
HAL Id: hal-01135706
https://hal.science/hal-01135706

Submitted on 23 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Propagation of Behavioral Variations with Delegation
Proxies

Camille Teruel, Erwann Wernli, Stéphane Ducasse, Oscar Nierstrasz

To cite this version:
Camille Teruel, Erwann Wernli, Stéphane Ducasse, Oscar Nierstrasz. Propagation of Behavioral
Variations with Delegation Proxies. LNCS Transactions on Aspect-Oriented Software Development,
2015, 8989, pp.63-95. �10.1007/978-3-662-46734-3_2�. �hal-01135706�

https://hal.science/hal-01135706
https://hal.archives-ouvertes.fr


Propagation of Behavioral Variations
with Delegation Proxies

(Preprint)?

Camille Teruel1, Erwann Wernli2, Stéphane Ducasse1, and Oscar Nierstrasz2

1 RMOD, INRIA Lille Nord Europe, France
2 Software Composition Group, University of Bern, Switzerland

Abstract. Scoping behavioral variations to dynamic extents is useful
to support non-functional concerns that otherwise result in cross-cutting
code. Unfortunately, such forms of scoping are difficult to obtain with
traditional reflection or aspects. We propose delegation proxies, a dy-
namic proxy model that supports behavioral intercession through the
interception of various interpretation operations. Delegation proxies per-
mit different behavioral variations to be easily composed together. We
show how delegation proxies enable behavioral variations that can prop-
agate to dynamic extents. We demonstrate our approach with examples
of behavioral variations scoped to dynamic extents that help simplify
code related to safety, reliability, and monitoring.

Keywords: Reflection, proxy, delegation, propagation, dynamic extent

1 Introduction

Non-functional concerns like monitoring or reliability typically result in code
duplication in the code base. The use of aspects is the de-facto solution to factor
out such boilerplate code into a single place. Aspects enable the scoping of be-
havioral variations in space (with a rich variety of static pointcuts), in time (with
dynamic aspects), and in the control flow (with the corresponding pointcuts).
Scoping a behavioral variation to the dynamic extent [TFD+09] of an expres-
sion is however challenging, since scoping between threads is not easily realized
with aspects. Traditional reflection and meta-object protocols suffer from similar
limitations.

This is unfortunate since scoping behavioral variations to dynamic extents
increases the expressiveness of the language in useful ways [Tan08,TFD+09].
With such a form of scoping, it is possible to execute code in a read-only man-
ner [ADD+10] (thus improving safety), or to track all state mutations to ease

? In Transactions on Aspect-Oriented Software Development XII, Lecture Notes in
Computer Science 8989 p. 63-95, Springer Berlin Heidelberg, 2015.
DOI: 10.1007/978-3-662-46734-3_2

http://dx.doi.org/10.1007/978-3-662-46734-3_2


recovery in case of errors (thus improving reliability), or to trace and profile code
at a fine-grained level (thus improving monitoring).

We show in this paper that with minor changes to the way dynamic proxies
operate, it becomes possible to implement behavioral variations that are scoped
to dynamic extents. A dynamic proxy [VCM10,MPBD+11,Eug06]3 is a special
object that mediates interactions between a client object and another target
object. When the client sends a message to the proxy, the message is intercepted
and reified to allow specific processing. To scope variations to dynamic extents
using proxies, we must first slightly adapt the dynamic proxy mechanism. We
refer to our approach as delegation proxies.

Delegation proxies have the following characteristics:

– They operate by delegation [Lie86], i.e., by rebinding self-references as in
prototype-based languages,

– they intercept state accesses, both for regular fields and variables captured
in closures, and

– they intercept object creation.

With delegation proxies, a proxy can encode a behavioral variation that will
be consistently propagated to all objects accessed during the evaluation of a
message send (i.e., its dynamic extent).

Delegation proxies have several positive properties. First, delegation proxies
can avoid infinite regressions. In aspect-oriented programming, infinite regres-
sions can arise when an advice triggers the associated pointcut.4 In reflective
architectures, infinite regression arises when reflecting on code that is used to
implement the reflective behavior itself. The conventional solution to this prob-
lem is to explicitly model the different levels of execution [CKL96,DSD08,Tan10].
With delegation proxies, a proxy and its target are distinct objects and the prop-
agation is enabled only for the proxy. No variation is active when executing the
code that implements the behavioral variation as long as all messages are sent
to base objects. Second, behavioral variations expressed with delegation proxies
compose, similarly to aspects. For instance, tracing and profiling behavioral vari-
ations can be implemented by separate proxies that can be combined to apply
both behavioral variations. Third, like other dynamic proxy implementations,
delegation proxies naturally support partial reflection [TNCC03] at an object-
level granularity. Behavioral intercession is enabled only for proxies. All other
objects in the system — including the target — remain unaffected and pay no
performance overhead.

In this paper, we explore and demonstrate the flexibility of delegation proxies
in Smalltalk with the following contributions:

– A model of proxies based on delegation that intercepts object instantiations
and state accesses (including variables in closures) (Section 2);

3 A similar mechanism is called encapsulator [Pas86]
4 A typical workaround for this problem is to constrain pointcut definitions: e.g., a
pointcut p within an aspect A is rewritten: p && !cflow(adviceexecution()) &&
within(A)



– A technique to use delegation proxies to scope variations to dynamic extents
(Section 2);

– Several examples of useful applications of variations scoped to dynamic ex-
tents (Section 4);

– A formalization of delegation proxies and the propagation technique (Sec-
tion 6);

– An implementation of delegation proxies in Smalltalk based on code gener-
ation (Section 7).

2 Delegation Proxies

Delegation proxies are dynamic proxies that operate by delegation in contrast to
classical dynamic proxies that operate by forwarding. After presenting dynamic
proxies, we show why delegation is a better choice than forwarding for proxy-
based behavioral intercession.

To the best of our knowledge only EcmaScript 6 proxies use delegation. How-
ever, this is incidental since EcmaScript, as a prototype-based object language,
uses delegation to implement object inheritance [Lie86].

We will see that delegation enables the interception of interpretation opera-
tions that occur during method execution — like object state accesses and object
creation — and allows behavioral variations to be composed naturally. This is
an important matter to consider in the context of class-based object-oriented
languages.

2.1 Dynamic proxies

A dynamic proxy is an object that acts as a surrogate for another object, called
its target. A proxy mediates interactions between its target and its clients. The
behavior of a proxy is typically defined by a separate object called its handler,
whose methods are called traps [VCM10]. When an interpretation operation —
like the reception of a message, an access to an object instance variable, etc.—
is applied to a proxy, the proxy reifies the operation and instead invokes the
trap that corresponds to that operation in its handler. The handler can take
some actions before, after or even instead of performing the original operation
on the target. Figure 1 shows the relationships between a proxy, its handler and
its target with an example of message interception.

The dynamic proxy mechanism implements a kind of behavioral intercession
that alters the interpretation of a program at the granularity of objects. We refer
to the different alterations of the interpretation process as behavioral variations.
Tracing, profiling, read-only, etc., are examples of behavioral variations.

The distinction between proxies and handlers is the application of a principle
called stratification [BU04,VCM10,MPBD+11]. Stratification stipulates that the
meta-level must be separated from base-level. In the context of dynamic proxies,
this principle avoids name conflicts between application methods and handler



traps, i.e., between the base-level and the meta-level. This means that a proxy
can expose exactly the same interface as its target.

By using proxies as the targets of other proxies, we obtain chains of proxies as
depicted in Figure 2. In this case, when an interpretation operation is intercepted,
the corresponding trap should be triggered in each of the handlers of the proxies
in the order specified by the chain. This offers a natural and convenient way to
compose multiple behavioral variations.

targetclient
msg

handleMessage:
myself:
target:

proxy

handler

Fig. 1. Example of message interception. First, the client sends the message msg to a
proxy. Then, the proxy intercepts the message and invokes the handler trap associated
with message reception (handleMessage:proxy:target:) with three arguments: the
reified message, the proxy itself and the target.

2.2 Forwarding vs Delegation

We explore the differences between forwarding and delegation semantics in the
context of proxy-based intercession. The operational difference reduces to how
self-references are bound in methods that match intercepted messages. Tradi-
tional dynamic proxy implementations found in class-based object-oriented lan-
guages operate by forwarding. Once a message has been intercepted by a proxy,
the proxy may decide to forward the message to its target: the method corre-
sponding to the message is executed with self-references bound to the target.
This implies that the proxy loses control of the execution. With delegation, the
proxy may decide to delegate the message: the method corresponding to the
intercepted message is executed with self-references bound to the proxy itself.
This implies that the proxy keeps the control of the execution.

