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Abstract. Dynamic reconfigurations can modify the architecture of
component-based systems without incurring any system downtime. In
this context, the main contribution of the present article is the establish-
ment of correctness results proving component-based systems reconfigu-
rations using graph grammars. New guarded reconfigurations allow us
to build reconfigurations based on primitive reconfiguration operations
using sequences of reconfigurations and (unlike most of the related work
on reconfigurations) the alternative and the repetitive constructs, while
preserving configuration consistency. A practical contribution consists
of the implementation of a component-based model using the GROOVE
graph transformation tool. This sound implementation is illustrated on
a cloud-based multi-tier application hosting environment managed as a
component-based system.

1 Introduction

Dynamic reconfigurations that modify the architecture of self-adaptive [1]
component-based systems without incurring any system downtime must happen
not only in suitable circumstances, but also need to preserve the consistency of
systems. Whereas the former can be ensured by adaptation policies, the latter is
directly related to the definition of reconfigurations.

For specifying behaviour properties of component-based systems, a linear
temporal logic based on Dwyer’s work on patterns and scopes [2] has been
proposed in [3]; it is inspired by a JML specification extension using temporal
patterns [4]. This logic, called FTPL3, is used to trigger adaptation policies
in [5]. Furthermore, a decentralised evaluation of FTPL properties over sets of
components has been studied in [6]. With relation to consistency constraints over
component-based systems defined in [7], their preservation of the system under
scrutiny was uneasy to prove, mostly because of the lack of precise semantics for
primitive reconfiguration operations.

Therefore, when considering more complicated reconfigurations composed of
sequences, repetitions, or choices over primitive reconfiguration operations, we
? This work has been partially funded by the Labex ACTION, ANR-11-LABX-0001-01.
3 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its
relation to Fractal-like components and to first-order integrity constraints over them.
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need to express reconfigurations’ preconditions and postconditions in a precise
and concise way. For this reason, we use the concept of weakest precondition,
introduced in [8], to express non primitive guarded reconfigurations; this is the
first contribution.

Furthermore, using the GROOVE graph transformation tool [9], we build
an implementation using graph grammars to perform dynamic reconfiguration
on graph-based models of component-based systems. This second practical
contribution allows us, not only, to simulate the run of a system being reconfigured,
but, also, to generate all (or a subset of the) possible reconfiguration combinations.
Since the present work aims at formalising reconfigurations using graph grammars,
the third and main contribution consists in proving the correctness of interpreted
systems, using graph rules to perform reconfigurations, wrt. our reconfiguration
model. This also demonstrates the correctness of our implementation.

Let us remark that this work is motivated by applications in numerous
frameworks that support the development of components together with their
monitors/controllers, as, e.g., Fractal [10], CSP‖B [11], FraSCAti [12], etc.

The paper is organised as follows: Section 2 presents, as a case study, a cloud-
based multi-tier application hosting environment managed as a component-based
system. Background information on our component-based reconfiguration model,
as well as, elements of operational semantics are given in Sect. 3. Using our case
study, Section 4 describes an implementation of our model using the GROOVE
tool to express reconfigurations by means of graph grammars. Finally, Section 5
shows correctness results, and Section 6 presents related work and our conclusion.

2 Case Study

Internet service providers and telecommunications operators tend more and more
to define themselves as cloud providers. In this context, automation of software
and (virtual) hardware installation and configuration is paramount. It is not
enough for an application to be cloud-ready; it has to be scalable and scalability
mechanisms need to be integrated in the core of the cloud management system.

We consider a typical three-tier web application using a front-end Web
server, a middle-ware application server, and a back-end data providing ser-
vice such as a database or a data store. Figure 1 shows a single virtual
machine (or VM ) hosting together the three services of such an application.

virtualMachine

httpServer appServer dataServer

osObs

httpObs

appObs

dataObs

Fig. 1: Managed Virtual Machine with
Three-tier Application Compoments

The VM is represented as a compo-
site component virtualMachine contai-
ning sub-components representing each
service (httpServer, appServer, and
dataServer) of the application. Each
of the service sub-component has two
provided interfaces: one to provide its
service and another one used to monitor the service.

Furthermore, the VM of Fig. 1 also contains four observers, that are sub-
components used to monitor services. The sub-component osObs is used to
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monitor the Operating System of the VM. It is also bound to the sub-components
httpObs, appObs, and dataObs used respectively to monitor the services of
the httpServer, appServer, and dataServer sub-components. Finally, the VM
composite component itself has two provided interfaces: one used to provide
services and a second one used for monitoring.

Of course, a VM does not have to be monitored, nor have to host the three
types of services. Figure 2 illustrates a cloud environment, clouEnv, containing
a VM used for development purpose (vmDev) that contains the three tiers of
the application without being monitored; such a VM is called unmanaged. The
three other VM are all monitored, i.e., managed, and each contains a tier of the
application. The reader can note that each of the managed VM contains only
the observers responsible for monitoring the operating system and the type of
service provided. The cloud environment has three provided interfaces: two to
provide its service, whether it is or not in a development version, and another
one, used for monitoring, connected to a sub-component monitorObs bound to
all the monitoring interfaces of the managed VM.

cloudEnv

vmHttp

httpServer

osObs httpObs

vmApp

appServer

osObs appObs

vmData

dataServer

osObs dataObs

vmDev

httpServer appServer dataServer

monitorObs

Fig. 2: Cloud Environment Example

A cloud provider must
be able to provide on-
demand (sets of) VMs
configured with the
right service compo-
nents and the appro-
priate monitoring. In
this context, we study
the provisioning of a
single VM as illus-

trated Fig. 1. Depending on the services to provide and the monitoring state
(managed vs unmanaged) the necessary components should be added. During
the life cycle of the VM some configuration changes can happen; we consider
them as reconfigurations of a component-based system.

