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Abstract. Dynamic reconfigurations that modify the architecture of
component-based systems without incurring any system downtime need
to preserve the architectural consistency. In this context, new guarded
reconfigurations allow us to build reconfigurations based on primitive
reconfiguration operations using sequences of reconfigurations and (un-
like most of the related work on reconfigurations) the alternative and
the repetitive constructs, while preserving architectural consistency for
non primitive reconfigurations. Then, after enriching the model with
interpreted configurations and reconfigurations in a consistency com-
patible way, a conformance relation is exploited to validate component
systems’ implementations within the environment supporting the Fractal
and Frascati frameworks. A practical contribution consists of promising
experimental results obtained thanks to our implementations, notably
on a cloud-based multi-tier hosting environment model managed as a
component system.

1 Introduction

Dynamic reconfigurations that modify the architecture of self-adaptive [1]
component-based systems without incurring any system downtime must happen
not only in suitable circumstances, but also need to preserve the architectural
consistency. Whereas the former can be ensured by adaptation policies [1,2],
the latter is directly related to the definition of reconfigurations and to the
reconfiguration ordering/protocol [3,4].

In [3], it is assumed that the reconfigutations always make evolve the compo-
nent assembly from one consistent architecture to another consistent architecture,
only through a path of architecturally consistent architectures. However, primitive
reconfigurations like unbind, stop, etc. may disrupt such a path. With relation to
consistency constraints defined in [5] over component-based architectures, their
preservation of the system under scrutiny was uneasy to prove, mostly because
of the lack of precise semantics for primitive reconfiguration operations. There-
fore, when considering more complicated reconfigurations composed of sequences,
repetitions, or choices over primitive reconfiguration operations, to address the
? This work has been partially funded by the Labex ACTION, ANR-11-LABX-0001-01.
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above-mentionned issue, we propose to express reconfigurations’ preconditions
and postconditions using the concept of weakest precondition [6]. This precise
and concise formalism allows us to express primitive and non primitive guarded
reconfigurations; this is the first contribution simplifying both reconfiguration
protocols and adaptation policies.

Then, after enriching the model with interpreted configurations and reconfig-
urations in a consistency-compatible way, a conformance relation is exploited to
validate implementations of a component architectural model developped within
our architecture manager supporting the Fractal [7] and Frascati [8] frameworks.

This second practical contribution allows us, not only, to simulate a desired
run of a system being reconfigured, but, also, to generate all (or a subset of the)
possible reconfiguration combinations useful for example for a (bounded) reacha-
bility analysis. The paper reports on promising experimental results obtained
thanks to our implementations, notably on a cloud-based multi-tier application
hosting environment model managed as a component software architecture.

The paper is organised as follows: Section 2 presents, as a case study, a cloud-
based multi-tier application hosting environment managed as a component-based
system. Background information on our component-based reconfiguration model,
as well as, elements of operational semantics are given in Sect. 3. In Sect. 4 a
richer interpreted reconfiguration model is shown to be weakly simulated by
the more abstract model; nevertheless, this simulation respects non-divergency.
Using several case studies, Section 5 describes conformant implementations of
the interpreted model within different environments. Section 6 presents related
work and our conclusion.

2 Case Study

Internet service providers and telecommunications operators tend more and more
to define themselves as cloud providers. In this context, automation of software
and (virtual) hardware installation and configuration is paramount. It is not
enough for an application to be cloud-ready; it has to be scalable and scalability
mechanisms need to be integrated in the core of the cloud management system.

We consider a typical three-tier web application using a front-end Web
server, a middle-ware application server, and a back-end data providing a
service such as a database or a data store. Figure 1 shows a single virtual
machine (or VM ) hosting together the three services of such an application.

virtualMachine

httpServer appServer dataServer

osObs

httpObs

appObs

dataObs

Fig. 1: Managed Virtual Machine with
Three-tier Application Compoments

The VM is represented as a compo-
site component virtualMachine contai-
ning sub-components representing each
service (httpServer, appServer, and
dataServer) of the application. Each of
the service sub-component has two pro-
vided interfaces: one to provide its service
and another one used to monitor the service.
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Furthermore, the VM of Fig. 1 also contains four observers, that are sub-
components used to monitor services. The sub-component osObs is used to
monitor the Operating System of the VM. It is also bound to the sub-components
httpObs, appObs, and dataObs used respectively to monitor the services of
the httpServer, appServer, and dataServer sub-components. Finally, the VM
composite component itself has two provided interfaces: one used to provide
services and a second one used for monitoring.

Of course, a VM does not have to be monitored, nor have to host the three
types of services. Figure 2 illustrates a cloud environment, clouEnv, containing
a VM used for development purpose (vmDev) that contains the three tiers of
the application without being monitored; such a VM is called unmanaged. The
three other VM are all monitored, i.e., managed, and each contains a tier of the
application. The reader can note that each of the managed VM contains only
the observers responsible for monitoring the operating system and the type of
service provided. The cloud environment has three provided interfaces: two to
provide its service, whether it is or not in a development version, and another
one, used for monitoring, connected to a sub-component monitorObs bound to
all the monitoring interfaces of the managed VM.

cloudEnv

vmHttp

httpServer

osObs httpObs

vmApp

appServer

osObs appObs

vmData

dataServer

osObs dataObs

vmDev

httpServer appServer dataServer

monitorObs

Fig. 2: Cloud Environment Example

A cloud provider must
be able to provide on-
demand (sets of) VMs
configured with the
right service compo-
nents and the appro-
priate monitoring. In
this context, we study
the provisioning of a
single VM as illus-

trated Fig. 1. Depending on the services to provide and the monitoring state
(managed vs unmanaged) the necessary components should be added. During the
life cycle of the VM some configuration changes can happen; we consider them
as reconfigurations of a component-based system.