With delegation, the proxy can intercept interpretation operations that oc-
cur during a method execution: object state reads, object state writes, object
creation, literal resolution, etc. We refer to these interpretation operations as
sub-method operations. Moreover, with delegation the identity of the proxy that



originally intercepted the operation is maintained; this permits behavioral vari-
ations to be composed in the case of chains of proxies.

client p2

h2

p1

h1

target

iv: 0
incr

Fig. 2. A chain of two proxies. When an interpretation operation is intercepted, the
corresponding trap is triggered in the handlers h1 and h2 in order.

In Figure 2, we have two proxies p1 and p2, their respective handlers h1 and
h2, and an object target. The target of p1 is p2 and the target of p2 is target.
This forms a chain of two proxies. A client object sends a message incr that
is supposed to change the state of the target object by modifying its instance
variable iv.

With forwarding execution begins with the message by p1 being intercepted
and triggering the message-reception trap of its handler h1. The handler may at
some point forward the intercepted message to the target of p1 — namely the
proxy p2 — losing control of the execution at the same time. The same scenario
applies to p2 : it intercepts the message, invokes its handler’s message-reception
trap, its handler forwards the message to target which then executes the method
associated with the message normally and increments the value of its instance
variable iv.

We can see that the behavioral variations of p1 and p2 are necessarily lim-
ited to interception of message reception since p1 — the proxy that originally
intercepted the message — loses the control of the execution. It thus cannot
intercept sub-method operations. Even if the execution of the method of target
associated with the message performs a self-send, this latter message send will
not be intercepted.

With delegation the execution begins the same: p1 intercepts the message
and invokes the message-reception trap of its handler. But instead of forwarding
the message to p2, h1 instead delegates the message: it specify that the receiver
should be rebound to p1. Then p2 intercepts that message, passes it to h2,
which applies its behavioral variation and delegates the message to target. At
this point p1 is still the receiver and has still control over the execution: it can
intercept sub-method operations, in particular the modification of iv. In reaction
to this interception, p1 invokes the state-write trap of its handler h1. The state-



write trap of h2 is then invoked. This example shows that delegation permits
behavioral variations to be composed in the context of sub-method operation
interception.

To sum up, using delegation instead of forwarding for proxy-based interces-
sion permits proxies to intercept sub-method operations and to compose behav-
ioral variations by forming chains of proxies.

3 Propagation

In the previous section we saw how delegation proxies work. In this section
we present the concept of propagation of behavioral variation and its reflective
implementation in terms of delegation proxies. This technique permits a proxy
to be created for a target object that will scope a behavioral variation to the
dynamic extents of the messages it receives. These dynamic extents are the
parts of the execution delimited by the processing of a message received by the
proxy, from the reception of the message until the corresponding method returns.
All objects accessed during this dynamic extent are consistently represented by
proxies that are created on-demand. We refer to the first proxy that initiates the
propagations as the root proxy. Other proxies created during the propagation
are called non-root proxies. The root proxy can be seen as the entry point to a
lazily-created parallel object graph as depicted in Figure 3.

root proxy

actual control flow 

fictitious control flow 

Fig. 3. A depiction of propagation (handlers are omitted for clarity). A root proxy (in
grey) wraps a target object that is connected to some object graph. The dashed line
depicts the actual control flow of the execution. Proxies are created on need and are
eligible for garbage collection once the control flow leaves them. The actual control
flow parallels a fictitious control flow (dotted line) i.e., the control flow that would
have resulted if execution had not been intercepted by the root proxy.



3.1 Tracing example

We will illustrate propagation with a tracing example. Let us consider the
Smalltalk method Integer»fib5 which computes the Fibonacci value of an in-
teger using recursion:

Integer»fib
self < 2 ifTrue: [ � self ].
� (self - 1) fib + (self - 2) fib

Listing 1. Fibonacci computation

The computation of the Fibonacci value of 2 corresponds to the following
sequence of message sends (first the receiver of the message, then the message
with its arguments):

2 fib
2 < 2
false ifTrue: [ � self ]
2 - 1
1 fib
1 < 2
true ifTrue: [ � self ]
[ � self ] value
2 - 2
0 fib
0 < 2
true ifTrue: [ � self ]
[ � self ] value
1 + 0

Listing 2. Trace of 2 fib

To automatically trace message sends, we can use a proxy to intercept mes-
sage sends and print them. A tracing proxy can be obtained by instantiating
a proxy with a tracing handler. For convenience, we define the method Ob-
ject»tracing, which returns a tracing proxy for any object. For instance, the
expression 2 tracing returns a tracing proxy for the number 2.

Object»tracing
� Proxy handler: TracingHandler new target: self.

Listing 3. Creation of a tracing proxy

To trace messages, the tracing handler must define a message reception trap
that prints the name of the reified message. Listing 4 shows the code of such a
message trap:

5 The notation Integer»fib refers to the method fib of the class Integer. In
Smalltalk, closures are expressed with square brackets ([ . . . ]) and booleans are
objects. The method ifTrue: takes a closure as argument: if the receiver is the ob-
ject true, the closure is evaluated by sending it the message value. The up-arrow
(↑ ...) denotes a return expression.



TracingHandler»handleMessage: m myself: p target: t
Transcript

print: t asString;
space;
print: m asString;
cr.

� t perform: m myself: p.

Listing 4. A simple tracing handler

The reflective invocation with perform: takes one additional parameter my-
self, which specifies how self is rebound in the reflective invocation. This
permits us to encode delegation. The handler can thus either rebind self to the
proxy (delegation) or rebind self to the target (forwarding). Delegation proxies
thus trivially subsume traditional forwarding proxies.

Delegation ensures that messages received by the proxy are traced, including
self-sends in the method executed with delegation. However, it would fail to trace
messages sent to other objects. The evaluation of 2 tracing fib would print 2
fib, 2 < 2, 2 - 1, 2 - 2, but all the messages sent to 1, 0, true, false
and [ � self ] would not be traced.

To consistently apply a behavioral variation during the execution of a message
send, all objects accessed during the execution must be represented with proxies.

3.2 Wrapping rules

To scope a behavioral variation to a dynamic extent, we can implement a handler
that replaces all object references accessed by proxies. This way, the behavioral
variation will propagate during the execution.

In a given method activation, a reference to an object can be obtained from:

– an argument,
– a field read,
– the return value of message sends,
– the instantiation of new objects
– the resolution of literals6

The following rules suffice to make sure that all objects are represented by
proxies:

– Wrap the initial arguments. When the root proxy receives a message, the
arguments are wrapped with proxies. We don’t need to wrap the arguments
of messages sent to non-root proxies because the other rules ensure that the
arguments are already wrapped in the context of the caller.

– Wrap field reads. References to fields are represented by proxies.
– Wrap object instantiation. The return value of primitive message sends that

“create” new objects must be wrapped. Such primitive messages include ex-
plicit instantiations with new and arithmetic computations that are typically
implemented natively.

6 We consider closures to be special kinds of literals.



– Wrap literals. Similarly, literals occurring in the method must be wrapped.

We don’t need to wrap the return value of other message sends. Indeed, if the
receiver and the arguments of a message send are already wrapped, and if the
results of state reads and object instantiations are also wrapped in the execution
of the method triggered by this message send, this message send will necessarily
return a proxy.

Additionally, we need two rules to control how objects must be unwrapped:

– Unwrap field writes. When a field is written, we unwrap the value of the
assignment before performing it. This way, the proxies created during the
propagation are only referred to from within the call stack and don’t corrupt
the object graph connected to the target.

– Unwrap the initial return value. The root proxy unwraps the objects re-
turned to the clients. This rule may be omitted to implement other forms of
propagation as discussed in subsection 5.2.

Applying this technique to the code in Listing 1, the subtractions self-2 and
self-1 return proxies as well. Figure 4 depicts the situation. This way, tracing
is consistently applied during the computation of Fibonacci numbers.

2

1

2'

1'
target

target
- 2

1

2'

1'
target

target
-

2

1

2'

1'
target

target
- 2

1

2'

1'
target

target
-

returns

-

returns

-

a b
c d

Fig. 4. Illustration of propagation during the subtraction 2 - 1. A proxy to 2 re-
ceives the subtraction message “-” with a proxy to 1 as argument (a). The message is
forwarded to 2 to perform the actual subtraction (b) that returns 1 (c). Finally the
result is wrapped (d).