3 Component-based Model and Semantics

3.1 Configurations and Reconfigurations

Component models can be very heteregeneous. Most of them consider software
components that can be seen as black boxes (or grey boxes if some of their inner
features are visible) having fully described interfaces. Behaviours and interactions
are specified using components’ definitions and their interfaces. In this section,
we revisit the architectural reconfiguration model introduced in [13,7]. In general,
the system configuration is the specific definition of the elements that define or
prescribe what a system is composed of, while a reconfiguration can be seen as a
transition from a configuration to another.

Following [13], a configuration is defined to be a set of architectural elements
(components, required or provided interfaces, and parameters) together with
relations to structure and to link them.
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Definition 1 (Configuration). A configuration c is a tuple 〈Elem,Rel〉 where

– Elem = Components ] Interfaces ] Parameters ] Types is a set of
architectural elements, such that
• Components is a non-empty set of the core entities, i.e components;
• Interfaces = RequiredInts ] ProvidedInts is a finite set of the (re-
quired and provided) interfaces;
• Parameters is a finite set of component parameters;
• Types = ITypes ] PTypes is a finite set of the interface types and the
parameter data types;

– Rel =
{
Container ] ContainerType ] Contingency
] Parent ] Binding ] Delegate ] State ] V alue

is a set of architectural relations which link architectural elements, such that
• Container : Interfaces ] Parameters→ Components is a total func-

tion giving the component which supplies the considered interface or the
component of a considered parameter;
• ContainerType : Interfaces ] Parameters → Types is a total func-

tion that associates a type to each (required or provided) interface and to
each parameter;
• Contingency : RequiredInts→ {mandatory, optional} is a total func-

tion indicating whether each required interface is mandatory or optional;
• Parent ⊆ Components × Components is a relation linking a sub-
component to the corresponding composite component4;
• Binding : ProvidedInts → RequiredInts is a partial function which
binds together a provided interface and a required one;
• Delegate : Interfaces → Interfaces is a partial function to express
delegation links;
• State : Components→ {started, stopped} is a total function giving the
status of instantiated components;
• V alue : Parameters → {t|t ∈ PType} is a total function which gives
the current value of each parameter.

We also introduce a set CP of configuration propositions which are constraints
on the architectural elements and the relations between them. These propositions
are specified using first-order logic formulae [14]. The interpretation of functions,
relations, and predicates over Elem is done according to basic definitions in [14]
and Def. 1. The interested reader is referred to [7].

Let C = {c, c1, c2, . . .} be a set of configurations. An interpretation function
l : C → CP gives the largest conjunction of cp ∈ CP evaluated to true on c ∈ C.
We say that a configuration c = 〈Elem,Rel〉 satisfies cp ∈ CP , when l(c)⇒ cp;
in this case, cp is valid on c, otherwise, c does not satisfy cp.

Among the configuration propositions, the architectural consistency cons-
traints CC in Table 1 express requirements on component assembly common to
all the component architectures [7]. Intuitively,
4 For any (p, q) ∈ P arent, we say that q has a sub-component p, i.e. p is a child of q.
Shared components (sub-components of multiple enclosing composite components)
can have more than one parent.
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– a component supplies, at least, one provided interface (CC.1);
– the composite components have no parameter (CC.2);
– a sub-component must not include its own parent component (CC.3);
– two bound interfaces must have the same interface type (CC.4) and their

containers are sub-components of the same composite (CC.5);
– when binding two interfaces, there is a need to ensure that they have not

been involved in a delegation yet (CC.6); similarly, when establishing a
delegation link between two interfaces, the specifier must ensure that they
have not yet been involved in a binding (CC.7);

– a provided (resp. required) interface of a sub-component is delegated to at
most one provided (resp. required) interface of its parent component (CC.8),
(CC.9) and (CC.11); the interfaces involved in the delegation must have
the same interface type (CC.10);

– a component is started only if its mandatory required interfaces are bound
or delegated (CC.12).

Table 1: Consistency Constraints
∀c.(c ∈ Components ⇒ (∃ip.(ip ∈ P rovidedInts ∧ Container(ip) = c))) (CC.1)

∀c, c
′ ∈ Components.(c 6= c

′ ∧ (c, c
′) ∈ P arent ⇒ ∀ p.(p ∈ P arameters ⇒ Container(p) 6= c

′)) (CC.2)

∀c, c
′ ∈ Components.((c, c

′) ∈ P arent
+ ⇒ c 6= c

′) (CC.3)

∀ip ∈ P rovidedInts,
∀ir ∈ RequiredInts

.

(
Binding(ip) = ir ⇒ ContainerT ype(ip) = ContainerT ype(ir)

∧Container(ip) 6= Container(ir)

)
(CC.4)

∀ip ∈ P rovidedInts,
∀ir ∈ RequiredInts

.

(
Binding(ip) = ir ⇒ ∃c ∈ Components.

(
(Container(ip), c) ∈ P arent
∧(Container(ir), c) ∈ P arent

))
(CC.5)

∀ip ∈ P rovidedInts,
∀ir ∈ RequiredInts, ∀id ∈ Interfaces

.

(
Binding(ip) = ir ⇒ Delegate(ip) 6= id

∧Delegate(ir) 6= id

)
(CC.6)

∀i, i
′ ∈ Interfaces.