3 Component-based Architecture

3.1 Configurations and Reconfigurations

Component models can be very heterogeneous. Most of them consider software
components that can be seen as black boxes (or grey boxes if some of their inner
features are visible) having fully described interfaces. Behaviours and interactions
are specified using components’ definitions and their interfaces. In this section,
we revisit the architectural reconfiguration model introduced in [5,10]. In general,
the system configuration is the specific definition of the elements that define or
prescribe what a system is composed of, while a reconfiguration can be seen as a
transition from a configuration to another.
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Following [10], a configuration is defined to be a set of architectural elements
(components, required or provided interfaces, and parameters) together with
relations to structure and to link them.

Definition 1 (Configuration). A configuration c is a tuple 〈Elem,Rel〉 where

– Elem = Components ] Interfaces ] Parameters ] Types is a set of
architectural elements, such that
• Components is a non-empty set of the core entities, i.e components;
• Interfaces = RequiredInts ] ProvidedInts is a finite set of the (re-
quired and provided) interfaces;
• Parameters is a finite set of component parameters;
• Types = ITypes ] PTypes is a finite set of the interface types and the
parameter data types;

– Rel =
{
Container ] ContainerType ] Contingency
] Parent ] Binding ] Delegate ] State ] V alue

is a set of architectural relations which link architectural elements, such that
• Container : Interfaces ] Parameters→ Components is a total func-

tion giving the component which supplies the considered interface or the
component of a considered parameter;
• ContainerType : Interfaces ] Parameters → Types is a total func-

tion that associates a type to each (required or provided) interface and to
each parameter;
• Contingency : RequiredInts→ {mandatory, optional} is a total func-

tion indicating whether each required interface is mandatory or optional;
• Parent ⊆ Components × Components is a relation linking a sub-
component to the corresponding composite component3;
• Binding : ProvidedInts → RequiredInts is a partial function which
binds together a provided interface and a required one;
• Delegate : Interfaces → Interfaces is a partial function to express
delegation links;
• State : Components→ {started, stopped} is a total function giving the
status of instantiated components;
• V alue : Parameters → {t|t ∈ PType} is a total function which gives
the current value of each parameter.

We also introduce a set CP of configuration propositions which are constraints
on the architectural elements and the relations between them. These propositions
are specified using first-order logic formulae [11]. The interpretation of functions,
relations, and predicates over Elem is done according to basic definitions in [11]
and Def. 1. The interested reader is referred to [5].

Let C = {c, c1, c2, . . .} be a set of configurations. An interpretation function
l : C → CP gives the largest conjunction of cp ∈ CP evaluated to true on c ∈ C.
3 For any (p, q) ∈ P arent, we say that q has a sub-component p, i.e. p is a child of q.
Shared components (sub-components of multiple enclosing composite components)
can have more than one parent.
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We say that a configuration c = 〈Elem,Rel〉 satisfies cp ∈ CP , when l(c)⇒ cp;
in this case, cp is valid on c, otherwise, c does not satisfy cp.

Among the configuration propositions, the architectural consistency cons-
traints CC in Table 1 express requirements on component assembly common to
all the component architectures [5]. Intuitively,

– a component supplies, at least, one provided interface (CC.1);
– the composite components have no parameter (CC.2);
– a sub-component must not include its own parent component (CC.3);
– two bound interfaces must have the same interface type (CC.4) and their

containers are sub-components of the same composite (CC.5);
– when binding two interfaces, there is a need to ensure that they have not been

involved in a delegation yet (CC.6); similarly, when establishing a delegation
link between two interfaces, the specifier must ensure that they have not yet
been involved in a binding (CC.7);

– a provided (resp. required) interface of a sub-component is delegated to at
most one provided (resp. required) interface of its parent component (CC.8),
(CC.9) and (CC.11); the interfaces involved in the delegation must have
the same interface type (CC.10);

– a component is started only if its mandatory required interfaces are bound
or delegated (CC.12).

Table 1: Consistency Constraints
∀c.(c ∈ Components ⇒ (∃ip.(ip ∈ P rovidedInts ∧ Container(ip) = c))) (CC.1)

∀c, c
′ ∈ Components.(c 6= c

′ ∧ (c, c
′) ∈ P arent ⇒ ∀ p.(p ∈ P arameters ⇒ Container(p) 6= c

′)) (CC.2)

∀c, c
′ ∈ Components.((c, c

′) ∈ P arent
+ ⇒ c 6= c

′) (CC.3)

∀ip ∈ P rovidedInts,
∀ir ∈ RequiredInts

.

(
Binding(ip) = ir ⇒ ContainerT ype(ip) = ContainerT ype(ir)

∧Container(ip) 6= Container(ir)

)
(CC.4)

∀ip ∈ P rovidedInts,
∀ir ∈ RequiredInts

.

(
Binding(ip) = ir ⇒ ∃c ∈ Components.

(
(Container(ip), c) ∈ P arent
∧(Container(ir), c) ∈ P arent

))
(CC.5)

∀ip ∈ P rovidedInts,
∀ir ∈ RequiredInts, ∀id ∈ Interfaces

.

(
Binding(ip) = ir ⇒ Delegate(ip) 6= id

∧Delegate(ir) 6= id

)
(CC.6)

∀i, i
′ ∈ Interfaces.