3.3 Propagation handler

To implement a handler that applies the wrapping rules presented previously,
we need to have specific traps. In Smalltalk, an object is instantiated by sending



the message new to a class, which is an object as well. The interception of object
instantiations does thus not require a specific trap and is realized indirectly. The
following set of traps is thus sufficient to intercept all method invocations, state
accesses, and object instantiations:

– handleMessage:myself:target:
The trap for message sends takes as parameters the reified message, the
original proxy7 and the target.

– handleReadField:myself:target:
The trap for field reads takes as parameters the field name, the original proxy
and the target.

– handleWriteField:value:myself:target:
The trap for field writes takes as parameters the field name, the value to
write, the original proxy and the target.

– handleLiteral:myself:target:
The trap for the resolution of literals (symbols, string, numbers, class names,
and closures) takes as parameters the resolved literal, the original proxy and
the target.

This set of traps is sufficient to implement propagation in Smalltalk. However,
the set of necessary traps depends on the host language. In Java, additional traps
would be needed to intercept constructor invocations, accesses to static fields and
invocation of static methods.

Similarly to perform:, reflective methods used to read fields, to write fields
and to resolve literals need to be extended with an additional parameter my-
self. They become instVarNamed:myself:, instVarNamed:put:myself and
literal:myself:. In the case of a chain of proxies, the parameter myself is
passed to the traps along the chain to preserve the identity of the proxy that
originally intercepted the operation.

Listing 5 shows the traps for state writes and state reads traps. Other traps
are similar. This handler just applies the previous wrapping rules. It is instan-
tiated with another handler on which it will hand-over trap invocations. This
allows propagation to be used with handlers that are not prepared for this tech-
nique.

It is impossible to deconstruct a proxy to obtain its handler or its target
without using reflective capabilities. For simplicity, we assume the existence of
a class Reflect that exposes the following methods globally:

– Reflect class>>isProxy: aProxy
Returns whether the argument is a proxy or not.

– Reflect class>>handlerOf: aProxy
If the argument is a proxy, returns its handler. Fails otherwise.

– Reflect class>>targetOf: aProxy
If the argument is a proxy, returns its target. Fails otherwise.

7 In case of chain proxies, the original proxy is not necessarily the one that intercepted
the operation but the root of the chain.



For increased security, these methods could be stratified with mirrors (i.e.,
dedicated objects that provide access to reflective features for a given object
[BU04]), in which case handlers would need to have access to a mirror when
they are instantiated.

PropagationHandler»handleReadField: f myself: p target: t
� self wrap: (h handleReadField: f myself: p target: t).

PropagationHandler»handleWriteField: f value: v proxy: p target: t
h handleWriteField: f value: (self unwrap: v) proxy: p target: t.
� v

Listing 5. State reads and state writes traps of a propagating handler.

3.4 Closures

Closures deserve special treatment. A closure should be evaluated with the vari-
ations that are active in the current dynamic extent, and not the variations
that were active when it was created. Consider, for instance, if the closure
[ self printString ] is created when tracing is enabled, its evaluation dur-
ing a regular execution should not trace the message printString. Conversely,
if the closure [ self printString ] is created during a regular execution, its
evaluation when tracing is enabled should trace the message printString. For
this to work correctly, closures are always created in an unproxied form, and are
transformed on demand when wrapped.

Variables captured in a closure are stored in indexed fields. Let us see first
how creation works and illustrate it with the closure [ self printString ]
and tracing:

1. The closure is created by the runtime and captures variables as-is. Tracing
example: the closure captures self, which refers to a proxy.

2. The closure creation is intercepted by the literal trap of the creator. Tracing
example: the closure is treated like other literals and thus proxied.

3. If the closure was proxied, the runtime invokes the write trap of the closure’s
proxy for all captured variables. Tracing example: the runtime invokes the
write trap of the closure’s proxy passing 0 as field index and the self proxy
as value. The trap unproxies the value and reflectively invokes instVar-
Named:put:myself: for field 0. This overwrites the previous value in the
closure with a reference to the base object.

Evaluation of closures follows the inverse scheme:

1. If the closure is evaluated via a proxy, the runtime invokes the read trap
each time a captured variable is accessed. Tracing example: the runtime
invokes the read trap of the closure’s proxy passing 0 as field index. The
trap reflectively invokes instVarNamed: for field 0 and wraps the result
with a proxy. The message printString is sent to the proxy.



Note that this scheme is quite natural if we consider that closures could be
encoded with regular objects, similarly to anonymous classes in Java. In that
case, captured variables are effectively stored in synthetic fields initialized in the
constructor. The instantiation of the anonymous class would trigger write traps,
and evaluation would trigger read traps.

Adding method valueWithHandler: in BlockClosure, tracing 2 fib can
also be achieved with [ 2 fib ] valueWithHandler: TracingHandler new in-
stead of 2 tracing fib. Closures provide a convenient way to activate a behav-
ioral variation in the dynamic extent of expression.

BlockClosure»valueWithHandler: aHandler
� (Proxy handler: aHandler target: self) value.

Listing 6. Convenience method to wrap and evaluate a closure

4 Examples

Delegation proxies subsume dynamic proxies and can be used to implement all
classical examples of dynamic proxies such as lazy values, membranes, etc. We
omit examples that can be found in the literature [VCM13,Eug06,MPBD+11].

We focus in this section on new examples enabled by delegation proxies. They
all rely on the propagation technique presented earlier. We assume that the han-
dlers are wrapped with a PropagationHandler that implements the propaga-
tion technique for reuse (see Listing 5). There are advantages to using delegation
proxies to scope these behavioral variations to a dynamic extent. Behavioral vari-
ations can be composed: different parties can add their own variations without
being aware of others already active for the same target. A behavioral variation
is enabled only for the proxy: a variation is enabled for clients who possess a
reference to the proxy while other clients may have a reference to the target
or to another proxy implementing another behavioral variation. It is up to the
creator of the proxy to decide whether to pass the proxy or the target.

4.1 Read-only Execution

Read-only execution [ADD+10] prevents mutation of state during evaluation.
Read-only execution can dynamically guarantee that the evaluation of a given
piece of code is either free of side effects or raises an error.

Classical proxies could restrict the interface of a given object to the subset
of read-only methods. However, they would fail to enable read-only execution
of arbitrary methods, or to guarantee that methods are deeply read-only. Read-
only execution can be implemented trivially by wrapping a handler that fails
upon state writes with a propagation handler.

ReadOnlyHandler»handleWriteField: f value: v myself: p target: t
ReadOnlyError signal: ’Illegal write’.

Listing 7. Read-only handler



Thanks to proxy-based intercession, the target object is still available to
trusted clients that can modify it. Only clients holding a reference to the proxy
are affected by the read-only policy.

4.2 Object Versioning

To tolerate errors, developers implement recovery blocks that undo mutations
and leave the objects in a consistent state [PLW09]. Typically, this entails cloning
objects to obtain snapshots. Our propagation technique enables the implemen-
tation of object versioning concisely. Before any field is mutated, the handler
shown below records the old value into a log using a reflective field read. The
log can be used in recovery block, for instance to implement rollback. Similarly
to the other examples that follow, we assume that the handler is wrapped with
a propagation handler.

RecordingHandler»handleWriteField: f value: v myself: p target: t
| oldValue |
oldValue := t instVarNamed: f myself: p.
log add: { t. f. oldValue }.
t instVarNamed: f put: v myself: p.
� v

Listing 8. Recording handler

A convenience method can be added to enable recording with [. . .] recordInLog:
aLog.

BlockClosure»recordInLog: aLog
� self valueWithHandler: (RecordingHandler log: aLog)

Listing 9. Enabling recording

The log can then be used to reflectively undo changes if needed.

aLog reverseDo: [ :change |
change first instVarNamed: change second put: change third

]

Listing 10. Undoing changes

4.3 Dynamic Scoping

In most modern programming languages, variables are lexically scoped and can’t
be dynamically scoped. Dynamic scoping is sometimes desirable, for instance in
web frameworks to access easily the ongoing request. Developers must in this case
use alternatives like thread locals. It is for instance the strategy taken by Java
Server Faces in the static method getCurrentInstance() of class FacesCon-
text8).

8 http://www.webcitation.org/6FOF4DFab

http://www.webcitation.org/6FOF4DFab


Dynamic scoping can be realized in Smalltalk using stack manipulation [Deu81]
or by accessing the active process. Delegation proxies offer an additional ap-
proach to implement dynamic bindings by simply sharing a common (key,value)
pair between handlers. If multiple dynamic bindings are defined, objects will
be wrapped multiple times, once per binding. When a binding value must be
retrieved, a utility method locates the handler corresponding to the request key,
and returns the corresponding value:
ScopeUtils»valueOf: aKey for: aProxy

| h p |
p := aProxy.
[ Reflect isProxy: p ] whileTrue: [

h := Reflect handlerOf: p.
( h bindingKey == aKey ) ifTrue: [

� h bindingValue.
].
p := Reflect targetOf: p.