(
Delegate(i) = i

′ ⇒ ∀ip.(ip ∈ P rovidedInts ⇒ Binding(ip) 6= i)
∧∀ir.(ir ∈ RequiredInts ⇒ Binding(i) 6= ir)

)
(CC.7)

∀i, i
′ ∈ Interfaces.(Delegate(i) = i

′ ∧ i ∈ P rovidedInts ⇒ i
′ ∈ P rovidedInts) (CC.8)

∀i, i
′ ∈ Interfaces.(Delegate(i) = i

′ ∧ i ∈ RequiredInts ⇒ i
′ ∈ RequiredInts) (CC.9)

∀i, i
′ ∈ Interfaces.

(
Delegate(i) = i

′ ⇒ ContainerT ype(i) = ContainerT ype(i′)
∧ (Container(i), Container(i′)) ∈ P arent

)
(CC.10)

∀i, i
′
, i” ∈ Interfaces.

(
(Delegate(i) = i′ ∧Delegate(i) = i” ⇒ i′ = i”)
∧(Delegate(i) = i” ∧Delegate(i′) = i” ⇒ i = i′)

)
(CC.11)

∀ir ∈ RequiredInts.

(
State(Container(ir)) = started
∧Contingency(ir) = mandatory

⇒ ∃i ∈ Interfaces.

(
Binding(i) = ir
∨Delegate(i) = ir
∨Delegate(ir) = i

))
(CC.12)

Definition 2 (Consistent configuration). Let c = 〈Elem,Rel〉 be a con-
figuration and CC the consistency constraints. The configuration c is consis-
tent, written consistent(c), if l(c) ⇒ CC. We write consistent(C) when
∀c ∈ C.consistent(c).

3.2 Operational Semantics

Reconfigurations make the component-based architecture evolve dynamically.
They are composed of primitive operations such as instantiation/destruction
(new/destroy) of components; addition/removal (add/remove) of components;
binding/unbinding (bind/unbind) of component interfaces; starting/stopping
(start/stop) components; setting parameter values of components (update). These
primitive operations obey pre/post predicates. For example, before adding a
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sub-component comp1 to a composite comp2, one must verify, as in Table 2, that
a) comp1 and comp2 exist (2) and are different (3), b) comp2 is not a descendant
of comp1 (4), and c) comp2 has no parameter (5). When these preconditions are
met, the postcondition consists in adding (comp1, comp2) to the Parent relation,
as expressed by Radd = Parent ∪ {(comp1, comp2)} (1).

Table 2: Preconditions of the add primitive reconfiguration operation
comp1, comp2 ∈ Components (2)

comp1 6= comp2 (3)
(comp2, comp1) 6∈ P arent+ (4)

∀p ∈ P arameters, (p, comp2) 6∈ Container (5)

Inspired by the predicate-based semantics of programming language con-
structs [15], we consider a reconfiguration operation ope, and two configurations
c and c′ such that the transition between c and c′ is performed using ope. Then,
given R, some conditions on the configuration of the system under scrutiny,
the notation wp(ope,R) denotes, as in [8], the weakest precondition for the con-
figuration c such that activation of ope is guaranteed to lead to c′ satisfying
the postcondition R. More formally, in our case, if l(c) ⇒ wp(ope,R) then
l(c′)⇒ R. Therefore, the weakest precondition wp(add,Radd) is the conjunction
of preconditions (2) to (5).

Inspired by [8] and using the same notations, we propose in Table 3 the
grammar of axiom <guarded reconfiguration> for guarded reconfigurations. Let
<ope> represent a primitive reconfiguration operation, also called primitive
statement. We extend the set of primitive reconfiguration operations with the
skip operation, which does not induce any change on a given configuration. Hence,
for any postcondition R, we have wp(skip,R) = R. Afterwards, like in [8], the
semantics of the “;” operator is given by wp(S1;S2, R) = wp(S1, wp(S2, R)) where
S1 and S2 are statements.

Table 3: Guarded reconfigurations grammar
<guarded reconfiguration> ::= <guard> → <guarded list>
<guard> ::= <boolean expression>
<guarded list> ::= <statement>{; <statement> }
<guarded reconfiguration set> ::= <guarded reconfiguration>{[] <guarded reconfiguration> }
<alternative construct> ::= if <guarded reconfiguration set> fi
<repetitive construct> ::= do <guarded reconfiguration set> od
<statement> ::= <alternative construct> | <repetitive construct> | <ope>

If a guarded reconfiguration set is made of more than one guarded reconfigu-
ration, they are separated by the [] operator5. To present the semantics of the
alternative construct, let IF denote if B1 → S1[] . . . []Bn → Sn fi and BB denote
(∃i : 1 ≤ i ≤ n : Bi), then wp(IF,R) = BB ∧ (∀i : 1 ≤ i ≤ n : Bi ⇒ wp(Si, R)).
For the repetitive construct, let DO denote do B1 → S1[] . . . []Bn → Sn do. Let
H0(R) = R ∧ ¬BB and for k > 0, Hk(R) = wp(IF,Hk−1(R)) ∨ H0(R), then
wp(DO,R) = ∃k : k ≥ 0 : Hk(R). Intuitively, Hk(R) is the weakest precondition
guaranteeing termination after at most k selections of a guarded list, leaving the
system in a configuration such that R holds.

Let Rrun = R ∪ {run} be a set of operations, where R is a finite set of
guarded reconfigurations instantiated wrt. the system under consideration, and
5 As in [8], the order in which guarded reconfigurations appear is semantically irrelevant.
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run is the name of a generic action representing all the running operations6 of
the component-based system.

Definition 3 (Reconfiguration model). The operational semantics of a
component-based system is defined by the labelled transition system S =
〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of configurations, C0 ⊆ C is
a set of initial configurations, → ⊆ C ×Rrun × C is the reconfiguration relation
obeying wp() predicates, and l : C → CP is a total interpretation function.