(
Delegate(i) = i

′ ⇒ ∀ip.(ip ∈ P rovidedInts ⇒ Binding(ip) 6= i)
∧∀ir.(ir ∈ RequiredInts ⇒ Binding(i) 6= ir)

)
(CC.7)

∀i, i
′ ∈ Interfaces.(Delegate(i) = i

′ ∧ i ∈ P rovidedInts ⇒ i
′ ∈ P rovidedInts) (CC.8)

∀i, i
′ ∈ Interfaces.(Delegate(i) = i

′ ∧ i ∈ RequiredInts ⇒ i
′ ∈ RequiredInts) (CC.9)

∀i, i
′ ∈ Interfaces.

(
Delegate(i) = i

′ ⇒ ContainerT ype(i) = ContainerT ype(i′)
∧ (Container(i), Container(i′)) ∈ P arent

)
(CC.10)

∀i, i
′
, i” ∈ Interfaces.

(
(Delegate(i) = i′ ∧Delegate(i) = i” ⇒ i′ = i”)
∧(Delegate(i) = i” ∧Delegate(i′) = i” ⇒ i = i′)

)
(CC.11)

∀ir ∈ RequiredInts.

(
State(Container(ir)) = started
∧Contingency(ir) = mandatory

⇒ ∃i ∈ Interfaces.

(
Binding(i) = ir
∨Delegate(i) = ir
∨Delegate(ir) = i

))
(CC.12)

Definition 2 (Consistent configuration). Let c = 〈Elem,Rel〉 be a con-
figuration and CC the consistency constraints. The configuration c is consis-
tent, written consistent(c), if l(c) ⇒ CC. We write consistent(C) when
∀c ∈ C.consistent(c).

3.2 Reconfiguration Model and Consistency Propagation

Reconfigurations make the component-based architecture evolve dynamically.
They are composed of primitive operations such as instantiation/destruction
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(new/destroy) of components; addition/removal (add/remove) of components;
binding/unbinding (bind/unbind) of component interfaces; starting/stopping
(start/stop) components; setting components’ parameters values (update). These
primitive operations obey pre/post predicates. For example, before adding a
sub-component comp1 to a composite comp2, one must verify, as in Table 2, that
a) comp1 and comp2 exist (2) and are different (3), b) comp2 is not a descendant
of comp1 (4), and c) comp2 has no parameter (5). When these preconditions are
met, the postcondition consists in adding (comp1, comp2) to the Parent relation,
as expressed by Radd = Parent ∪ {(comp1, comp2)} (1).

Table 2: Preconditions of the add primitive reconfiguration operation
comp1, comp2 ∈ Components (2)

comp1 6= comp2 (3)
(comp2, comp1) 6∈ P arent+(4)

∀p ∈ P arameters.Container(p) 6= comp2 (5)

Inspired by the predicate-based semantics of programming language con-
structs [12], we consider a reconfiguration operation ope, and two configurations
c and c′ such that the transition between c and c′ is performed using ope. Then,
given R, some conditions on the configuration of the system under scrutiny,
the notation wp(ope,R) denotes, as in [6], the weakest precondition for the con-
figuration c such that activation of ope is guaranteed to lead to c′ satisfying
the postcondition R. More formally, in our case, if l(c) ⇒ wp(ope,R) then
l(c′)⇒ R. Therefore, the weakest precondition wp(add,Radd) is the conjunction
of preconditions (2) to (5).

Inspired by [6] and using the same notations, we propose in Table 3 the
grammar of axiom <guarded reconfiguration> for guarded reconfigurations. Let
<ope> represent a primitive reconfiguration operation, also called primitive
statement. We extend the set of primitive reconfiguration operations with the skip
operation, which does not induce any change on a given configuration. Hence,
for any postcondition R, we have wp(skip,R) = R. Afterwards, like in [6], the
semantics of the “;” operator is given by wp(S1;S2, R) = wp(S1, wp(S2, R)) where
S1 and S2 are statements.

Table 3: Guarded reconfigurations grammar
<guarded reconfiguration> ::= <guard> → <guarded list>
<guard> ::= <boolean expression>
<guarded list> ::= <statement>{; <statement> }
<guarded reconfiguration set> ::= <guarded reconfiguration>{[] <guarded reconfiguration> }
<alternative construct> ::= if <guarded reconfiguration set> fi
<repetitive construct> ::= do <guarded reconfiguration set> od
<statement> ::= <alternative construct> | <repetitive construct> | <ope>

If a guarded reconfiguration set is made of more than one guarded reconfigu-
ration, they are separated by the [] operator4. To present the semantics of the
alternative construct, let IF denote if B1 → S1[] . . . []Bn → Sn fi and BB denote
(∃i : 1 ≤ i ≤ n : Bi), then wp(IF,R) = BB ∧ (∀i : 1 ≤ i ≤ n : Bi ⇒ wp(Si, R)).
For the repetitive construct, let DO denote do B1 → S1[] . . . []Bn → Sn do. Let
H0(R) = R ∧ ¬BB and for k > 0, Hk(R) = wp(IF,Hk−1(R)) ∨ H0(R), then
4 As in [6], the order in which guarded reconfigurations appear is semantically irrelevant.
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wp(DO,R) = ∃k : k ≥ 0 : Hk(R). Intuitively, Hk(R) is the weakest precondition
guaranteeing termination after at most k selections of a guarded list, leaving the
system in a configuration such that R holds. Let Rrun = R ∪ {run} be a set
of operations, where R is a finite set of guarded reconfigurations instantiated
wrt. the system under consideration, and run is the name of a generic action
representing all the running operations5 of the component-based system.

Definition 3 (Reconfiguration model). The operational semantics of a
component-based system is defined by the labelled transition system S =
〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of configurations, C0 ⊆ C is
a set of initial configurations, → ⊆ C ×Rrun × C is the reconfiguration relation
obeying wp() predicates, and l : C → CP is a total interpretation function.