].
� nil. "Not found"

Listing 11. Inspection of a chain of proxies

During the evaluation of a block, a dynamic variable can be bound with [. . .]
valueWith: #currentRequest value: aRequest and accessed pervasively with
ScopeUtils valueOf: #currentRequest for: self.

4.4 Profiling

Previous sections already illustrated delegation proxies using tracing. The same
approach could be used to implement other interceptors like profiling or code
contracts. The following handler implements profiling. It stores records of the
different execution durations in an instance variable tallies for later analysis.
ProfilingHandler»initialize

tallies := OrderedCollection new

ProfilingHandler»handleMessage: m myself: p target: t
| start |
start := Time now.
[ � t perform: m myself: p ]
ensure: [

| duration |
duration := Time now - start.
tallies add: {t. m. duration} ]

Listing 12. A simple profiling handler

5 Other forms of propagation

Since propagation is implemented reflectively, it can be customized in many
ways. Delegation proxies provide flexible building blocks to implement various



forms of scopes, possibly blurring the line between static and dynamic scoping,
similarly to Tanter’s scoping strategies [TFD+09].

5.1 Filtering on package

Propagation can for instance be adapted to enable a behavioral variation only
for instances of classes belonging to specific packages. This can be used to select
which parts of an execution are subject to a behavioral variation such as tracing.
It is especially useful for excluding kernel classes (string, dictionaries, arrays,
etc.) and focusing instead on the classes of the analysed application.

To implement this form of scoping, it is possible to implement a filtering
handler with a set of packages. This handler will wrap another handler and ask
it to apply its behavioral variation only when the class of the target is declared in
one of the packages of interest. Listing 13 shows the message trap of that filtering
handler. A filtering handler is then wrapped into a propagating handler.

FilteringHandler»handleMessage: m myself: p target: t
� (packages includes: t class package)
ifTrue: [ innerHandler handleMessage: m myself: p target: t ]
ifFalse: [ t perform: m myself: t ]

Listing 13. Message trap of the filtering handler

5.2 Defensive proxies

Behavioral variations that are concerned with security can be used in two cases.
The first case is when we want to apply the behavioral variation to protect the
target from its clients. The second case is when we want to apply the behavioral
variation to protect the clients from the target.

Protecting the target from the clients. With full propagation a read-only be-
havioral variation ensures that no state is modified from within the dynamic
extent of messages received by the root proxy. We can customize propagation to
relax the constraint imposed on clients. We can ensure that no state of the ob-
ject graph connected to the target is modified from within the dynamic extent of
messages received by the root proxy. To achieve that we can have an alternative
propagation handler that does not wrap initial arguments, i.e., the arguments of
messages sent to the root proxy. The rationale is that the client necessarily has a
reference to each of the objects it passes as arguments in the message to the root
proxy. The client can therefore access these objects with the behavioral variation
disabled in any case. In such scenarios, we also typically want initial returns to
be wrapped so that objects returned by the target are still protected by the
behavioral variation. The alternative propagation handler would not apply this
unwrapping rule.



Protecting the clients from the target. There are other security-related behavioral
variations that need to protect the clients from the target. This means that
propagation should be enabled only for the arguments that are passed to the
proxy. In that case, the proxy created to wrap the initial target (initial proxy)
does not propagate by itself but it would wrap the arguments of messages it
receives with proxies that do propagate. The return values of messages sent to
that initial proxy would also typically be other proxies with the same wrapping
rules to ensure that clients are also protected from these objects. This scenario
is in fact a combination of a membrane [VCM10,TCD13] with our propagation
technique. The initial proxy’s handler would implement the wrapping rules of
membranes. The membrane handler would be parameterized with two handlers:
one that defines the inside-out policy and another that defines the outside-in
policy [TCD13]. The inside-out handler would be an identity handler and the
outside-in handler would be a propagating handler, itself parameterized with the
handler that implements the behavioral variations used to protect the clients
from the target.

6 Semantics

We formalize delegation proxies by extending SmalltalkLite [BDNW08], a
lightweight calculus in the spirit of ClassicJava [FKF98] that captures the
core execution semantics of a Smalltalk-like language and omits static types. We
assume no prior knowledge of it. Our formalization simplifies three aspects of the
semantics presented in the previous sections: it doesn’t model first-class classes,
literals or closures. Consequently, literal traps are not considered. Instead, we
introduce a new trap that intercepts object instantiations.

The syntax of our extended calculus, SmalltalkProxy, is shown in Fig-
ure 5. The only addition to the original syntax is the new expression proxy e e.

P = defn∗e
defn = class c extends c { f∗meth∗ }
meth = m(x∗) { e }

e = new c | x | self | nil | f | f = e
| e.m(e∗) | super.m(e∗) | let x = e in e
| proxy e e

Fig. 5. Syntax of SmalltalkProxy

During evaluation, the expressions of the program are annotated with the
object and class context of the ongoing evaluation, since this information is
missing from the static syntax. An annotated expression is called a redex. For
instance, the super call super.m(v∗) is decorated with its object and class into



super〈c〉.m〈o〉(v∗) before being interpreted; self is translated into the value of
the corresponding object; message sends o.m(v∗) are decorated with the cur-
rent object context to keep track of the sender of the message. The rules for
translating expressions into redexes are shown below.

o[[new c′]]c = new〈o〉 c′ (where o is fresh)
o[[x]]c = x

o[[self]]c = o
o[[nil]]c = nil
o[[f ]]c = f〈o〉

o[[f = e]]c = f〈o〉 = o[[e]]c
o[[e.m(e∗i )]]c = o[[e]]c.m〈o〉(o[[ei]]

∗
c)

o[[super.m(e∗i )]]c = super〈c〉.m〈o〉(o[[ei]]∗c)
o[[let x = e in e′]]c = let x = o[[e]]c in o[[e′]]c
o[[proxy e e′]]c = proxy o[[e]]c o[[e

′]]c

Fig. 6. Translating expressions to redexes

Redexes and their subredexes reduce to a value, which is either an address
a, nil, or a proxy. A proxy has a handler h and a target t. A proxy is itself a
value. Both h and t can be proxies as well. Redexes may be evaluated within
an expression context E. An expression context corresponds to an redex with
a hole that can be filled with another redex. For example, E[expr] denotes an
expression that contains the sub-expression expr.

ε = o | new〈o〉 c | x | self | nil | f〈o〉 | f〈o〉 = ε
| ε.m〈o〉(ε∗) | super〈c〉.m〈o〉(ε∗) | let x = ε in ε
| proxy ε ε

E = [ ] | f〈o〉 = E | E.m〈o〉(ε∗) | o.m〈o〉(o∗ E ε∗)
| super〈c〉.m〈o〉(o∗ E ε∗) | let x = E in ε
| proxy E ε | proxy o E

o = a | nil | proxy o o

Fig. 7. Redex syntax

Translation from the main expression to an initial redex is carried out by the
function o[[e]]c (see Figure 6). This binds fields to their enclosing object context
and binds self to the value o of the receiver. The initial object context for a
program is nil. (i.e., there are no global fields accessible to the main expression).



P ` 〈E[new〈r〉 c],H〉
↪→ 〈E[a],H[a 7→ 〈c, {f 7→ nil | ∀f, f ∈∗P c}〉]〉 [new]
where a 6∈ dom(H)

P ` 〈E[new〈proxy h t〉 c],H〉
↪→ 〈E[h.newTrap(new〈t〉c,proxy h t)],H〉 [new-proxy]

P ` 〈E[f〈a〉],H〉
↪→ 〈E[o],H〉 [get]
where H(a) = 〈c,F〉 and F(f) = o

P ` 〈E[f〈proxy h t〉],H〉
↪→ 〈E[h.readTrap(t, f,proxy h t)],H〉 [get-proxy]

P ` 〈E[f〈a〉 = o],H〉
↪→ 〈E[o],H[a 7→ 〈c,F [f 7→ o]〉]〉 [set]
where H(a) = 〈c,F〉

P ` 〈E[f〈proxy h t〉 = o],H〉
↪→ 〈E[h.writeTrap(t, f, o,proxy h t)],H〉 [set-proxy]

P ` 〈E[a.m〈s〉(o∗)],H〉
↪→ 〈E[a[[e[o∗/x∗]]]c′ ],H〉 [message]
where H[a] = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗P c′

P ` 〈E[(proxy h t).m〈s〉(o∗)],H〉
↪→ 〈E[h.messageTrap(t,m, o∗,proxy h t)],H〉 [message-proxy]

P ` 〈E[super〈c〉.m〈s〉(o∗)],H〉
↪→ 〈E[s[[e[o∗/x∗]]]c′′ ],H〉 [super]
where c ≺P c′ and 〈c′,m, x∗, e〉 ∈∗P c′′ and c′ ≤P c′′

P ` 〈E[let x = o in ε],H〉
↪→ 〈E[ε[o/x]],H〉 [let]

Fig. 8. Reductions for SmalltalkProxy

So if e is the main expression associated to a program P , then nil[[e]]Object is the
initial redex.

