ≤ ν ≤ 2N. (17) 
We denote W r (y) the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (y) = det[(∂ µ-1 y φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 18 
)
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions Sov[END_REF]. Then we have the following statement Theorem 2.2

det(I + D r ) = k r (0) × W r (φ r,1 , . . . , φ r,2N )(0), (19) 
where

k r (y) = 2 2N exp(i 2N ν=1 Θ r,ν ) 2N ν=2 ν-1 µ=1 (γ ν -γ µ )
.

Proof :

We start to remove the factor (2i) -1 e iΘr,ν in each row ν in the wronskian W r (y) for 1 ≤ ν ≤ 2N . Then

W r = 2N ν=1 e iΘr,ν (2i) -N (2) -N × Wr , (20) with Wr = 
(1 -e -2iΘr,1 ) iγ 1 (1 + e -2iΘr,1 ) . . .

(iγ 1 ) 2N -1 (1 + (-1) 2N e -2iΘr,1 ) (1 -e -2iΘr,2 ) iγ 2 (1 + e -2iΘr,2 ) . . . (iγ 2 ) 2N -1 (1 + (-1) 2N e -2iΘr,2 ) . . . . . . . . . . . . (1 -e -2iθr,2N ) iγ 2N (1 + e -2iΘr,2N ) . . . (iγ 2N ) 2N -1 (1 + (-1) 2n e -2iΘr,2N )
The determinant Wr can be written as

Wr = det(α jk e j + β jk ),
where α jk = (-1) k (iγ j ) k-1 , e j = e -2iΘr,j , and

β jk = (iγ j ) k-1 , 1 ≤ j ≤ N , 1 ≤ k ≤ 2N , α jk = (-1) k-1 (iγ j ) k-1
, e j = e -2iΘr,j , and

β jk = (iγ j ) k-1 , N + 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N .
We want to calculate Wr . To do this, we use the following Lemma

Lemma 2.1 Let A = (a ij ) i, j∈[1,...,N ] , B = (b ij ) i, j∈[1,...,N ] , (H ij ) i, j∈[1,...,N ]
, the matrix formed by replacing in A the jth row of A by the ith row of B Then

det(a ij x i + b ij ) = det(a ij ) × det(δ ij x i + det(H ij ) det(a ij ) ) (21) 
Proof : We use the classical notations : Ã = (ã ji ) i, j∈[1,...,N ] the transposed matrix in cofactors of A. We have the well known formula

A × Ã = det A × I. So it is clear that det( Ã) = (det(A)) N -1 . The general term of the product (c ij ) i,j∈[1,..,N ] = (a ij x i + b ij ) i,j∈[1,..,N ] ×(ã ji ) i,j∈[1,..,N ]
can be written as

c ij = N s=1 (a is x i + b is ) × ãjs = x i n s=1 a is ãjs + n s=1 b is ãjs = δ ij det(A)x i + det(H ij ). We get det(c ij ) = det(a ij x i + b ij ) × (det(A)) N -1 = (det(A)) N × det(δ ij x i + det(Hij ) det(A) ). Thus det(a ij x i + b ij ) = det(A) × det(δ ij x i + det(Hij ) det(A) ). 2. We denote U = (α ij ) i, j∈[1,...,2N ] , V = (β ij ) i, j∈[1,...,2N ] .
By applying the previous lemma, one obtains :

Wr = det(α ij e i + β ij ) = det(α ij ) × det(δ ij e i + det(Hij ) det(αij ) ) = det(U ) × det(δ ij e i + det(Hij ) det(U) ), (22) 
where (H ij ) i, j∈[1,...,N ] is the matrix formed by replacing in U the jth row of U by the ith row of V defined previously. The determinant of U of Vandermonde type is clearly equal to

det(U ) = i N (2N -1) 2N ≥l>m≥1 (γ l -γ m ). ( 23 
)
To calculate determinant Wr , we must compute now det(H ij ). To do that, two cases must be studied : 1. For 1 ≤ j ≤ N . The matrix H ij is clearly of the VanderMonde type where the j-th row of U in U is replaced by the i-th row of V . Clearly, we have :