Let us note c ope→ c′ for (c, ope, c′) ∈→. Given the model S = 〈C, C0,Rrun ,→
, l〉, a path σ of S is a sequence of configurations c0, c1, c2, . . . such that
∀i ≥ 0. ∃ opei ∈ Rrun.(ci

opei→ ci+1). An execution is a path σ in Σ s.t.
σ(0) ∈ C0. We write σ(i) to denote the i-th configuration of σ. The nota-
tion σi denotes the suffix path σ(i), σ(i + 1), . . ., and σji denotes the segment
path σ(i), σ(i+ 1), . . . , σ(j − 1), σ(j). Let Σ denote the set of paths, and Σf

(⊆ Σ) the set of finite paths. A configuration c′ is reachable from c when there
is a path σ = c0, c1, . . . , cn in Σf s.t. c = c0 and c′ = cn with n ≥ 0. Let c
be a configuration, the set of all configurations reachable from c is denoted
reach(c). This notion can be lifted from configurations to sets of configurations
by reach(C) = {reach(c) | c ∈ C}.

Proposition 1 (Consistency propagation). Given C0 ⊆ C, consistent(C0)
implies consistent(reach(C0)).

Proof (sketch). We start the proof (see Appendix A for a more complete proof)
by showing that each primitive operation ope preserves configuration consistency.
We use this result to establish that a guarded reconfiguration having a sequence
of primitive statements in its guarded list also preserves consistency.

This allow us to show that guarded reconfigurations having a non primitive
statement based on a guarded reconfiguration set made only of primitive state-
ments (G → fi grs fi or G → do grs od, where grs denotes B0 → ope0[]B1 →
ope1[] . . . []Bn → open) also preserve consistency using only hypothesis on the
statements’ preconditions and postconditions.

Therefore, with the same reasoning, considering non primitive statements
instead of primitive ones and using only hypothesis on statements’ preconditions
and postconditions, we can prove that consistency is preserved a) for guarded
reconfigurations having a guarded list composed of a sequence of (non primitive)
statements (G→ S0;S1; . . . ;Sn) and b) for guarded reconfigurations having as
guarded list a statement (G→ fi grs fi or G→ do grs od, where grs denotes
B0 → S0[]B1 → S1[] . . . []Bn → Sn). ut
5 The normal running of different components also changes the architecture, e.g., by
modifying parameter values or stopping components.
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4 Interpreted Architecture Model

In the specification model, primitive operations and guarded reconfigurations
were left abstract enough and run was uninterpreted. A formal semantics for
the component-based system with interpreted operations can be obtained by
enriching the configurations with more precise memory states and the effect of
these actions upon memory.

4.1 Interpreted Configurations and Reconfigurations

Let us consider a set (infinite, in general) GM = {u, ...} of shared global memory
states, and a set (infinite, in general) LM = {v, ...} of memory states local to a
given component. These memory states are read and modified by the primitive
and non-primitive reconfigurations, and also by actions implementing run.

Interpreted configurations. In addition to already interpreted parameters and
interfaces (cf. [5] for more detail), the state of components can be described
more precisely by using local memory states. The set of the interpreted states
of components is the least set StateI s.t. if s1, . . . , sn are elements in State6,
v1, . . . , vn ∈ LM are local memory states, then ((s1, v1), . . . , (sn, vn)) is in StateI .
Then, the set of the interpreted configurations CI is defined by GM × StateI .

Interpreted transitions. Our basic assumption is that all primitive actions have
a deterministic effect upon the local and global memory, always terminate (either
normally or exceptionally), and are effective. For each primitive reconfiguration
operation ope, the corresponding interpreted reconfiguration, denoted by ope,
has equivalent or stronger preconditions, such that all constructs behave deter-
ministically. A non-determinstic global behavior is produced by the arbitrary
interleaving of components.

Formally, all the actions ope ∈ Rrun are interpreted as mappings ope
from GM × LM into itself. Additionaly, there are some actions specific to
the interpretation, Rint, for example for testing guards. We say that I =
(GM,LM, (ope)ope∈Rrun∪Rint) is an interpretation of the underlying Rrun. Let
IRrun

denote the class of all interpretations. This construction leads to

Definition 4 (Interpreted reconfiguration model). The interpreted oper-
ational semantics of component-based system is defined by the labelled tran-
sition system SI = 〈CI , C0

I ,RrunI ,→I , lI〉 where CI is a set of configura-
tions together with their memory states, C0

I is a set of initial configurations,
RrunI = {ope | ope ∈ Rrun ∪ Rint}, →I ⊆ CI ×RrunI × CI is the interpreted
reconfiguration relation, and lI : CI → CP is a total interpretation function.

It is easy to see that, by construction, consistent(C0
I). Moreover, if

consistent(c) and c ope→I c′ then consistent(c′).

6 Viewed as a relation.
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4.2 Compatible Interpretation

To establish links between the reconfiguration model and the corresponding
interpreted model, we propose to use a version of the classical τ -simulation quasi-
ordering [13], while relabeling the operations in Rint by τ . For all ope ∈ R∪ {ε},
where ε denotes the empty word, we write c ope⇒ c′ when there are n,m ≥ 0 such
that c τ

nope τm

−→ c′.

Definition 5 (d-simulation). Let S1 and S2 be two models over R. A binary
relation vd⊆ C1 × C2 is a d-simulation iff, for all ope in R ∪ {ε}, (c1, c2) ∈vτ
implies 1) whenever c1

ope⇒1 c
′
1, then there exists c′2 ∈ C2 such that c2

ope⇒2 c
′
2 and

(c′1, c′2) ∈vd, and 2) c1 6
ope⇒ implies c2 6

ope→ .