P ` 〈ε,H〉 ↪→ 〈ε′,H′〉 means that we reduce an expression (redex) ε in the
context of a (static) program P and an object heap H to a new expression ε′

and (possibly) updated heap H′. The heap consists of a set of mappings from
addresses a ∈ dom(H) to tuples 〈c, {f 7→ v}〉 representing the class c of an object
and the set of its field values. The initial value of the heap is H = {}.

The reductions are summarized in Figure 8. Predicate ∈∗P is used for field
lookup in a class (f ∈∗P c) and method lookup (〈c,m, x∗, e〉 ∈∗P c′, where c′ is
the class where the method was found in the hierarchy). Predicates ≤P and ≺P

are used respectively for subclass and direct subclass relationships.
If the object context 〈o〉 of an instantiation with new〈o〉 c is a regular object

(i.e., not a proxy), the expression reduces to a fresh address a, bound in the



heap to an object whose class is c and whose fields are all nil(reduction [new ]).
If the object context of the instantiation is a proxy, the newTrap is invoked
on the handler instead (reduction [new-proxy ]). The trap takes the result of the
instantiation new〈t〉 c as parameter; it can take further action or return it as-is.

The object context 〈o〉 of field reads and field writes can be an object or a
proxy. A local field read in the context of an object address reduces to the value
of the field (reduction [get ]). A local field read in the context of a proxy invokes
the trap readTrap on the handler h (reduction [get-proxy ]). A local field write
in the context of an object simply updates the corresponding binding of the field
in the heap (reduction [set ]). A local field read in the context of a proxy invokes
the trap writeTrap on the handler h (reduction [set-proxy ]).

Messages can be sent to an object or to a proxy. When we send a message
to an object, the corresponding method body e is looked up, starting from the
class c of the receiver a. The method body is then evaluated in the context of
the receiver, binding self to the address a. Formal parameters to the method
are substituted by the actual arguments. We also pass in the actual class in
which the method is found, so that super sends have the right context to start
their method lookup (reduction [message]). When a message is sent to a proxy,
the trap messageTrap is invoked on the handler. The object context 〈s〉 that
decorates the message corresponds to the sender of the message. The trap takes
as parameters the message and its arguments, and the initial receiver of the
message proxy h t.

Super-sends are similar to regular message sends, except that the method
lookup must start in the superclass of the class of the method in which the
super send was declared. In the case of a super-send, the object context 〈s〉
corresponds to the sender of the message as well as the receiver. The object
context is used to rebind self (reduction [super ]). When we reduce the super-
send, we must take care to pass on the class c′′ of the method in which the super
reference was found, since that method may make further super-sends. Finally,
let in expressions simply represent local variable bindings (reduction [let ]).

Errors occur if an expression does not reduce to an a or to nil. This may
occur if a non-existent variable, field or method is referenced (for example, when
sending any message to nil, or applying traps on a handler h that isn’t suitable).
For the purpose of this paper we are not concerned with errors, so we do not
introduce any special rules to generate an error value in these cases.

6.1 Identity Proxy

The language requires the ability to reflectively apply operations for proxies to
be useful. For simplicity, we extend the language with three additional non-
stratified reflective primitives: send, read, and write. The semantics of these
primitives is given in Figure 9.

All three primitives take a final argument my (shortcut for “myself”) repre-
senting the object context that will be rebound. When applied to a proxy, the
operations invoke the corresponding trap in a straightforward manner, passing
my as is. When read or write are applied to an object address, the argument



P ` 〈E[a.send(m, o∗,my)],H〉
↪→ 〈E[my[[e[o∗/x∗]]]c′ ],H〉 [reflect-message]
where H[a] = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗P c′

P ` 〈E[(proxy h t).send(m, o∗,my)],H〉
↪→ 〈E[h.messageTrap(t,m, o∗,my)],H〉 [reflect-message-proxy]

P ` 〈E[a.read(f,my)],H〉
↪→ 〈E[o],H〉 [reflect-get]
where H(a) = 〈c,F〉 and F(f) = o

P ` 〈E[(proxy h t).read(f,my)],H〉
↪→ 〈E[h.readTrap(t, f,my)],H〉 [reflect-get-proxy]

P ` 〈E[a.write(f, o,my)],H〉
↪→ 〈E[o],H[a 7→ 〈c,F [f 7→ o]〉]〉 [reflect-set]
where H(a) = 〈c,F〉

P ` 〈E[(proxy h t).write(f, o,my)],H〉
↪→ 〈E[h.writeTrap(t, f, o,my)],H〉 [reflect-set-proxy]

P ` 〈E[unproxy (proxy h t)],H〉
↪→ 〈E[t],H〉 [unproxy]

P ` 〈E[unproxy a],H〉
↪→ 〈E[a],H〉 [unproxy-object]

Fig. 9. Reflective facilities added to SmalltalkProxy

my is ignored. When send is applied to an object address, my defines how self
will be rebound during the reflective invocation.

With these primitives, we can trivially define the identity handler idHan-
dler that defines the following methods :

class idHandler extends Object {
newTrap(t,my){ t }
readTrap(t, f,my){ t.read(f,my) }
writeTrap(t, f, o,my){ t.write(f, o,my) }
messageTrap(t,m, o∗,my){ t.send(m, o∗,my) }}

6.2 Proof of Compositionality

Here we prove that proxy composition works as expected. That is, when the
first proxy in a chain of proxies intercepts a message send, the message traps
of the corresponding handlers are evaluated in order (given that these traps
delegate the message to the corresponding targets). In addition, the operations
applied during the execution of the matching method are also intercepted and
consequently, the corresponding traps are also evaluated in order.



Theorem 1. Let p1, p2, . . . , pn be a proxy chain ( i.e., pn = proxy hn t and
∀i ∈ [1, n[ . pi = proxy hi pi+1) such that each handler hi unconditionally del-
egates the intercepted operations on their respective target. Then, the behavioral
variations implemented by each hi compose, i.e., (1) a message m intercepted by
p1 triggers the message trap of each handler hi in order for i ∈ [1, n] and (2)
each consequent operations performed in the method that t associates with the
message m, will be intercepted and will trigger the corresponding trap of each
handler hi in order for i ∈ [1, n].

Proof:

Lemma 1. For all i ∈ [1, n[, invoking the message trap of a handler hi with p
bound to the my parameter triggers the message trap of each subsequent handler
hj in order for j ∈]i, n] with p still bound to the my parameter.

Proof of Lemma 1 by reverse induction:
Basis: The proposition holds for n− 1.

〈hn−1.messageTrap(pn,m, o∗, p),H〉
↪→∗ 〈E[pn.send(m, o∗, p)],H〉 by hypothesis
↪→ 〈E[hn.messageTrap(t,m, o∗, p)],H〉 by [message-proxy]

Inductive step: If the proposition holds for i+ 1 > 1 then it holds for i.

〈hi.messageTrap(pi+1,m, o
∗, p),H〉

↪→∗ 〈E[pi+1.send(m, o∗, p)],H〉 by hypothesis
↪→ 〈E[hi+1.messageTrap(targeti+1,m, o

∗, p)],H〉 by [message-proxy]
where targeti+1 = t when i = n− 1 and pi+2 otherwise

Hence the proposition holds for all i ∈ [1, n[. ut
We know from the reduction rule [message-proxy] that a message sent to a

proxy triggers the message trap of that proxy’s handler, that is 〈E[p1.m(o∗)],H〉
reduces to 〈E[h1.messageTrap(p2,m, o∗, p1)],H〉. Together with Lemma 1, we
know that the proposition (1) of Theorem 1 holds.