Let us note c ope→ c′ for (c, ope, c′) ∈→. Given the model S = 〈C, C0,Rrun ,→
, l〉, a path σ of S is a sequence of configurations c0, c1, c2, . . . such that ∀i ≥
0. ∃ opei ∈ Rrun.(ci

opei→ ci+1). An execution is a path σ in Σ s.t. σ(0) ∈
C0. We write σ(i) to denote the i-th configuration of σ. The notation σi
denotes the suffix path σ(i), σ(i + 1), . . ., and σji denotes the segment path
σ(i), σ(i+ 1), . . . , σ(j − 1), σ(j). Let Σ denote the set of paths, and Σf (⊆ Σ)
the set of finite paths. A configuration c′ is reachable from c when there is
a path σ = c0, c1, . . . , cn in Σf s.t. c = c0 and c′ = cn with n ≥ 0. Let c
be a configuration, the set of all configurations reachable from c is denoted
reach(c). This notion can be lifted from configurations to sets of configurations
by reach(C) = {reach(c) | c ∈ C}.

Proposition 1 (Preservation of consistency). Given C0 ⊆ C,
consistent(C0) implies consistent(reach(C0)).

Proof (sketch). We start the proof by establishing that each primitive operation
ope preserves configuration consistency. This means, for R being a postcondition
of ope, that we have CC ∧ wp(ope,R) = wp(ope, CC ∧R). We show this result
for add(,), the proof is similar for the other primitive operations. Let be c
such that consistent (c) and the preconditions of add(, ) hold on c: Then, the
transition c add→ c′ leads to configuration c′ such that consistent (c′), i.e., that
the postconditions of add(, ) satisfy the consistency constraints of Table 1 too;
formally, (l(c)⇒ CC∧wp(add,Radd))∧(c add→ c′)⇒ (l(c′)⇒ CC∧Radd). Indeed,
as the Parent relation from the postcondition (1) is not involved in (CC.1),
(CC.4) to (CC.9), (CC.11), and (CC.12), these constraints hold on c′ too. For
the remaining constraints, one has:

(CC.2): As precondition (5) of Table 2 ensures that the parent component
comp2 has no parameters, (CC.2) holds on c′ with (comp1, comp2) added to
Parent (cf. (1));

(CC.3): Precondition (4) of Table 2 means that comp2 cannot be a descendant
of comp1, thus preventing a cycle in the Parent relation for c′ when comp2
becomes a parent of comp1;

(CC.10): There are two cases: Either there already was a delegation relation
between interfaces of comp1 and comp2 on c before the application of the

6 The normal running of different components also changes the architecture, e.g., by
modifying parameter values or stopping components.
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add(, ) operation, or not. In the latter case the constraint (CC.10) trivially
holds on c′. In the former case, since consistent (c), the Parent relation
already had (comp1, comp2) with well-typed interfaces for c, and the appli-
cation of add(, ) does not change the types and the relation, therefore the
constraint holds on c′.

Let be c ∈ reach(C0); by definition, there exists c0 ∈ C0 and a sequence of
operations from Rrun to ultimately reach c. By definition, there also exists a
sequence of primitive operations ope0, ope1, . . . , open−1 and a set of intermediate
configurations C′ = {c1, c2, . . . , cn−1}7 such that c0

ope0→ c1, c1
ope1→ c2, . . . ,

cn−1
open−1→ c, where, for 0 ≤ i ≤ n− 1, ci (resp. ci+1) meets the preconditions

(resp. postconditions) of opei (cn standing for c). Indeed, if this sequence of
primitive operations or C′ would not exist, c would not be reachable from any
configuration in C0.

Now, let us prove that a guarded reconfiguration having a sequence of primitive
statements in its guarded list preserves consistency. Let gln be a guarded list
composed of n ≥ 0 primitive operations, i.e., gln = ope0; ope1; . . . ; open, with Ri
and Ri+1 being respectively preconditions and postconditions of opei, we note
CCi = CC ∧ Ri. Let us prove by induction on n that CC0 = wp(gln, CCn+1).
For n = 0, we have gln = ope0 and CC0 = wp(gl0, CC1). Let us now consider
gln+1 = gln; open+1; we have wp(gln+1, CCn+2) = wp(gln, wp(open+1, CCn+2)).
Since CC0 = wp(gln, CCn+1) and CCn+1 = wp(open+1, CCn+2), we have, by
definition [8], CC0 = wp(gln, CCn+1) = wp(gln, wp(open+1, CCn+2)).

We can also prove (see Appendix A) that guarded reconfigurations having
a non primitive statement based on a guarded reconfiguration set made only
of primitive statements (G → fi grs fi or G → do grs od, where grs denotes
B0 → ope0[]B1 → ope1[] . . . []Bn → open) also preserve consistency using only
hypothesis on the statements’ preconditions and postconditions.