We write S1 vd S2 when ∀c0
1 ∈ C0

1∃c0
2 ∈ C0

2 .(c0
1, c

0
2) ∈vd.

Let us consider interpreted reconfiguration operations in RrunI and the corre-
sponding non-interpreted counterpart in Rrun. When relabeling the operations
in Rint by τ , we can state–modulo the overline notation–that the more ab-
stract model τ -simulates the interpreted model (because of the non-determinism
when testing guards in the non-interpreted model); nevertheless, this simulation
respects non-divergency.

Theorem 1 (Compatibility). SI vd S.

Proof (sketch). There are two cases for ope ∈ Rrun ∪ Rint. As τ ’s covering
operations in Rint are introduced to evaluate guards of sequences of guarded
reconfigurations, they do not form infinite cycles of τ -transitions. So, there always
must be a way out of these cycles, if any, by a transition of label ope.

By construction any primitive reconfiguration operation of the interpreted
model has preconditions equivalent to or stronger than its counterpart in the
non-interpreted model. This way, by using hypothesis on weakest preconditions in
[6], we can prove that guarded reconfigurations composed of primitive statements,
G→ s, with s ∈ RrunI\Rint have preconditions equivalent to or stronger than
the corresponding statement s ∈ Rrun. Consequently, starting from initial config-
urations, for any c1 ∈ CI , if consistent(c1) there is c2 ∈ C s.t. consistent(c2),
and if a guarded reconfiguration G→ s is applied to c1 there exists a guard G′, s.t.
G⇒ G′ and G′ → s applies to c2. Moreover, the consistent target configurations
are in vd too because of their guards.

If no ope can be performed in c1 ∈ CI after having tested some guards covered
by τ , c1 is not consistent, and consequently neither is c2 ∈ C. At this step,
only several primitive reconfigurations can be applied, as their preconditions are
equivalent, no ope can be performed in c2 either. ut

4.3 Property Presevation

Theorem 1 can be exploited for property preservation. For example, as the
reachability properties are compatible with vd, this leads us, consequently, to:
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Proposition 2. If configuration c is not reachable in S, it is not reachable in any
SI . Conversely, if configuration c is reachable in S, there exists an interpretation
I such that c is reachable in SI .

In addition, safety properties expressed via non-reachability properties can
be ensured. Moreover, as a consequence of Theorem 1 and Propositions 1 and 2,
we can state:

Proposition 3. Let SI = 〈CI , C0
I ,RrunI ,→I , lI〉 be the interpreted model and

S = 〈C, C0,Rrun ,→, l〉 the specification model. Given C0
I ⊆ CI , if SI vd S then

consistent(C0
I) implies consistent(reach(C0

I)).

It must be noticed that differently from [3], we do not assume that the recon-
figutations always make evolve the component assembly from one consistent
architecture to another consistent architecture, only through a path of consistent
configurations. Indeed, this assumption seems to be too strong notably wrt.
primitive reconfigurations.

5 Implementation and Architecture Conformance

5.1 Implementation Protocol

We developed a prototype tool, contained in a java package named cbsdr7, support-
ing the interpreted reconfiguration model to design and simulate component-based
systems with dynamic reconfigurations. Using generic java classes, we can use
our implementation to perform reconfigurations on applications deployed using
Fractal [7] or FraSCAti [8]. The Fractal framework is based on a hierarchical and
reflective component model. Its goal is to reduce the development, deployment,
and maintenance costs of software systems in general8. FraSCAti is an open-source
implementation of the Service Component Architecture9 (SCA). It can be seen
as a framework having a Fractal base with an extra layer implementing SCA
specifications. In [8], a smart home scenario illustrates the capabilities and the
various reconfigurations of the FraSCAti platform.

Figure 3 shows the cbsdr interface displaying a given state of a the VM from
our running example developed using Fractal (top frame). The left frame shows
the various states of the run under scrutiny, whereas the bottom frame can be
used to display various information such as the evolution of parameters of the
model, console output, or the outcome of reconfigurations performed.

This interface allows the monitoring of a component-based system and the
generation of (external) events during a run of cbsdr, but can also be used
to analyse the logs of a run already performed. It is interesting to note that
primitive, as well as, non primitive reconfiguration operations can be performed
and analysed.
7 cbsdr stands for Component-Based System Dynamic Reconfiguration
8 http://fractal.ow2.org/tutorial/index.html
9 http://www.oasis-opencsa.org/sca
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Fig. 3: Model of the VM component-based system displayed in our interface
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Fig. 4: cbsdr Implementation Architecture

Thanks to this application, in
addition to the above men-
tionned fonctionalities, we are
able to perform adaptations
using dynamic reconfigura-
tions triggered by temporal
properties at runtime, as de-
scribed in [2]. In this case, the
implementation (see Fig. 4)
works as follows: a) adapta-
tion polices are loaded and
applied using a control loop,
b) FTPL10 expressions are
evaluated and (if any) candi-
date reconfigurations are or-
dered by priority using fuzzy

logic values embedded in adaptation policies, c) candidate reconfigurations are
applied to the component-based system model using our reconfiguration semantics
in order to verify that the corresponding target configuration does not violate
any of the properties to enforce, d) the target configuration obtained using the
reconfiguration with highest priority that do not violate any of the properties to
enforce is applied to the component based system using a protocol similar to the
one described in [3].

The fact that we are using temporal properties based on architectural relations
as well as internal and external events allows us to significantly reduce commu-
nication overhead a) by, as in [14], using decentralised evaluation of temporal
10 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its

relation to Fractal-like components and to first-order integrity constraints over them.



12 O. Kouchnarenko, J-F. Weber

properties or b) by allowing the user to submit simultaneous (external) events to
the system, as explained below.