Now, we need to prove the proposition (2) also holds in these conditions.
First we know by hypothesis that 〈E[hn.messageTrap(t,m, o∗, p1)],H〉 will
eventually reduce to 〈E[t.send(m, o∗, p1)],H〉. Then, we know from the reduc-
tion rule [reflect-message] that this reduces to 〈E[p1[[meth[o

∗/x∗]]]c′ ,H〉 where
H[t] = 〈c,F〉 and 〈c,m, x∗,meth〉 ∈∗P c′. In other words, the code meth of the
method that t associates with the message m is executed with p1 as receiver.

This method can perform different operations: self or super sends, writes,
reads.

In case of self-sends, similarly to the proposition (1) we know from Lemma 1
and from the reduction rule [message-proxy] that the proposition (2) holds.

Lets now consider the case of writes.

Lemma 2. For all i ∈ [1, n[, invoking the write trap of a handler hi with p1
bound to the my parameter triggers the write trap of each subsequent handler hj
in order for j ∈]i, n] with p1 still bound to the my parameter.



The proof of Lemma 2 is similar to that of Lemma 1. From [set-proxy] we
see that 〈E[f〈p1〉 = o],H〉 gives 〈E[h1.writeTrap(p2, f, o, p1)],H〉. Together
with Lemma 2 and the fact that p1 is the receiver during the evaluation of
meth, we know that proposition (2) holds for writes. The situation is similar
for reads, super-send and instantiation. We omit these cases for the sake of
conciseness as the proof can easily be expended to take them into account.
Hence the proposition (2) holds and so does the Theorem 1. ut

6.3 Propagating Identity Proxy

Following the technique of propagation presented in Section 3, we propose a
propagating identity handler, PropHandler. This handler defines the behavior of
the root proxy and uses another handler PropHandler∗ to create the other proxies
during the propagation. This technique requires the ability to unwrap a proxy.
The expression unproxy is added to the language as defined in Figure 9. We
also assume the existence of the traditional sequencing operation (;). We allow
ourselves to use a notation for the multiple arguments of messageTrap that
deviates from the given syntax and semantics.

The handler PropHandler is defined as follows:

class PropHandler extends Object {
newTrap(t,my){ proxy PropHandler∗ t }
readTrap(t, f,my){ t.read(f,my) }
writeTrap(t, f, o,my){ t.write(f, o,my) }
messageTrap(t,m, (o1, . . . , on),my){

unproxy(t.send(m,
(proxy PropHandler∗o1, . . . ,proxy PropHandler∗on),my)) }}

The handler PropHandler∗ is defined as follows:

class PropHandler∗ extends PropHandler {
messageTrap(t,m, (o1, . . . , on),my){ t.send(m, (o1, . . . , on),my) }}

6.4 Proof of Soundness of Propagation

We can formally express the intuitive explanation of Section 3 about soundness
of the propagation.

Theorem 2. Lets t, o1, . . . , on be objects. Then, during the evaluation of the
expression Expr := (proxy PropHandler t).m(o1, . . . , on) everything reduces to
a proxy or to nil except Expr itself.

Proof:
Let pr = proxy PropHandler t. We begin by reducing the expression pr.m(o∗)

in the context of a program P where o∗ = (o1, . . . , on).



〈pr.m(o1, . . . , on),H〉
↪→ 〈PropHandler.messageTrap(t,m, (o1, . . . , on), p),H〉 by [message-proxy]
↪→∗ 〈unproxy(t.send(m, po∗, p)),H〉

where po∗ = ((proxy PropHandler∗o1), . . . , (proxy PropHandler∗on))
by definition

↪→ 〈unproxy(pr[[e[po∗/x∗)]]c′ ,H〉
where H[t] = 〈c,F〉 and 〈c′,m, x∗, e〉 ∈∗P c by [reflect-message]

Now we prove by structural induction on e that during the evaluation of
〈pr[[e[po∗/x∗]]]c′ ,H〉 everything reduces to a proxy or to nil. Then, the remaining
unproxy operation ensures that the value of the initial expression is unwrapped
and thus that Theorem 2 always holds.

We call (H) the inductive hypothesis: during the evaluation of e everything
reduces to a proxy or to nil.

Case e := x : Here x can refer to an argument or to a local variable (see [let ]).
In the first case we have 〈pr[[x[po∗/x∗]]]c′ ,H〉 = 〈poi ,H〉 where i is the index of
the argument in question. In the second case we know by inductive hypothesis
that it reduce to a proxy or nil.

Case e := self : 〈pr[[self[po∗/x∗]]]c′ ,H〉 = 〈pr,H〉

Case e := nil : 〈pr[[nil[po∗/x∗]]]c′ ,H〉 = 〈nil,H〉

Case e := new c :

〈pr[[new c[po∗/x∗]]]c′ ,H〉 = 〈new〈pr〉 c,H〉
↪→ 〈PropHandler.newTrap(new〈t〉c, pr),H〉 by [new-proxy]
↪→ 〈PropHandler.newTrap(a, pr),H′〉

where H′ = H[a 7→ 〈c, {f 7→ nil | ∀f, f ∈∗P c}〉] by [new]
↪→∗ 〈proxy PropHandler∗ a,H′]〉 by definition

Case e := f :

〈pr[[f [po∗/x∗]]]c′ ,H〉 = 〈f〈pr〉,H〉
↪→ 〈PropHandler.readTrap(t, f, pr),H〉 by [get-proxy]
↪→∗ 〈proxy PropHandler∗ (t.read(f, p)),H〉 by definition
↪→ 〈proxy PropHandler∗ o,H〉 by [reflect-get]

Case e := f = e′:



We know by inductive hypothesis that e′ reduces to a value which is a proxy
or nil. Let v be that value.

〈pr[[f = e′[po∗/x∗]]]c′ ,H〉 = 〈f〈pr〉 = e′,H〉
↪→∗ 〈f〈pr〉 = v,H′〉 by (H)
↪→ 〈PropHandler.writeTrap(t, f, v, p),H′〉 by [set-proxy]
↪→∗ 〈t.write(f,unproxy v, p); v,H′〉 by definition
↪→ 〈t.write(f, v′, p); v,H′〉 by [unproxy(-object)]

where v′ = t′ if v = proxy h t′ or nil if v = nil
↪→ 〈v′; p′,H′′〉

where H′′ = H′[t 7→ 〈c,F [f 7→ o]〉]
and H′(t) = 〈c,F〉 by [reflect-set]

= 〈v,H′′〉

Case e := e′.m(e′′1 , . . . , e
′′
n):

We know by (H) that e′, e′′1 , . . . , e′′n all reduce to a proxy or nil. We need
to prove that (H) holds in case e′ is a proxy p whose handler is a PropHandler∗.
Since only messageTrap differs from PropHandler in PropHandler∗, we thus just
need to prove that the expression p.m(p1, . . . , pn) reduces to a proxy or nil when
each pi are already proxies or nil.

〈p.m(p1, . . . , pn),H〉
↪→ 〈PropHandler∗.messageTrap(t′,m, (p1, . . . , pn), p),H〉 by [message-proxy]
↪→ 〈t′.send(m, (p1, . . . , pn), p),H〉 by definition
↪→ 〈p[[meth[(p1, . . . , pn)/x∗]]cm ,H〉

where H[t′] = 〈ct′ ,F〉 and 〈cm,m, x∗,meth〉 ∈∗P cm by [reflect-message]

That last expression is known to reduce to a proxy or nil by (H).
Case e := super.m(e′1, . . . , e

′
n): Similar to the previous case.

Case e := let x = e′ in e′′: We know by (H) that e′ reduces to a proxy or
nil. In case x is referred in e′′, it will be replaced by e′ (see case e := x).

Case e := proxy e′ e′′: This case already satisfies the proposition. ut

7 Implementation

We have implemented a prototype of delegation proxies in Pharo9, a Smalltalk
dialect. This implementation generates code using the compiler infrastructure
of Pharo. For each existing method in a base class, a hidden method with an
additional parameter myself and a transformed body is generated and installed
in a proxy class. Instead of self, myself is used in the generated method body
(this is similar to Python’s explicit self argument). Following the same approach
as Uniform Proxies for Java [Eug06], proxy classes are auto-generated.

7.1 Example

Let us consider the class Suitcase:
9 http://pharo.org/

http://pharo.org/


Object»subclass: #Suitcase
instanceVariableNames: ’content’

Suitcase»printString
� ’Content: ’ concat: content

Listing 14. Original code of class Suitcase

Applying our transformation, the class Suitcase is augmented with synthetic
methods to read and write the field content and to resolve literals.