det(H ij ) = (-1) N (2N +1)+N -1 (i) N (2N -1) × M, (24) 
where M = M (m 1 , . . . , m 2N ) is the Vandermonde determinant defined by m k = γ k for k = j and m j = -γ i . Thus we have :

det(H ij ) = -(i) N (2N -1) × 2N ≥l>k≥1, (m l -m k ) = -(i) N (2N -1) × 2N ≥l>m≥1, l =j, m =j (γ l -γ m ) × l<j (-γ i -γ l ) × l>j (γ l + γ i ), = (-1) j (i) N (2N -1) × 2N ≥l>m≥1, l =j, m =j (γ l -γ m ) × l =j (γ l + γ i ). ( 25 
)
To evaluate Wr , we must simplify the quotient q ij := det(Hij ) det(U) :

q ij = (-1) j (i) N (2N -1) × 2N ≥l>m≥1, l =j, m =j (γ l -γm)× l =j (γ l +γi) i N (2N -1) 2N ≥l>m≥1 (γ l -γm) = (-1) j l =j (γ l +γi) l<j (γj -γ l ) l>j (γ l -γj ) = (-1) j l =j (γ l +γi) (-1) j-1 l =j (γ l -γj ) = -l =j (γ l +γi) l =j (γ l -γj ) . (26) 
We can replace q ij by r ij defined by

-l =j (γ l +γi) l =i (γ l -γi) , because det(δ ij x i + det(qij ) det(A) ) = det(δ ij x i + det(rij ) det(A) ) (similar matrices).
We express r ij in terms of absolute value; as j ∈ [1; N ] and 0 < γ 1 < . . . < γ N < 1 < γ 2N < . . . < γ N +1 , we have :

l =i (γ l -γ i ) = (-1) i-1 l =i |γ l -γ i | , l =j (γ l + γ i ) = l =j |γ l + γ i | . ( 27 
)
So the term r ij can be written as

r ij = (-1) i l =j |γ l +γi| l =i |γ l -γi| = (-1) ǫ(i) l =j |γ l +γi| l =i |γ l -γi| = c ij e -2iΘr,i(0) , (28) 
with respect to the notations given in [START_REF] Kuznetsov | Solitons in a parametrically unstable plasma Sov[END_REF] and (13).

The same estimations for

N + 1 ≤ j ≤ 2N are made; det H ij is first det(H ij ) = (-1) N (2N +1)+N -1 (i) N (2N -1) × M, (29) 
with M = M (m 1 , . . . , m 2N ) the Vandermonde determinant defined by m k = γ k for k = j and m j = -γ i . Thus we have :

det(H ij ) = (i) N (2N -1) × 2N ≥l>k≥1, (m l -m k ) = (i) N (2N -1) × 2N ≥l>m≥1, l =j, m =j (γ l -γ m ) × l<j (-γ i -γ l ) × l>j (γ l + γ i ), = (-1) j-1 (i) N (2N -1) × 2N ≥l>m≥1, l =j, m =j (γ l -γ m ) × l =j (γ l + γ i ). ( 30 
)
The quotient q ij := det(Hij ) det(U) equals :

q ij = (-1) j-1 (i) N (2N -1) × 2N ≥l>m≥1, l =j, m =j (γ l -γm)× l =j (γ l +γi) i N (2N -1) 2N ≥l>m≥1 (γ l -γm) = (-1) j-1 l =j (γ l +γi) l<j (γj -γ l ) l>j (γ l -γj) = (-1) j-1 l =j (γ l +γi) (-1) j-1 l =j (γ l -γj ) = l =j (γ l +γi) l =j (γ l -γj ) . (31) 
We replace q ij by r ij defined by l =j (γ l +γi) l =i (γ l -γi) , for the same reason as previously exposed. r ij is expressed in terms of absolute value; as j ∈ [N + 1; 2N ] and 0 < γ 1 < . . . < γ N < 1 < γ 2N < . . . < γ N +1 , we have :

l =i (γ l -γ i ) = (-1) 2N -i+N l =i |γ l -γ i | , l =j (γ l + γ i ) = l =j |γ l + γ i | . ( 32 
) So the term r ij can be written as

r ij = (-1) N +i l =j |γ l +γi| l =i |γ l -γi| = (-1) ǫ(i) l =j |γ l +γi| l =i |γ l -γi| = c ij e -2iΘr,i(0) , (33) 
with respect to the notations given in ( 10) and [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions Sov[END_REF].