Therefore, with the same reasoning, considering non primitive statements
instead of primitive ones and using only hypothesis on statements’ preconditions
and postconditions, we can prove that consistency is preserved a) for guarded
reconfigurations having a guarded list composed of a sequence of (non primitive)
statements (G→ S0;S1; . . . ;Sn) and b) for guarded reconfigurations having as
guarded list a statement (G→ fi grs fi or G→ do grs od, where grs denotes
B0 → S0[]B1 → S1[] . . . []Bn → Sn). ut

4 Implementation with GROOVE

This section describes how our model has been implemented within the GROOVE
graph transformation tool [9]. This implementation is then used to experiment
with our case study example.
7 Note that C′ is not necessarily a subset of C. For example, if each operation of R
is a sequence of two primitive operations, the intermediary configuration with odd
index, i.e., c1, c3, . . . , would not belong to C and C′ 6⊂ C.
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4.1 Implementing with GROOVE
GROOVE uses simple graphs for modelling the structure of object-oriented
systems at design-time, compile-time, and runtime. Graphs are made of nodes
and edges that can be labelled. Graph transformations provide a basis for model
transformation or for operational semantics of systems. Our implementation
uses the GROOVE typed mode to guarantee that all graphs are well-typed. It
consists of generic types and graph rules that can manage assigned priorities in
such a way that a rule is applied only if no rule of higher priority matches the
current graph.

parent∗

parent

parent

6=

=

=

=

Fig. 3: add primitive
operation in GROOVE

Graphs are transformed by rules consisting of a) pat-
terns that must be present (resp. absent) for the rule
to apply, b) elements (nodes and edges) to be added
(resp.deleted) from the graph, and c) pairs of nodes to
be merged. Colour and shape coding allow these rules
to be easily represented. For example, our implemen-
tation models the add primitive operation using the
graph rule represented in Fig. 3. In this figure, there are
a) a component and a composite component such that
edges labelled “=” ensure that the “composite” node
is the same node of type composite, whereas, the edge

labelled “ 6=” guarantees that the “component” node is a node of type compo-
nent different from the one labelled “composite”; b) the red (dashed fat) which
“embargo” edges labelled “parent∗” (resp. “parent”) ensuring that there is no
transitive relation parent between nodes labelled “composite” and “component”
(resp. there is no parent relation between nodes “component” and “composite”).
If the above-mentioned conditions are satisfied, the green (fat) edge labelled
“parent” is created between the nodes “component” and “composite”.

6=

(a) LHS

parent∗parent

(b) NAC

parent

(c) RHS
Fig. 4: Equivalent of GROOVE rule of
Fig. 3 using LHS, NAC, and RHS graphs

Of course, such a graph transforma-
tions rule can always be expressed using
a) a LHS (left hand side) sub-graph pre-
senting preconditions of the rule, b) a
NAC (Negative Application Condition)
sub-graph specifying what may not oc-
cur when matching a rule, and c) a
RHS (right hand side) sub-graph pre-
senting the postconditions. The LHS, NAC, and RHS sub-graphs expressing the
rule described in GROOVE by Fig. 3 is displayed Fig. 4.

The input of our implementation is a graph containing a component-based
system, represented using the model presented in Sec. 3. Such a graph displays
a configuration, as in Def. 1, where elements and relations are respectively
represented by nodes and edges.

4.2 Running Example
We consider a VM represented, as in Fig. 1, as a composite compo-
nent virtualMachine that may contain sub-components representing services
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httpServer, appServer, or dataServer of an application. This VM may also
contain observers, that are sub-components used to monitor services. The sub-
component osObs is used to monitor the Operating System of the VM and
can be bound to the sub-components httpObs, appObs, or dataObs used respec-
tively to monitor the services of the httpServer, appServer, and dataServer
sub-components.
Table 4: Install Code Generation Principle
Feature data app http managed
Bit # 3 2 1 0
ic = 0 0 0 0 0
ic = 5 0 22 = 4 0 20 = 1
ic = 10 23 = 8 0 21 = 2 0
ic = 11 23 = 8 0 21 = 2 20 = 1

Each VM has its features determined
by an install code (ic) which is a bi-
nary number having each bit acting
as a flag to enable or disable a given
feature. This is summarised in Ta-
ble 4 where the first line displays the

features and the second one shows the related bit number. The following lines
detail the generation of install codes for a server with a bare OS (ic = 0), an
application server managed (ic = 5), and a managed (resp. unmanaged) LAMP
server having 10 (resp. 11) as install code.

Fig. 5:
Bare OS
(ic = 0)

Our implementation creates the component-based system model
representing the VM specified by a given install code. Figure 5 shows
a graph transition system generated by GROOVE during the creation
of VM with a bare OS (ic = 0), where the first state (s0) represents
an empty graph, s1 denotes a graph representing only the stopped
VM composite component, and s2 designates a graph with the same
component being started. The transitions are labelled by the primitive
reconfiguration operations being performed.

Similarly, for a component-based system representing a managed
application server (ic = 5) the graph transition system is displayed in
Fig. 6. In addition to the primitive reconfiguration operation used as transition
labels, there is a label “chk_present_appServerPC” which represents an assertion
that verifying whether or not the application server sub-component is present.
This way, using GROOVE control language, a function manage() adds and
configures adequate monitoring sub-components.

Fig. 6: Managed Application Server (ic = 5)

For a VM having more than one
service component, like a LAMP
server (ic = 10 or ic = 11), having
an http and a data service, the or-
der for binding and starting these
components is not fixed as illus-
trated Fig. 7. The evolution is first

performed in a deterministic way from state s0 to s8. State s16, on the top right
denotes a graph matching the specification for an install code of value 10, i.e., an
unmanaged LAMP server. From that state, we can apply the manage() GROOVE
function, between s23 to s41, to obtain a managed LAMP server (ic = 11). Let
us notice that the evolution between s8 and s16 is non-deterministic. We have
two shortest paths (s8→ s10→ s16 and s8→ s11→ s16) that can easily be
discovered using a breadth-first exploration.
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Fig. 7: Managed LAMP Server (ic = 11)