Suitcase»literal: aLiteral myself: myself
� aLiteral

Suitcase»readContentMyself: myself
� content

Suitcase»writeContent: value myself: myself
� content := value

Listing 15. Synthetic methods to read and write instance variable content and literal
resolution

In Smalltalk, fields are encapsulated and can be accessed only by their re-
spective object. The sender of a state access is always myself, and can thus
be omitted from the traps. For each existing method in class Suitcase, a hid-
den method with a transformed body and one additional parameter myself is
generated.

Suitcase»printStringMyself: myself
� (myself literal: ’Content: ’ myself: myself)

concat: (self readContentMyself: myself)

Listing 16. A transformed version of method printString

A proxy class for Suitcase is then generated. It inherits from a class Proxy,
which defines the handler field common to all proxies. The generated class
implements the same methods as the Suitcase class, i.e., , printStringMy-
self:, readContentMyself:, and writeContent:myself:. The methods invoke
respectively message, read and write traps on the handler. In addition, a method
printString forwards to printStringMyself: with self as argument.

SuitcaseProxy»printString
� self printStringMyself: self

SuitcaseProxy»printStringMyself: myself
| msg |
msg := Message selector: #printString arguments: {}.
� handler message: msg myself: myself target: target

Listing 17. Sample generated method in proxy class of Suitcase



Point

ColorPoint

Point class

ColorPoint class

ColorPointProxy

PointProxy

ColorPointClassProxy

PointClassProxy

Object

ClassProxy

subclass of
instance of
proxy class of

Fig. 10. Inheritance of classes, meta-classes, and auto-generated proxy classes.

Proxy class generation. Smalltalk has first-class classes whose behaviors are
defined in meta-classes. The meta-class hierarchy parallels the class hierarchy.
Classes can be proxied like any object. Consequently, meta-classes are rewritten
and extended with synthetic methods similarly to classes. However, the generated
proxy classes do not inherit from Class, but Proxy, as shown in Figure 10.

Handling closures. Closures are regular objects that are adapted upon creation
and evaluation as described in subsection 3.4. If a closure defined in an original
uninstrumented method is wrapped with a proxy, the code of the closure is
transformed lazily when the closure is evaluated.

Weaving. Sending a message to a proxy entails reification of the message, invo-
cation of the handler’s trap, and then reflective invocation of the message on the
target. In addition, the handler might take additional actions that entail costs.
The handler and the proxy can be woven into specialized classes for fewer levels
of indirection. For instance, a SuitcaseProxy with a Tracing handler can be
woven into a SuitcaseTracingProxy:

SuitcaseTracingProxy»printStringMyself: myself
| msg |
msg := Message selector: #printString arguments: {}.
Transcript



print: target asString;
space;
print: msg asString;
cr.

� target printStringMyself: myself

Listing 18. Sample woven method

We have implemented a simple weaver that works for basic cases. We plan
to mature it in the future and leverage techniques for partial evaluation [Fut99]
developed for aspect compilers [MKD03].

7.2 Performance

Delegation proxies have no impact on performance when they are not used: the
transformation adds new code but does not alter existing code. Only the proxies
pay a performance overhead. We need to distinguish between the performance of
delegation proxies themselves and the performance of the propagation technique.

Used sparingly, delegation proxies do not entail serious performance issues
because the cost of an interception is reasonably low. To measure the cost of a
message interception, we use a proxy with an identity handler (i.e., a handler
that performs the intercepted operations reflectively) and send a message that
dispatches to an empty method. The result is compared with sending the same
message to the target object. The average performance degradation is 20.49 over
1 million iterations. With weaving, this number drops to 1.45 because there is
less indirections and no reflective call is needed anymore (see the last line of
Listing 18 for example).

However, with propagation, all the operations that happen in the dynamic
extent of a message send are intercepted. Consequently, the cost of delegation
proxies with propagation becomes prohibitive unless weaving is used. With weav-
ing, computing the 20th Fibonacci number 10 thousands times reveals an average
performance degradation of 8.72.

We believe these are encouraging results given that delegation proxies enable
unanticipated behavioral reflection, which is known to be costly. Also the per-
formance could be improved if delegation proxies were implemented directly by
the runtime.

8 Discussion

Myself parameter. To encode the fact that delegation proxies operate by dele-
gation, we add an explicit parameter myself to all the available reflective oper-
ations. While this exposes the rebinding of self references for the sake of under-
standability, this extra parameter can be hidden from the users. The reifications
of the operations can handle the delegation themselves. Otherwise, delegation
can be implemented natively in which case delegation becomes mandatory. It is
thus not absolutely required to modify the reflective API of a language to be
able to implement delegation proxies to support delegation.



Usability. From the developer’s point of view, proxies operating by delegation
or by forwarding are not very different. If the myself parameter is exposed, the
developer has to take care to provide the right receiver. Similarly, if a handler
sends additional messages in its traps, it may have to unwrap the receivers if
they are proxies. Another consequence for a developer is that delegation proxies
permit behavioral variations to be composed together dynamically by forming a
chain of proxies.

Static Typing. There is no major obstacle to port our implementation to a
statically-typed language. Delegation proxies preserve the interface of their tar-
get, like traditional forwarding proxies. For type compatibility, the generated
proxy class must inherit from the original class. Reflective operations and traps
can fail with run-time type errors. Forwarding and delegation proxies suffer from
the same lack of type safety from this perspective.

If closures cannot be adapted at run time with the same flexibility as in
Smalltalk, the implementation might require a global rewrite of the sources to
adapt the code of the closures at compile-time.

Our implementation of delegation proxies requires that reflective operations
have an additional parameter myself that specifies how to rebind self. Nat-
urally, this parameter must be of a valid type: in practice it will be either the
target of the invocation or a proxy of the target. Both implement the same
interface.

9 Related Work

Proxy-based intercession. Many languages provide support for dynamic prox-
ies. When a message is sent to a dynamic proxy, the message is intercepted
and reified. Dynamic proxies have found many usefully applications that can be
categorized as interceptors or virtual objects [VCM10]. An important question
for proxies is whether to support them at the language level or natively at the
runtime level. The performance gain brought by native support of proxies is
appreciable for serious use in production but native implementations generally
lack the flexibility needed for experimentation.

Most dynamic languages support proxies via traps that are invoked when
a message cannot be delivered [MPBD+11]. Modern proxy mechanisms stratify
the base and meta levels with a handler [MPBD+11,Eug06,VCM10,STHFF12].
These solutions are generally limited to message intercession. However, many in-
terpretation operations — such access to instance variables and literal resolution
— are not typically realized via message-sending. It is important to be able to
intercept these operations to implement useful behavioral variations. The inabil-
ity to intercept these operations make the implementation of dynamically-scoped
behavioral variations difficult.

A notable exception is that of EcmaScript 6 direct proxies. EcmaScript direct
proxies operate by delegation [VCM10] and can intercept additional operations.
However, they do not enable the interception of object instantiations. Also, the



variables captured in a closure cannot be intercepted upon reads and writes. This
makes the form of propagation presented here is not easily implementable with
EcmaScript 6 direct proxies as captured variables cannot easily be unwrapped
upon capture and wrapped upon evaluation.

Pointcut-advice model. Proxy-based intercession differs from the traditional poincut-
advice model of aspect oriented programming. In the pointcut-advice model, an
aspect groups definition of pointcuts with corresponding advices, i.e., a behav-
ioral variation and its deployment. With proxy-based intercession, a handler
specifies the actions taken upon interception of certain operations. This looks
similar to the pointcut-advice model: the body of a trap is akin to an advice
and the trap itself matches certain points of execution, just like a pointcut does.
However, a trap does not specify which objects it will affect. A trap defines
points of interception relatively to a proxy: only operations applied on a proxy
are intercepted and trigger the actions defined by the corresponding traps. This
allows developpers to deploy a behavioral variation on specific object references.

Composition Filters. In the Composition Filters model [AWB+94], objects filter
and transform incoming and outgoing messages. This model could be used to im-
plement dynamic scoping similar to the presented propagation technique. With
composition filters, an object can rewrite outgoing messages to change their re-
ceiver to an object with that same behavior. Delegation could be implemented
with a dispatch filter. However, as far as we are aware of, the composition fil-
ters model does not offer a mechanism to intercept instance variable accesses.
Intercepting instance variables accesses is what permits delegation proxies to im-
plement clean propagation (leaving the target objects unaffected by unwrapping
proxies on writes). Adding this facility to the model would allow composition fil-
ters to realize the kind of dynamic scoping enabled by the propagation technique
presented here.