Replacing e i by e -2iΘr,i , det Wr can be expressed as

det Wr = det(U ) × det(δ ij e i + det(Hij ) det(U) ) = det(U ) × det(δ ij e i + r ij ) = det(U ) 2N i=1 e -2iΘi det(δ ij + (-1) ǫ(i) l =i γ l +γi γ l -γi e 2iΘr,i ). ( 34 
)
We estimate the two members of the last relation [START_REF] Gaillard | Eighteen parameter deformations of the Peregrine breather of order ten solutions of the NLS equation Int[END_REF] in y = 0, and using [START_REF] Gaillard | Two parameters deformations of ninth Peregrine breather solution of the NLS equation and multi rogue waves Jour[END_REF] we obtain the following result det Wr (0

) = i N (2N -1) 2N ≥l>m≥1 (γ l -γ m ) 2N i=1 e -2iΘr,i(0) × det(δ ij + (-1) ǫ(i) l =i γ l +γi γ l -γi e 2iΘr,i(0) ) = i N (2N -1) 2N j=2 j-1 i=1 (γ j -γ i )e -2i 2N i=1 Θr,i(0) det(δ ij + c ij ) = i N (2N -1) 2N j=2 j-1 i=1 (γ j -γ i )e -2i 2N i=1 Θr,i(0) det(I + C r ) = i N (2N -1) 2N j=2 j-1 i=1 (γ j -γ i )e -2i 2N i=1 Θr,i(0) det(I + D r ). (35) 
Therefore, the wronskian W r given by ( 20) can be written as

W r (φ r,1 , . . . , φ r,2N )(0) = 2N j=1 e iΘr,j (0) (2) -2N (i) -N × Wr = 2N j=1 e iΘr,j (0) (2) -2N (i) -N i N (2N -1) 2N j=2 j-1 i=1 (γ j -γ i )e -2i 2N i=1 Θr,i(0) det(I + D r ) = (2) -2N 2N j=2 j-1 i=1 (γ j -γ i )e -i 2N i=1 Θr,i(0) det(I + D r ). ( 36 
)
As a consequence

det(I + D r ) = k r (0)W r (φ 1 , . . . , φ 2N )(0). ( 37 
)
2

Wronskian representation of solutions to the NLS equation

From the initial formulation [START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF] we have

v(x, t) = det(I + D 3 (x, t)) det(I + D 1 (x, t)) exp(2it -iϕ).
Using [START_REF] Guo | Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions[END_REF], the following relation between Fredholm determinants and wronskians is obtained

det(I + D 3 ) = k 3 (0) × W 3 (φ r,1 , . . . , φ r,2N )(0) and det(I + D 3 ) = k 3 (0) × W 3 (φ r,1 , . . . , φ r,2N )(0).
As Θ 3,j (0) contains N terms x 3,j 1 ≤ j ≤ N and N terms -x 3,j 1 ≤ j ≤ N , we have the equality k 3 (0) = k 1 (0), and we get the following result :

Theorem 2.3 The function v defined by v(x, t) = W 3 (φ 3,1 , . . . , φ 3,2N )(0) W 1 (φ 1,1 , . . . , φ 1,2N )(0) exp(2it -iϕ).
is a solution of the focusing NLS equation depending on two real parameters a and b with φ r ν defined in ( 16) 3) and [START_REF] Yan | Financial rogue waves[END_REF].

φ r,ν = sin(κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν /2), 1 ≤ ν ≤ N, φ r,ν = cos(κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν /2), N + 1 ≤ ν ≤ 2N, r = 1, 3, κ ν , δ ν , x r,ν , γ ν , e ν being defined in(2), (

Families of multi-parametric solutions to the NLS equation in terms of a ratio of two determinants

Solutions to the NLS equation as a quotient of two determinants are constructed. Similar functions defined in a preceding work [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves Jour[END_REF] are used, but modified as explained in the following. The following notations are needed :

X ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, Y ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2, for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in (2).
Parameters e ν are defined by [START_REF] Yan | Financial rogue waves[END_REF].