Table 5 displays the number of states and transitions of the graph transition
system for each install code. The graph transition system for ic = 11 displayed
Fig. 7 has 26 states and 66 transitions. We can notice that, in our implementation,
the order of primitive reconfiguration operations is fully determined8 for 0 ≤
ic ≤ 5 and 8 ≤ ic ≤ 9. Table 5: Number of states and tran-

sitions per install code
Unmanaged Managed

ic states transitions ic states transitions
0 3 2 1 7 6
2 7 6 3 17 16
4 7 6 5 17 16
6 46 155 7 62 171
8 7 6 9 17 16
10 26 66 11 42 82
12 26 66 13 42 82
14 265 1456 15 288 1479

Considering Table 5 for 6 ≤ ic ≤ 7, and
10 ≤ ic ≤ 13, we see that for each VM with
two services, the managed version has 16
more states and transitions than the unman-
aged one. A similar deduction can also be
made considering the last line of Table 5.
This shows, as illustrated Fig. 7, that the
manage() GROOVE function fully deter-
mines the order of primitive reconfiguration
operations. Let us mention that the number of states and transitions for ic = 6
(resp. ic = 7) is different from the ones for ic = 10 or ic = 12 (resp. ic = 11 or
ic = 13) due to the fact that, unlike the httpServer or appServer, the dataServer
sub-component does not have a required interface (see Fig. 1), which induces
more determinism to reach a configuration involving this component.

5 Implementation vs. Specification

In the specification model, primitive operations and guarded reconfigurations
were left abstract enough and run was uninterpreted. A formal semantics for
the component-based system with interpreted operations can be obtained simply
8 There is exactly one more state than the number of transitions, which shows that
the graph transition system is an actual linear path.
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by enriching the configurations with more precise memory states and the effect
of these actions upon memory.

5.1 Interpreted Configurations and Reconfigurations

Let us consider a set (infinite, in general) GM = {u, ...} of shared global memory
states, and a set (infinite, in general) LM = {v, ...} of memory states local to a
given component. These memory states are read and modified by the primitive
and non-primitive reconfigurations, and also by actions implementing run. For-
mally, all the actions ope ∈ Rrun are interpreted as mappings ope from GM×LM
into itself. Additionaly, there are some actions specific to the implementation,
Rimp, as manage in Sect. 4. We say that I = (GM,LM, (ope)ope∈Rrun∪Rimp

)
is an interpretation of the underlying Rrun. Let IRrun

= {I, IGROOVE, ...}
denote the class of all interpretations, with IGROOVE the underlying GROOVE
interpretation.

Interpreted configurations. In addition to already interpreted parameters and
interfaces (cf. [7] for more detail), the state of components can be described
more precisely by using local memory states. The set of the interpreted states
of components is the least set StateI s.t. if s1, . . . , sn are elements in State9,
v1, . . . , vn ∈ LM are local memory states, then ((s1, v1), . . . , (sn, vn)) is in StateI .
Then, the set of the interpreted configurations CI is defined by GM × StateI .

Interpreted transitions. Our basic assumption is that all primitive actions
have a deterministic effect upon the local and global memory, always terminate
(either normally or exceptionally), and are effective.

For the IGROOVE in Sect. 4, each graph represents an interpreted configu-
ration corresponding to a configuration in Def. 1, whereas, transitions between
configurations are performed using graph rules.

For each primitive reconfiguration operation ope, the corresponding graph
rule, denoted by ope, has equivalent or stronger preconditions. For example, for
the add primitive reconfiguration operation, preconditions (3) and (4) of Table 2
are encoded by, respectively, the LHS and NAC graphs (Fig. 4a and 4b) of the
corresponding graph rule, whereas, the postcondition (1) is depicted Fig. 4c.
Preconditions (2) and (5) are implicitly defined by the typing of the graph rule
that contains a node of type component10 (resp. composite) corresponding to
the component comp1 (resp. comp2) of Table 2. Because both nodes involved
in the graph rule inherit from the component type, the precondition (2) holds.
Furthermore, the fact that the node corresponding to comp2 is typed as composite,
ensures that it does not contain any parameter, thus satisfying precondition (5).

Moreover, we can notice, Fig. 4b, in addition to the edge labelled parent∗
satisfying precondition (4), another edge labelled parent ensuring that the node
typed composite is not the parent of the other node, i.e., (comp1, comp2) 6∈ Parent.
This is not a precondition in Table 2 because of a set-based specification. In the
GROOVE implementation, however, without this NAC (comp1, comp2) 6∈ Parent,

9 Viewed as a relation.
10 Since this type is abstract, a node typed component is either primitive or composite.
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we may end up with two edges labelled parent between the node typed as
component and the one typed as composite, which would produce a graph that
would not fit within the specification of Def. 1.

Finally, all constructs now behave deterministically, and a non-determinstic
global behavior is produced by the arbitrary interleaving of components. This
construction leads to the following definition.

Definition 4 (Implementation semantics). The operational semantics
of the implementation is defined by the labelled transition system SI =
〈CI , C0

I ,RrunI ,→I , lI〉 where CI is a set of configurations together with their
memory states, C0

I is a set of initial configurations, RrunI = {ope | ope ∈
Rrun ∪ Rimp}, →I ⊆ CI × RrunI × CI is the reconfiguration relation obeying
graph rules, and lI : CI → CP is a total interpretation function.

5.2 Sound Implementations and Consistency Preservation

There exist some strong links between the interpreted model and the specification
model. In this section we aim to establish that our GROOVE implementation
behaves accordingly to the specification.

Let RrunI = {ope | ope ∈ Rrun ∪ Rimp} be a set of operations, where ope
is in a finite set of guarded reconfigurations built using primitive graph rules
instantiated wrt. the implementation of the system under consideration. For
the GROOVE implementation, we consider Rimp = {match}, where match
represents operations to evaluate the guards used in GROOVE, that do not alter
the current graph, like “chk_present_appServerPC” in Fig. 6, for control flow
purpose.