5.2 Architecture Conformance

The reconfiguration model is a correct approximation of the more realistic
interpreted implementation model. This fact can be expressed by using the
notion of conformance of the component architecture model. Basically, following
the most commonly used ioco relation in [15], an implementation SI is conformant
to its specification S if, after a trace of S, one should foresee the output of SI in
S, and the implementation is authorised to reach a state where it cannot produce
any output only if this is the case in the specification too.

Using various simulation relations permits expressing trace-inclusion-based
conformance and stronger conformance relations at the level of transition systems.
Thus, thanks to the proof arguments of Theorem 1, and the subsequent trace
inclusion modulo τ , we have the following conformance result, with SIcbsdr

being
the cbsdr implementation.

Proposition 4. SIcbsdr
is conformant to S.

5.3 Running Example

We consider a VM represented, as in Fig. 1, as a composite compo-
nent virtualMachine that may contain sub-components representing services
httpServer, appServer, or dataServer of an application. This VM may also
contain observers, that are sub-components used to monitor services. The sub-
component osObs is used to monitor the Operating System of the VM and
can be bound to the sub-components httpObs, appObs, or dataObs used respec-
tively to monitor the services of the httpServer, appServer, and dataServer
sub-components.

The Fractal and FraSCAti versions of the VM example can be controlled
by our implementation using external events as init, manage, setdata, etc., to
(respectively) initialise the VM, monitor the VM, or set the data server of the
VM up. If the VM is monitored, it is described as managed, otherwise it is said
to be unmanaged. Depending of the service to provide and the state of the VM
(managed vs. unmanaged), only the necessary component should be added.

For example, let us consider a managed VM providing only the HTTP service:
it contains the httpServer component and, since it is managed, it also contains
the osObs and the httpObs components. Therefore the generation of the setdata
external event triggers (via adaptation policies) the addition of the dataServer
and dataObs components. Of course if the initial VM was unmanaged, the
generation of the setdata external event would only result in the addition of
the dataServer component. Nevertheless, in this case (unmanaged HTTP VM),
the generation of the setdata and manage external events would result in a
VM containing all the components pertaining to a managed VM providing the



Framework for Component Systems with Dynamic Reconfigurations 13

HTTP and the DATA services (i.e, httpServer, dataServer, osObs, httpObs,
and dataObs).

This is due to the fact that we use FTPL temporal logic expressions as
“after unsetdata ((always >) until setdata)” to guarantee that, in case of
opposite events like setdata and unsetdata, the corresponding expression is
potentially true until the occurrence of the opposite events. This way, the ordered
sequence of events init, manage, sethttp, setapp, and setdata is equivalent to
a single communication containing all these events at once; this significantly
reduces communication overhead.

5.4 Other Examples
Http Server. Figure 5 shows an experimentation with the http server composite
component during which, as in [16], http requests were simulated. Depending on
the load and request deviation to measure whether or not requests are similar, it
may make sense to add a cache (the need can be low, medium, or high determining
the size of the cache), and an additional file server.

Load Request Deviation Cache Cache Size File Server 2

Fig. 5: Experiment with the http server composite component

Interestingly, responses time measured when our http server is controlled and
adapted the cbsdr application match almost exactly, the time measured (under
similar load and request deviation patterns) for a http server having a cache (of
size high) and two file servers. No memory nor disk overhead were noted.

Cycab. Figure 6 uses the model of the location system of an autonomous car.
Thanks to adaptation using temporal properties at runtime, we can remove gps
or wifi location components to save energy when needed (e.g., the gps component
does not work in tunnels — between entry and exit).
The run represented Fig. 6 shows a consumption of energy around 32% lower
using adaptation (empty dashed red graph) compared to a run not using it
(full dashed blue graph). The reader interested in a more detailed description is
referred to [2].
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entry exit Power Level without Adaptation Power Level with Adaptation gps wifi

Fig. 6: Experiment with the cycab location composite component

Table 4: Measured increase of CPU
usage expressed in percent (µ̄± σ)
Framework Fractal FraSCAti
CPU User time 17± 3 11± 2
CPU System time 2± 2 14± 2
Percent of CPU 17± 2 15± 7

CPU Overhead. We tested our implementa-
tion on the above-mentioned examples using
both Fractal and FraSCAti framework. More
than 300 tests were performed to assess the
resources overhead caused by our implemen-
tation. Table 4 summarises the increase of
CPU usage when adaptation is used compared to similar runs not using any
adaptation mechanism. CPU overhead is expressed in Table 4 in the format µ̄±σ
with µ̄ being the average and σ the standard deviation.

6 Related Work and Conclusion

6.1 Related Work

Self-adaptation is an important and active research field with applications in var-
ious domains [1]. This roadmap emphasises an important challenge consisting in
bridging the gap between the design and the implementation of self-adaptive sys-
tems. In [2] component-based systems reconfiguration was performed at runtime
using adaptation policies triggered by temporal patterns. The reconfigurations
considered, however, were merely sequences of primitive reconfiguration oper-
ations. In the present paper, since we use the alternative and the repetitive
constructs to compose reconfigurations, a given reconfiguration can have different
outcomes, depending on the context, or due to non-deterministic mechanisms. It
is not only a static sequence of reconfiguration instructions (as it is the case in
[2,7,8,17]), but a truly dynamic reconfiguration. Differently from [3], we do not
assume that the reconfigutations always lead the component assembly to evolve
from one consistent architecture to another consistent architecture.