Here, is the crucial point : we choose the parameters a j and b j in the form

a j = N -1 k=1 ãk j 2k+1 ǫ 2k+1 , b j = N -1 k=1 bk j 2k+1 ǫ 2k+1 , 1 ≤ j ≤ N. (38) 
Below the following functions are used :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (39) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (40) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k .

ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (41) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , ( 42 
) for 1 ≤ k ≤ N . Then it is clear that q(x, t) := W 3 (0) W 1 (0)
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . (43) 
We recall that λ j = 1-2jǫ 2 . All the functions ϕ j,k and ψ j,k and their derivatives depend on ǫ and can all be prolonged by continuity when ǫ = 0.

Then the following expansions are used

ϕ j,k (x, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,1 [l] = ∂ 2l ϕ j,1 ∂ǫ 2l (x, t, 0), ϕ j,1 [0] = ϕ j,1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ϕ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), ϕ j,N +1 [l] = ∂ 2l ϕ j,N +1 ∂ǫ 2l (x, t, 0), ϕ j,N +1 [0] = ϕ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1.
We have the same expansions for the functions ψ j,k .

ψ j,k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,1 [l] = ∂ 2l ψ j,1 ∂ǫ 2l (x, t, 0), ψ j,1 [0] = ψ j,1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ψ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), ψ j,N +1 [l] = ∂ 2l ψ j,N +1 ∂ǫ 2l (x, t, 0), ψ j,N +1 [0] = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..
Then we get the following result :

Theorem 3.1 The function v defined by v(x, t) = exp(2it -iϕ) × det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) ( 44 
)
is a quasi-rational solution of the NLS equation ( 6)

iv t + v xx + 2|v| 2 v = 0,
where

n j1 = ϕ j,1 (x, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕj,1 ∂ǫ 2k-2 (x, t, 0), n jN +1 = ϕ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕj,N+1 ∂ǫ 2k-2
(x, t, 0),

d j1 = ψ j,1 (x, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψj,1 ∂ǫ 2k-2 (x, t, 0), d jN +1 = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψj,N+1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions ϕ and ψ are defined in (39),( 40), ( 41), (42).

Proof : The columns of the determinants appearing in q(x, t) are combined successively to eliminate in each column k (and N + k) of them the powers of ǫ strictly inferior to 2(k -1); then each common term in numerator and denominator is factorized and simplified; finally we take the limit when ǫ goes to 0. Precisely, first of all, the components j of the columns 1 and N + 1 are respectively equal by definition to ϕ j1 [0] + 0(ǫ) for C 1 , ϕ jN +1 [0] + 0(ǫ) for C N +1 of ∆ 3 , and

ψ j1 [0] + 0(ǫ) for C ′ 1 , ψ jN +1 [0] + 0(ǫ) for C ′ N +1 of ∆ 1 .
At the first step of the reduction, we replace the columns C k by C k -C 1 and C N +k by C N +k -C N +1 for 2 ≤ k ≤ N , for ∆ 3 ; the same changes for ∆ 1 are done. Each component j of the column C k of ∆ 3 can be rewritten as

N -1 l=1 1 (2l)! ϕ j,1 [l](k 2l -1)ǫ 2l and the column C N +k replaced by N -1 l=1 1 (2l)! ϕ j,N +1 [l](k 2l - 1)ǫ 2l for 2 ≤ k ≤ N .
For ∆ 1 , we have the same reductions, each component j of the column C ′ k can be rewritten as

N -1 l=1 1 (2l)! ψ j,1 [l](k 2l -1)ǫ 2l and the column C ′ N +k replaced by N -1 l=1 1 (2l)! ψ j,N +1 [l](k 2l -1)ǫ 2l for 2 ≤ k ≤ N . The term k 2 -1
2 ǫ 2 for 2 ≤ k ≤ N can factorized in ∆ 3 and ∆ 1 in each column k and N + k , and so these common terms can be simplified in numerator and denominator.