To establish links between the interpreted model and the specification model,
we propose to use a version of the classical τ -simulation quasi-ordering [16], while
relabeling the operations in Rimp by τ . For all ope ∈ R, we write c ope⇒ c′ when
there are n,m ≥ 0 such that c τ

nopeτm

−→ c′.

Definition 5 (τ-simulation). Let S1 and S2 be two models over R = R1 ∪R2.
A binary relation vτ⊆ C1×C2 is a τ -simulation iff, for all ope in R, (c1, c2) ∈vτ
implies whenever c1

ope⇒1 c
′
1, then there exists c′2 ∈ C2 such that c2

ope⇒2 c
′
2 and

(c′1, c′2) ∈vτ .

We say that S1 and S2 are τ -similar, written S1 vτ S2, if ∀c0
1 ∈ C0

1∃c0
2 ∈

C0
2 .(c0

1, c
0
2) ∈vτ .

Let us consider interpreted reconfiguration operations in RrunI and the
corresponding non-interpreted counterpart, when relabeling the operations in
Rimp by τ , we can state the following theorem.

Theorem 1 (Simulation). SI vτ S.

Proof (sketch). We first establish, as we did above for the add operation, that
any primitive reconfiguration operation of the implementation has stronger
preconditions than its counterpart in the specification model. This way, we
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can prove11 that guarded reconfigurations composed of primitive statements,
G→ s, with s ∈ RrunI\Rimp have stronger preconditions than the corresponding
statement s ∈ Rrun.

Let us consider a sequence of guarded reconfigurations G0 → s0, G1 →
s1, . . . , Gn → sn, while ignoring τ ’s covering operations in Rimp. For all i s.t.
0 ≤ i ≤ n, si has stronger preconditions than si; therefore, there exists a guard
G′i, s.t. Gi ⇒ G′i and G′i → si, as illustrated below.

SI G0 → s0, G1 → s1, . . . , Gn → sn
⇓ ⇓ ⇓

S G′0 → s0, G
′
1 → s1, . . . , G

′
n → sn

As τ ’s covering operations in Rimp are introduced to evaluate guards of
sequences of guarded reconfigurations, they do not form infinite cycles composed
only of τ -transitions. So, there always must be a way out of these cycles, if any,
by a transition of label ope, which is always eventually taken, and we are done. ut

This result shows that the specification model is a correct approximation of the
more realistic interpreted model. As the reachability properties are compatible
with vτ , this leads us, consequently, to:

Proposition 2. (Correctness) If configuration c is not reachable in S, it is not
reachable in any SI .

(Completeness) Conversely, if configuration c is reachable in S, there exists an
interpretation I such that c is reachable in SI .

We can state, as a consequence of Theorem 1 and Propositions 1 and 2, the
following result:

Proposition 3. Let SI = 〈CI , C0
I ,RrunI ,→I , lI〉 be the interpreted model and

S = 〈C, C0,Rrun ,→, l〉 the specification model. Given C0
I ⊆ CI , if SI vτ S then

consistent(C0
I) implies consistent(reach(C0

I)).

6 Related Work and Conclusion

6.1 Related Work

Self-adaptation is an important and active research field with applications in
various domains [1]. This roadmap emphasises an important challenge consisting
in bridging the gap between the design and the implementation of self-adaptive
systems. We show that the GROOVE framework can help bridge that gap. In
[5] component-based systems reconfiguration was performed at runtime using
adaptation policies triggered by temporal patterns. The reconfigurations consid-
ered, however, were merely sequences of primitive reconfiguration operations. In
the present paper, since we use the alternative and the repetitive constructs to
compose reconfigurations, a given reconfiguration can have different outcomes,
11 Using hypothesis on weakest preconditions defined in [8].
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depending on the context, or due to non-deterministic mechanisms. It is not only
a static sequence of reconfiguration instructions (as it is the case in [5,10,12,17]),
but a truly dynamic reconfiguration.

Version consistency was introduced in [17] to minimise the interruption of
service (disruption) and the delay with which component-based (distributed)
systems are updated (timeliness) by mean of reconfigurations. It qualifies a
state where transactions within the system are such that a given reconfiguration
may not disrupt the system and occur in bounded time; version consistency was
inspired by quiescence [18] and tranquility [19] with the intent to gather the best
of both notions. Unlike [17,18,19], we only consider architectural constraints
as preconditions to apply guarded reconfigurations; this way, by considering
components as black boxes, the separation of concerns principle is respected. The
applicative consistency (related to transactions within the system or external
events) can be maintained at runtime using adaptation policies mechanisms as
described in [5] for centralised system and [6] for decentralised or distributed
systems.

6.2 Conclusion

Inspired by [8], we proposed (cf. Table 3) a grammar for guarded reconfigurations.
This allowed us to build reconfigurations based on primitive reconfiguration op-
erations using sequences of reconfigurations as well as the alternative and the
repetitive constructs. The ability to determine weakest preconditions for the appli-
cation of reconfigurations enabled us to prove that these guarded reconfigurations
preserve configuration consistency.

We also, as a practical contribution, implemented our model using the
GROOVE graph transformation tool [9], where component-based systems are
represented as graphs, elements (e.g., components, interface, parameters, etc.)
consist of nodes, and relations between elements (e.g., Parent, Bindings, etc.)
are showed as edges. This implementation, used to experiment with our running
example (Managed/Unmanaged Cloud Environment), permits to model reconfig-
uration as graph rules based on LHS, RHS, and NAC graphs. When different
outcomes can occur for each reconfiguration, the set of possible executions can be
displayed as a LTS graph using our implementation under GROOVE ; possibles
states, i.e., configurations of the system under scrutiny, are shown as nodes and
reconfigurations between them as edges.