Version consistency was introduced in [17] to minimise the interruption of
service (disruption) and the delay with which component-based (distributed)
systems are updated (timeliness) by mean of reconfigurations. It qualifies a state
where transactions within the system are such that a given reconfiguration may
not disrupt the system and occur in bounded time; version consistency was
inspired by quiescence [18] and tranquility [19] with the intent to gather the
best of both notions. Unlike [17,18,19], we only consider architectural constraints
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as preconditions to apply guarded reconfigurations; this way, by considering
components as black boxes, the separation of concerns principle is respected. The
applicative consistency (related to transactions within the system or external
events) can be maintained at runtime using adaptation policies mechanisms as
in [2] for centralised system and in [14] for decentralised or distributed systems.

Following [20], our notion of consistency can be viewed as a specific architec-
ture style. Nevertheless, we represent interfaces types of the component-based
systems by specific graph nodes, this way, like in [21], we can monitor (temporal)
properties at the interface level.

Let us remark that the present work is motivated by other frameworks that
support the development of components. For example, experimenting with our
VM example within GROOVE environment [9] leads us to the presentation of
paths with transitions labelled by the primitive reconfiguration operations being
performed. Consequently, consistency and conformity issues are pertinent to
GROOVE too.

6.2 Conclusion

Inspired by [6], we proposed a grammar for guarded reconfigurations. This
allowed us to build reconfigurations based on primitive reconfiguration operations
using sequences of reconfigurations as well as the alternative and the repetitive
constructs. The ability to determine weakest preconditions for the application of
reconfigurations enabled us to prove that these guarded reconfigurations preserve
configuration consistency.

This way, a conformance relation can be established to validate implementa-
tions of component-based systems architectural models using either our java-based
cbsdr application or the GROOVE graph transformation tool. This makes these
tools applicable to build some parts of state space of reachable graphs, i.e.,
configurations, and thereby derive information about the system. Furthermore,
one of the key advantages of this work is that it is readily applicable to practical
reconfiguration operations.

As a future work, we intend to exploit the results of the present paper to
extend adaptation policies defined in [2] with guarded reconfigurations. Then,
we could aim to perform sound and complete compositions of such adaptation
policies. This would permit us to move further toward our overall goal, which is
the adaptation of component-based system at runtime using adaptation policies
based on temporal logic properties.
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A Proof of Proposition 1

We start the proof by establishing that each primitive operation ope preserves
configuration consistency. This means, for R being a postcondition of ope, that we
have CC∧wp(ope,R) = wp(ope, CC∧R). We show this result for add(,), the proof
is similar for the other primitive operations. Let c be such that consistent (c)
and the preconditions of add(, ) hold on c: Then, the transition c

add→ c′ leads
to configuration c′ such that consistent (c′), i.e., that the postconditions of
add(, ) satisfy the consistency constraints of Table 1 too; formally, (l(c) ⇒
CC ∧ wp(add,Radd)) ∧ (c add→ c′)⇒ (l(c′)⇒ CC ∧Radd). Indeed, as the Parent
relation from the postcondition (1) is not involved in (CC.1), (CC.4) to (CC.9),
(CC.11), and (CC.12), these constraints hold on c′ too. For the remaining
constraints, one has:

(CC.2): As precondition (5) of Table 2 ensures that the parent component
comp2 has no parameters, (CC.2) holds on c′ with (comp1, comp2) added to
Parent (cf. (1));

(CC.3): Precondition (4) of Table 2 means that comp2 cannot be a descendant
of comp1, thus preventing a cycle in the Parent relation for c′ when comp2
becomes a parent of comp1;

(CC.10): There are two cases: Either there already was a delegation relation
between interfaces of comp1 and comp2 on c before the application of the
add(, ) operation, or not. In the latter case the constraint (CC.10) trivially
holds on c′. In the former case, since consistent (c), the Parent relation
already had (comp1, comp2) with well-typed interfaces for c, and the appli-
cation of add(, ) does not change the types and the relation, therefore the
constraint holds on c′.

Let be c ∈ reach(C0); by definition, there exists c0 ∈ C0 and a sequence of
operations from Rrun to ultimately reach c. By definition, there also exists a
sequence of primitive operations ope0, ope1, . . . , open−1 and a set of intermediate
configurations C′ = {c1, c2, . . . , cn−1}11 such that c0

ope0→ c1, c1
ope1→ c2, . . . ,

cn−1
open−1→ c, where, for 0 ≤ i ≤ n− 1, ci (resp. ci+1) meets the preconditions

(resp. postconditions) of opei (cn standing for c). Indeed, if this sequence of
primitive operations or C′ would not exist, c would not be reachable from any
configuration in C0.

Now, let us prove that a guarded reconfiguration having a sequence of primitive
statements in its guarded list preserves consistency. Let gln be a guarded list
composed of n ≥ 0 primitive operations, i.e., gln = ope0; ope1; . . . ; open, with Ri
and Ri+1 being respectively preconditions and postconditions of opei, we note
CCi = CC ∧ Ri. Let us prove by induction on n that CC0 = wp(gln, CCn+1).
For n = 0, we have gln = ope0 and CC0 = wp(gl0, CC1). Let us now consider
11 Note that C′ is not necessarily a subset of C. For example, if each operation of R is a

sequence of two primitive operations, the intermediary configuration with odd index,
i.e., c1, c3, . . . , would not belong to C and C′ 6⊂ C.
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gln+1 = gln; open+1; we have wp(gln+1, CCn+2) = wp(gln, wp(open+1, CCn+2)).
Since CC0 = wp(gln, CCn+1) and CCn+1 = wp(open+1, CCn+2), we have, by
definition [6], CC0 = wp(gln, CCn+1) = wp(gln, wp(open+1, CCn+2)).