If we restrict the developments at order 1 in columns 2 and N + 2, we get respectively ϕ j1 [1] 

+ 0(ǫ) for component j of C 2 , ϕ jN +1 [1] + 0(ǫ) for component j of C N +2 of ∆ 3 , and ψ j1 [1] + 0(ǫ) for component j of C ′ 2 , ψ jN +1 [1] + 0(ǫ) for component j of C ′ N +2 of ∆ 1 .
This algorithm can be continued up to the columns C N , C 2N of ∆ 3 and C ′ N , C ′ 2N of ∆ 1 . Then taking the limit when ǫ tends to 0, q(x, t) can be replaced by Q(x, t) defined by :

Q(x, t) := ϕ 1,1 [0] . . . ϕ 1,1 [N -1] ϕ 1,N +1 [0] . . . ϕ 1,N +1 [N -1] ϕ 2,1 [0] . . . ϕ 2,1 [N -1] ϕ 2,N +1 [0] . . . ϕ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ϕ 2N,1 [0] . . . ϕ 2N,1 [N -1] ϕ 2N,N +1 [0] . . . ϕ 2N,N +1 [N -1] ψ 1,1 [0] . . . ψ 1,1 [N -1] ψ 1,N +1 [0] . . . ψ 1,N +1 [N -1] ψ 2,1 [0] . . . ψ 2,1 [N -1] ψ 2,N +1 [0] . . . ψ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ψ 2N,1 [0] . . . ψ 2N,1 [N -1] ψ 2N,N +1 [0] . . . ψ 2N,N +1 [N -1] (45)
So the solution of the NLS equation takes the form :

v(x, t) = exp(2it -iϕ) × Q(x, t)
So we get the result given in (44). 2

4 Families of quasi-rational solutions of order N depending on 2N -2 parameters

Here a theorem which states the structure of the quasi-rational solutions to the NLS equation is given. It was only conjectured in preceding works [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves Jour[END_REF].

Moreover we obtain here families depending on 2N -2 parameters for the N thorder Peregrine breather including families with 2 parameters constructed in preceding works and so we get other symmetries in these deformations than those were expected.

In this section we use the notations defined in the previous sections. The functions ϕ and ψ are defined in (39), ( 40), ( 41), (42).

Theorem 4.1 The function v defined by

v(x, t) = exp(2it -iϕ) × det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) ( 46 
)
is a quasi-rational solution of the NLS equation ( 6) quotient of two polynomials N (x, t) and D(x, t) depending on 2N -2 real parameters ãj and bj , 1 ≤ j ≤ N -1.

N and D are polynomials of degrees N (N + 1) in x and t.

Proof : From the previous result (45), we need to analyze functions ϕ k,1 , ψ k,1 and ϕ k,N +1 , ψ k,N +1 . Functions ϕ k,j and ψ k,j differ only by the term of the argument x 3,k , so only the study of functions ϕ k,j will be carried out. Then the study of functions ψ k,j can be easily deduced from the analysis of ϕ k,j . The expansions of these functions in ǫ are studied. We denote (l kj ) k,j∈ [1,2N ] the matrix defined by

l kj = ∂ 2j-2 ∂ǫ 2j-2 ϕ k1 , l k,j+N = ∂ 2j-2 ∂ǫ 2j-2 ϕ k,1+N , 1 ≤ j ≤ N, 1 ≤ k ≤ 2N, ∂ 0 ∂x 0 ϕ meaning ϕ. Each coefficient of the matrix (l kj ) k,j∈[1,2N
] must be evaluated, the power of x and t in the coefficient of ǫ 2(m-1) for the column m ∈ [1, 2N ]. We remark that with these notations, the matrix (l kj ) k,j∈ [1,2N ] evaluated in ǫ = 0 is exactly (n kj ) k,j∈ [1,2N ] defined in (45). Four cases must be studied depending on the parity of k.