We have also been able to prove the correctness of interpreted systems, using
graph grammars to perform reconfigurations, wrt. our reconfiguration model,
which demonstrates the correctness of our implementation.

As future work, we intend to analyse aforementioned LTS graphs, to detect or
prevent the formation of cycles within reconfigurations. We are also planning to
implement dynamic reconfigurations based on graph grammars for the application
of adaptation policies at runtime.
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A Proof of Proposition 1 for Constructs Based on
Primitive Statements

Let us consider a guarded reconfiguration set grs based on guarded reconfigura-
tions containing guarded lists made only of primitive statements. This reconfig-
uration set, grs denotes B′1 → S1[] . . . []B′n → Sn, with B′i being a boolean and
Si = opei0; opei1; . . . ; opeini

, where ni represent the number of primitive statements
(opei0, opei1, . . . , opeini

) of the guarded list Si, and preij (resp. preij+1) represents
the precondition (postcondition) of opeij , for 0 < i ≤ n and 0 ≤ j ≤ ni (resp.
0 < j ≤ ni + 1).

Since prei0 is the precondition of Si and we suppose the configuration before
the application of Si to be consistent, we rewrite grs as B1 → S1[] . . . []Bn → Sn,
with Bi = B′i ∧CC ∧ prei0. We also define BB = (∃i : 1 ≤ i ≤ n : Bi), as well as,
the sets I = {i ∈ N.1 ≤ i ≤ n} and I> = {i ∈ I .Bi}.

A.1 Alternative Construct
Let IF denote if B1 → S1[] . . . []Bn → Sn fi.

By definition, wp(IF,R) = BB∧∀i ∈ I : Bi ⇒ wp(Si, R). We established be-
fore that, for Si being a sequence of primitive statement, CC∧prei0 ⇒ wp(Si, CC∧
preini+1); then, by definition Bi ⇒ wp(Si, CC ∧ preini+1) ⇒ wp(Si, CC). This
means that wp(IF,CC) = BB∧∀i ∈ I : Bi ⇒ wp(Si, CC), which can be enough
to prove that consistency is preserves by the alternative construct.

It is possible, however, to establish a stronger postcondition, CC∧
∧
i∈I>

preini+1,

for the alternative construct by considering that each term of the conjunction∧
i∈I>

preini+1 is part of the postcondition of a guarded list eligible for execution.

Then, wp(IF,CC ∧
∧
j∈I>

prejnj+1) = BB∧∀i ∈ I : Bi ⇒ wp(Si, CC ∧preini+1)

because, by definition, ∀i ∈ I>, Bi = >.
Therefore:

BB ∧ CC ∧
∧
i∈I>

prei0 ⇒ BB ∧
∧
i∈I>

wp(Si, CC ∧ preini+1)

⇒ BB ∧ (∀i ∈ I : Bi ⇒ wp(Si, CC ∧ preini+1))

⇒ wp(IF,CC ∧
∧
j∈I>

prejnj+1)

As an example, we can denote by if B then S fi a particular case, written
if B → S[]¬B → skip fi, of the alternative construct which weakest precondition
is wp(if B then S fi, CC ∧ (B ⇒ postS)) = B ∧ wp(S,CC ∧ preS), where preS
and postS are, respectively, the precondition and postcondition of S.
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A.2 Repetitive Construct

Let DO denote do B1 → S1[] . . . []Bn → Sn od. Let be H0(R) = R ∧ ¬B, and
for k > 0, let be Hk(R) = wp(IF,Hk−1(R)) ∨ H0(R), where IF denotes the
same guarded configuration enclosed by “if fi”. Then, by definition, we have
wp(DO,R) = ∃k : k > 0 : Hk(R).

This means that the weakest precondition of this construct guarantees proper
termination after at most k selections of a guarded list, leaving the system
in a state satisfying R. Let us consider l0, l1, . . . , lk, such that, for 0 ≤ j ≤
k, 1 ≤ lj ≤ n and Sl0 ;Sl1 ; . . . ;Slk , as the ordered sequence of statements
selected during the duration of the construct until its termination. We proved
before that such a sequence preserve consistency. Therefore CC ∧ prelknlk

+1 is
a valid postcondition and, since CC ∧ prelknlk

+1 ⇒ CC ∧
∨
i∈I
preini+1, we have

wp(DO,CC ∧ prelknlk
+1)⇒ wp(DO,CC ∧

∨
i∈I
preini+1).

We established before that, for Si being a sequence of primitive statement,
CC∧prei0 ⇒ wp(Si, CC∧preini+1); then CC∧prel00 ⇒ wp(Sl0 ;Sl1 ; . . . ;Slk , CC∧
prelknlk

+1).
Therefore:

CC ∧
∧
i∈I
prei0 ⇒ CC ∧ prel00

⇒ wp(Sl0 ;Sl1 ; . . . ;Slk , CC ∧ pre
lk
nlk

+1)
for any valid sequence Sl0 ;Sl1 ; . . . ;Slk

⇒ wp(DO,CC ∧ prelknlk
+1)

⇒ wp(DO,CC ∧
∨
i∈I
preini+1)

This proves that the repetitive construct, applied to a guarded reconfiguration
set based on guarded reconfigurations containing guarded lists made only of prim-
itive statements, preserves consistency. It also provides stronger preconditions
and postconditions that are used to conclude the full proof of Prop 1.
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