We prove, below, that guarded reconfigurations having a non primitive state-
ment based on a guarded reconfiguration set made only of primitive state-
ments (G → fi grs fi or G → do grs od, where grs denotes B0 → ope0[]B1 →
ope1[] . . . []Bn → open) also preserve consistency using only hypothesis on the
statements’ preconditions and postconditions.

Let us consider a guarded reconfiguration set grs based on guarded recon-
figurations containing guarded lists made only of primitive statements. This
reconfiguration set, grs denotes B′1 → S1[] . . . []B′n → Sn, with B′i being a boolean
and Si = opei0; opei1; . . . ; opeini

, where ni represent the number of primitive
statements (opei0, opei1, . . . , opeini

) of the guarded list Si, and Rij (resp. Rij+1)
represents the precondition (postcondition) of opeij , for 0 < i ≤ n and 0 ≤ j ≤ ni
(resp. 0 < j ≤ ni + 1).

Since Ri0 is the precondition of Si and we suppose the configuration before
the application of Si to be consistent, we rewrite grs as B1 → S1[] . . . []Bn → Sn,
with Bi = B′i ∧ CC ∧Ri0. We also define BB = (∃i : 1 ≤ i ≤ n : Bi), as well as,
the sets I = {i ∈ N.1 ≤ i ≤ n} and I> = {i ∈ I .Bi}.

Alternative Construct Let IF denote if B1 → S1[] . . . []Bn → Sn fi.
By definition, wp(IF,R) = BB ∧ ∀i ∈ I : Bi ⇒ wp(Si, R). We estab-

lished before that, for Si being a sequence of primitive statement, CC ∧Ri0 ⇒
wp(Si, CC∧Rini+1); then, by definition Bi ⇒ wp(Si, CC∧Rini+1)⇒ wp(Si, CC).
This means that wp(IF,CC) = BB ∧ ∀i ∈ I : Bi ⇒ wp(Si, CC), which can be
enough to prove that consistency is preserves by the alternative construct.

It is possible, however, to establish a stronger postcondition, CC ∧
∧
i∈I>

Rini+1,

for the alternative construct by considering that each term of the conjunction∧
i∈I>

Rini+1 is part of the postcondition of a guarded list eligible for execution.

Then, wp(IF,CC ∧
∧
j∈I>

Rjnj+1) = BB ∧ ∀i ∈ I : Bi ⇒ wp(Si, CC ∧ Rini+1)

because, by definition, ∀i ∈ I>, Bi = >.
Therefore:

BB ∧ CC ∧
∧
i∈I>

Ri0 ⇒ BB ∧
∧
i∈I>

wp(Si, CC ∧Rini+1)

⇒ BB ∧ (∀i ∈ I : Bi ⇒ wp(Si, CC ∧Rini+1))

⇒ wp(IF,CC ∧
∧
j∈I>

Rjnj+1)

As an example, we can denote by if B then S fi a particular case, written
if B → S[]¬B → skip fi, of the alternative construct which weakest precondition
is wp(if B then S fi, CC ∧ (B ⇒ postS)) = B ∧wp(S,CC ∧RS), where RS and
postS are, respectively, the precondition and postcondition of S.
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Repetitive Construct Let DO denote do B1 → S1[] . . . []Bn → Sn od. Let be
H0(R) = R ∧ ¬B, and for k > 0, let be Hk(R) = wp(IF,Hk−1(R)) ∨ H0(R),
where IF denotes the same guarded configuration enclosed by “if fi”. Then, by
definition, we have wp(DO,R) = ∃k : k > 0 : Hk(R).

This means that the weakest precondition of this construct guarantees proper
termination after at most k selections of a guarded list, leaving the system in
a state satisfying R. Let us consider l0, l1, . . . , lk, such that, for 0 ≤ j ≤ k,
1 ≤ lj ≤ n and Sl0 ;Sl1 ; . . . ;Slk , as the ordered sequence of statements selected
during the duration of the construct until its termination. We proved before
that such a sequence preserve consistency. Therefore CC ∧ Rlknlk

+1 is a valid
postcondition and, since CC ∧Rlknlk

+1 ⇒ CC ∧
∨
i∈I
Rini+1, we have wp(DO,CC ∧

Rlknlk
+1)⇒ wp(DO,CC ∧

∨
i∈I
Rini+1).

We established before that, for Si being a sequence of primitive statement,
CC ∧ Ri0 ⇒ wp(Si, CC ∧ Rini+1); then CC ∧ Rl00 ⇒ wp(Sl0 ;Sl1 ; . . . ;Slk , CC ∧
Rlknlk

+1).
Therefore:

CC ∧
∧
i∈I
Ri0 ⇒ CC ∧Rl00

⇒ wp(Sl0 ;Sl1 ; . . . ;Slk , CC ∧R
lk
nlk

+1)
for any valid sequence Sl0 ;Sl1 ; . . . ;Slk

⇒ wp(DO,CC ∧Rlknlk
+1)

⇒ wp(DO,CC ∧
∨
i∈I
Rini+1)

This proves that the repetitive construct, applied to a guarded reconfiguration
set based on guarded reconfigurations containing guarded lists made only of
primitive statements, preserves consistency. It also provides stronger preconditions
and postconditions that are used to conclude the full proof of Prop 1.

Conclusion Therefore, with the same reasoning, considering non primitive state-
ments instead of primitive ones and using only hypothesis on statements’ pre-
conditions and postconditions, we can prove that consistency is preserved a) for
guarded reconfigurations having a guarded list composed of a sequence of (non
primitive) statements (G→ S0;S1; . . . ;Sn) and b) for guarded reconfigurations
having as guarded list a statement (G→ fi grs fi or G→ do grs od, where grs
denotes B0 → S0[]B1 → S1[] . . . []Bn → Sn). ut
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