1. We study l k1 for k odd, k = 2s + 1.

l k1 = (-1) s sin(2ǫ(1 -ǫ 2 ) 1 2 x + 4iǫ(1 -ǫ 2 ) 1 2 (1 -2ǫ 2 )t -i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e 1 ) × ǫ k-2 (1 -ǫ 2 ) -k-2 2 = (-1) s sin ǫ( p l=0 c 2l ǫ 2l x + 2i p l=0 c 2l ǫ 2l (1 -2ǫ 2 )t + 2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ k-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s sin ǫ( p l=0 (c 2l x + d 2l t + f 2l + O(ǫ p+1 ))ǫ 2l ) × ǫ k-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 (c 2n x+d 2n t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l+1 ×ǫ k-1 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 P n (x, t)ǫ 2n ) 2l+1 × ǫ k-1 r l=1 g 2l ǫ 2l + O(ǫ t )
where P n (x, t) is a polynomial of order 1 in x and t.

l k,1 = q l=0 ǫ 2l α0+...+αp=2l+1 β α0,...,αp P 0 (x, t) α0 . . . P p (x, t) αp ǫ 2(α1+2α2+pαp) ×ǫ 2s r l=1 g 2l ǫ 2l +O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l+1 Q α0,...,αp (x, t)ǫ 2(α1+2α2+pαp) × ǫ 2s r l=1 g 2l ǫ 2l + O(ǫ t ),
where Q α0,...,αp (x, t) is a polynomial of order 2l + 1 in x and t.

The terms in ǫ 0 are obtained for l = 0 in the two summations with α 0 = 1.

For column m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + k -1 = 2m -2, which gives l = m -s -1.

The notations given in (44) are used. We get the following result Proposition 4.1

deg(n 2s+1,m ) = 2(m -s) -1 for s ≤ m -1, n 2s+1,m = 0 for s ≥ m. (47) 
2. We study l k1 for k even, k = 2s. 

l k1 = (-1) s+1 cos(2ǫ(1 -ǫ 2 ) 1 2 x + 4iǫ(1 -ǫ 2 ) 1 2 (1 -2ǫ 2 )t -i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e 1 ) × ǫ k-2 (1 -ǫ 2 ) -k-2 2 = (-1) s+1 cos ǫ( p l=0 c 2l ǫ 2l x + 2i p l=0 c 2l ǫ 2l (1 -2ǫ 2 )t + 2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ k-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s+1 cos ǫ( p l=0 (c 2l x + d 2l t + f 2l + O(ǫ p+1 ))ǫ 2l ) × ǫ k-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = q l=0 (-1) l+d+1 ǫ 2l (2l)! ( p n=0 
(c 2n x+d 2n t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l ×ǫ k-2 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s+1 ǫ 2l ( 
g 2l ǫ 2l + O(ǫ t ),
where Q α0,...,αp (x, t) is a polynomial of order 2l in x and t.

The terms in ǫ 0 are obtained for l = 0 in the two summations with α 0 = 1.

For column m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + k -2 = 2m -2, which gives l = m -s.

With the notations given in (44), we have 

3. We study l k M 2 +1 for k odd, k = 2s + 1.

l k M 2 +1 = (-1) s cos(2ǫ(1-ǫ 2 ) 1 2 x-4iǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 )t+i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e M 2 +1
)

×ǫ M-k-1 (1 -ǫ 2 ) -M -k-1 2 = (-1) s (cos ǫ( p l=0 c 2l ǫ 2l x -2i p l=0 c 2l ǫ 2l (1 -2ǫ 2 )t -2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ M-k-1 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s (cos ǫ( p l=0 (c 2l x + d 2l t + f 2l )ǫ 2l + O(ǫ p+1 )) × ǫ M-k-1 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l)! ( p n=0 (c 2n x+d 2n t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l ×ǫ M-k-1 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l)! ( p n=0 P n (x, t)ǫ 2n + O(ǫ p+1 )) 2l × ǫ M-2s-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 ))
where P n (x, t) is a polynomial of order 1 in x and t.

l k, M 2 +1 = q l=0 ǫ 2l α0+...+αp=2l
β α0,...,αp P 0 (x, t) α0

. . . P p (x, t) αp ǫ 2(α1+2α2+pαp) × ǫ M-2s-2 r l=1

g 2l ǫ 2l + O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l Q α0,...,αp (x, t)ǫ 2(α1+2α2+pαp) × ǫ M-2s-2 r l=1 g 2l ǫ 2l + O(ǫ t ),
where Q α0,...,αp (x, t) is a polynomial of order 2l in x and t.

The terms in ǫ 0 (column M 2 + 1) are obtained for l = 0 in the two summations with α 0 = 1. For column M 2 + m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + 2(N -s -1) = 2m -2, which gives l = m + s -N . Then we get the following result

Proposition 4.3 deg(n 2s+1,m+ M 2 ) = 2m + 2s -M for s ≥ M 2 -m, n 2s+1,m = 0 for s < M 2 -m. ( 49 
)
for k even, k = 2s.

l k M 2 +1 = (-1) s sin(2ǫ(1-ǫ 2 ) 1 2 x-4iǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 )t+i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e M 2 +1
)

×ǫ M-k-1 (1 -ǫ 2 ) -M -k-1 2 = (-1) s sin ǫ( p l=0 c 2l ǫ 2l x -2i p l=0 c 2l ǫ 2l (1 -2ǫ 2 )t -2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ M-k-1 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s sin ǫ( p l=0 (c 2l x + d 2l t + f 2l )ǫ 2l + O(ǫ p+1 )) × ǫ M-k-1 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 (c 2n x+d 2n t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l+1 ×ǫ M-k ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 P n (x, t)ǫ 2n + O(ǫ p+1 )) 2l+1 × ǫ M-2s ( r l=1 g 2l ǫ 2l + O(ǫ r+1 ))
where P n (x, t) is a polynomial of order 1 in x and t. l k,1 = q l=0 ǫ 2l α0+...+αp=2l+1 β α0,...,αp P 0 (x, t) α0

. . . P p (x, t) αp ǫ 2(α1+2α2+pαp) × ǫ M-2s r l=1

g 2l ǫ 2l + O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l+1 Q α0,...,αp (x, t)ǫ 2(α1+2α2+pαp) × ǫ M-2s r l=1 g 2l ǫ 2l + O(ǫ t ),
where Q α0,...,αp (x, t) is a polynomial of order 2l + 1 in x and t. The terms in ǫ 0 are obtained for l = 0 in the two summations with α 0 = 1. For column M 2 + m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + M -k = 2m -2, which gives l = m + s -N -1. Using the notations given in (44), we get the following result Proposition 4.4

deg(n 2s,m+ M 2 ) = 2m + 2s -M -1 for s ≥ M 2 + 1 -M, n 2s,m+ M 2 = 0 for s < M 2 + 1 -m. (50) 
These results can be rewritten in the following way Proposition 4.5

deg(n j,k ) = 2k -j for j ≤ 2k, n j,k = 0 for j > 2k, deg(n j,k ) = 2k + j -2M -1 for j ≥ 2M + 1 -2k, n j,k = 0 for j < 2M + 1 -2k. ( 51 
)
The degree of the determinant of the matrix (n kj ) k,j∈ [1,2N ] can now be evaluated.

From the previous analysis, we see that x and t have necessarily the same power in each n kj . The maximal power in x and t, is successively taken in each column.

It is realized by the following product

N j=1 n j,j N j=1 n N +j,2N +1-j .
Applying the result given in (51) we get defines a quotient of two polynomials, each of them of degree N (N + 1), and this proves the result. Parameters a 1 = N -1 k=1 ãk ǫ k and a 1 = N -1 k=1 ãk ǫ k must be chosen in the following way. The term ǫ k must be a power of ǫ to get a nontrivial solution; ǫ k must be a strictly positive number a in order to have a finite limit when ǫ goes to 0. If the power of ǫ is superior to 2N -2, the derivations going up to 2N -2, then this coefficient becomes 0 when the limit is taken when ǫ goes to 0 and so has no relevance in the expression of the limit. 2

deg(det(n kj ) k,j∈[1,2N ] ) = N j=1 deg(n j,j ) + N j=1 deg(n N +j,2N +1-j ) = N j=1 2j -j + N j=1 2(M + 1 -j) -2M -1 + M 2 + j = N j=1 + N j=1 N + 1 -j = N (N + 1

Conclusion

Here we proved the structure of quasi-rational solutions to the one dimensional focusing NLS equation at order N . They can be expressed as a product of an exponential depending on t by a ratio of two polynomials of degree N (N + 1) in x and t. If we choose ãi = bi = 0 for 1 ≤ i ≤ N -1, we obtain the classical (analogue) Peregrine breather. Thus these solutions appear as 2N -2-parameters deformations of the Peregrine breather of order N . The solutions for orders 3 and 4 first found by Matveev have also been explicitly found by the present author [START_REF] Gaillard | Deformations of third order Peregrine breather solutions of the NLS equation with four parameters[END_REF][START_REF] Gaillard | Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation[END_REF]. We have also explicitly found the solutions at order 5 with 8 parameters [START_REF] Gaillard | The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation[END_REF]: these expressions are too extensive to be presented : it takes 14049 pages! For other orders 6, 7, 8, the solutions are also explicitly found but are too long to be published in any review. In the relative works [START_REF] Gaillard | Ten parameters deformations of the sixth order Peregrine breather solutions of the NLS equation[END_REF][START_REF] Gaillard | Higher order Peregrine breathers, their deformations and multi-rogue waves Jour[END_REF][START_REF] Gaillard | Two parameters wronskian representation of solutions of nonlinear Schrödinger equation, eight Peregrine breather and multi-rogue waves Jour[END_REF][START_REF] Gaillard | The Peregrine breather of order nine and its deformations with sixteen parameters solutions of the NLS equation accepted[END_REF][START_REF] Gaillard | Eighteen parameter deformations of the Peregrine breather of order ten solutions of the NLS equation Int[END_REF] only the analysis has been done and figures of deformations of the Peregrine breathers has been realized. The solutions for order 9 with 16 parameters [START_REF] Gaillard | The Peregrine breather of order nine and its deformations with sixteen parameters solutions of the NLS equation accepted[END_REF] and respectively for order 10 with 18 parameters are also completely found [START_REF] Gaillard | Eighteen parameter deformations of the Peregrine breather of order ten solutions of the NLS equation Int[END_REF]. We still insist on the fact that quasi rational solutions of NLS equation can be expressed as a quotient of two polynomials of degree N (N + 1) in x and t dependent on 2N -2 real parameters by an exponential depending on time. Among these aforementioned solutions of order N , there is one which has the largest module : it is the solution obtained in this representation when all the parameters are equal to 0; one obtains the Peregrine breather order N . His importance is due to the fact that among the solutions of order N , its module is largest, equal to 2N + 1. This result first formulated by Akhmediev has just been proved recently [START_REF] Gaillard | Other 2N-2 parameters solutions of the NLS equation and 2N+1 highest amplitude of the modulus of the N-th order AP breather accepted in[END_REF]. In the recent studies proposed by the author, the solutions of order N can be represented by their module in the plane (x; t). With the representation given in this article, one obtains at order N , the configurations containing N (N +1)/2 peaks, except the special case of Peregrine breather. These configurations can be classified according to the values of the parameters a i or b i for i varying between 1 and N -1. It is important to note that the role played by a i or b i for a given index i is the same one, in obtaining the configurations. The study refers to the analysis of the solutions when only one of the parameters is not to 0. Among these solutions, one distinguishes two types of configurations; for a 1 or b 1 not equal to 0, one observes triangular configurations with N (N + 1)/2 peaks. For a i or b i not equal to 0 and 2 ≤ i ≤ N -1, one observes concentric rings. The simplest structure is obtained for a N -1 or b N -1 not equal to 0 : one obtains only one ring of 2N -1 peaks with in his center Peregrine breather of order N -2; this fact was also first formulated by Akhmediev. The detailed study of the other structures is being analyzed. We hope to be able to give results soon. We can conclude that the method described in the present paper provides a very efficient and powerful tool to get explicit solutions to the NLS equation and to understand the behavior of rogue waves. There are currently many applications in different fields as recent works by

Proposition 4. 2 deg

 2 (n 2s,m ) = 2(m -s) for s ≤ m, n 2s,m = 0 for s > m.

Akhmediev et al. [36] or Kibler et al. [37] attest it in particular. This study leads to a better understanding of the phenomenon of rogue waves, and it would be relevant to go on with higher orders.