Infinite regression. AOP and MOP inherently suffer from infinite regression
issues unless the meta-levels are explicitly modeled [CKL96,DSD08,Tan10]. In
contrast to AOP and MOPs, delegation proxies limit infinite regression issues
since the adapted object and the base object are distinct. For instance, the trac-
ing handler in Listing 4 does not lead to an infinite regression since it sends
the message asString to the target, which is distinct from the proxy (in pa-
rameter myself). Handlers that send messages only to non-proxy objects do not
lead to meta-regressions, but failure to do so can lead to meta-regressions, possi-
bly infinite. Consequently, handlers may have to unwrap proxies before sending
messages in traps. Also, delegation proxies naturally enable partial reflection
[TNCC03] since objects are selectively wrapped and proxies can be selectively
passed around to client code.

Composing Behavior. Inheritance leads to an explosion in the number of classes
when multiple variations of a given set of classes must be designed. Static traits



[SDNB03] or mixins enable the definition of units of reuse that can be composed
into classes, but they do not solve the issue of class explosion.

One solution to this problem is the use of decorators that refine a specific
set of known methods, e.g., the method paint of a window. Static and dy-
namic approaches have been proposed to decoration. Unlike decorators, proxies
find their use when the refinement applies to unknown methods, e.g., to trace all
invocations. Büchi and Weck proposed a mechanism [BW00] to statically param-
eterize classes with a decorator (called wrapper in their terminology). Bettini et
al. [BCG07] proposed a similar construct but composition happens at creation
time. Ressia et al. proposed talents [RGN+12] which enable adaptations of the
behavior of individual objects by composing trait-like units of behavior dynami-
cally. Other works enable dynamic replacement of behavior in a trait-like fashion
[BCD13].

The code snippet below illustrates how to achieve the decoration of a Window
with a Border and shows the conceptual differences between these approaches.
The two first approaches can work with forwarding or delegation (but no im-
plementations with delegation are available). The third approach replaces the
behavior or the object so the distinction does not apply.

Window w = new Window<Border>(); // Buchi and Weck
Window w = new BorderWrap( new Window() ); // Bettini
Window w = new WindowEmptyPaint(); // Ressia
w.acquire( new BorderedPaint() );

Listing 19. Differences between approaches to decoration

Several languages that combine class-based inheritance and object inheri-
tance (i.e., delegation) have been proposed [Kni99,VTB98]. Delegation enables
the behavior of an object to be composed dynamically from other objects with
partial behaviors. Essentially, delegation achieves trait-like dynamic composition
of behavior.

Ostermann proposed delegation layers [Ost02], which extend the notion of
delegation from objects to collaborations of nested objects, e.g., a graph with
edges and nodes. An outer object wrapped with a delegation layer will affects
its nested objects as well. Similary to decorators, the mechanism refines specific
sets of methods of the objects in the collaboration.

Dynamic Scoping. The dynamic extent of an expression corresponds to all op-
erations that happen during the evaluation of the expression by a given thread
of execution. Control-flow pointcuts are thus not sufficient to scope to dynamic
extents, since they lack control over the thread scope. Control-flow pointcuts are
popular and supported by mainstream AOP implementations, e.g., AspectJ’s
cflow and cflowbelow. Aware of the limitations of control-flow pointcuts, some
AOP implementations provide specific constructs to scope to the dynamic ex-
tent of a block of code, e.g., CaesarJ’s deploy [AGMO06]. Implemented naively,
control-flow pointcuts are expensive since they entail a traversal of the stack
at run time, but they can be implemented efficiently using partial evaluation
[MKD03].



In context-oriented programming (COP) [HCN08,vLDN07], variations can
be encapsulated into layers that are dynamically activated in the dynamic ex-
tent of an expression. Unlike the propagation technique presented in this paper
that work better with homogenous variations, COP has a better support for het-
erogenous variations [ALS08]. COP can be seen as a form of multi-dimensional
dispatch, where the context is an additional dimension.

Other mechanisms to vary the behavior of objects in a contextual manner are
roles [Kri96], perspectives [SU96], and subjects [HO93]. Delegation proxies can
realize dynamic scoping via reference flow, by wrapping and unwrapping objects
accessed during an execution. Delegation proxies may provide a foundation to
design contextual variations.

Similarly to our approach, Arnaud et al.’s Handle model [ADD+10,Arn13]
enables the adaptation of references with behavioral variations that propagate.
The propagation belongs to the semantics of the handles, whereas in our ap-
proach, the propagation is encoded reflectively in a specific handler. Our ap-
proach is more flexible since it decouples the notion of propagation from the
notion of proxy but the handle approach is more efficient since it is implemented
at the runtime level.

10 Conclusions

We can draw the following conclusions about the applicability of delegation
proxies:

– Expressiveness. Delegation proxies subsume forwarding proxies and enable
variations to be propagated to dynamic extents. This suits well non-functional
concerns like monitoring (tracing, profiling), safety (read-only references), or
reliability (rollback with object versioning). Since the propagation is written
reflectively, it can be customized to achieve other forms of scopes.

– Metaness. Delegation proxies naturally compose, support partial behavioral
reflection, and help developers avoid meta-regression. We can for instance
trace and profile an execution by using tracing proxies and profiling proxies
that form chains of delegation (composition). Objects are wrapped selec-
tively. Adapting objects during an execution will not affect other objects in
the system (partial reflection). Proxies and targets represent the same object
at two different levels but have distinct identities (no meta-regression).

– Encoding. Delegation proxies can be implemented with code generation. In
our Smalltalk implementation, only new code needs to be added; existing
code remains unchanged. Delegation proxies have thus no overhead if not
used. Delegation proxies do not entail performance issues when used sporad-
ically (same situation as with classical dynamic proxies). The overhead of
our propagation technique is of factor 8 when the code of handlers are woven
into dedicated proxies classes. For optimal performance, the language could
provide native support of delegation proxies.



Acknowledgments

We thank Jorge Ressia, Mircea Lungu, Niko Schwarz and Jan Kurš for support
and feedback about ideas in the paper. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project “Agile Software
Assessment” (SNSF project Np. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015)
and of the French General Directorate for Armament (DGA).

References

ADD+10. Jean-Baptiste Arnaud, Marcus Denker, Stéphane Ducasse, Damien Pollet,
Alexandre Bergel, and Mathieu Suen. Read-only execution for dynamic
languages. In Proceedings of the 48th International Conference Objects,
Models, Components, Patterns (TOOLS’10), Malaga, Spain, June 2010.

AGMO06. Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
overview of CaesarJ. Transactions on Aspect-Oriented Software Develop-
ment, 3880:135 – 173, 2006.

ALS08. Sven Apel, Thomas Leich, and Gunter Saake. Aspectual feature modules.
Software Engineering, IEEE Transactions on, 34(2):162–180, 2008.

Arn13. Jean-Baptiste Arnaud. Towards First Class References as a Security In-
frastructure in Dynamically-Typed Languages. PhD thesis, Université de
Lille, 2013.

AWB+94. Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans, and Akinori
Yonezawa. Abstracting object interactions using composition filters. In
Rachid Guerraoui, Oscar Nierstrasz, and Michel Riveill, editors, Proceed-
ings of the ECOOP ’93 Workshop on Object-Based Distributed Program-
ming, volume 791 of LNCS, pages 152–184. Springer-Verlag, 1994.

BCD13. Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. On flexible dy-
namic trait replacement for Java-like languages. Science of Computer
Programming, 78(7):907–932, 2013.

BCG07. Lorenzo Bettini, Sara Capecchi, and Elena Giachino. Featherweight wrap
Java. In Proceedings of the 2007 ACM symposium on Applied computing,
pages 1094–1100. ACM, 2007.

BDNW08. Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts.
Stateful traits and their formalization. Journal of Computer Languages,
Systems and Structures, 34(2-3):83–108, 2008.

BU04. Gilad Bracha and David Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings of the
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press.

BW00. Martin Büchi and Wolfgang Weck. Generic wrappers. In ECOOP 2000—
Object-Oriented Programming, pages 201–225. Springer, 2000.

CKL96. Shigeru Chiba, Gregor Kiczales, and John Lamping. Avoiding confusion
in metacircularity: The meta-helix. In Kokichi Futatsugi and Satoshi Mat-
suoka, editors, Proceedings of ISOTAS ’96, volume 1049 of Lecture Notes
in Computer Science, pages 157–172. Springer, 1996.

Deu81. L Peter Deutsch. Building control structures in the Smalltalk-80 system.
Special Issues on Smailtalk-80, BYTE, 6(8), 1981.



DSD08. Marcus Denker, Mathieu Suen, and Stéphane Ducasse. The meta in meta-
object architectures. In Proceedings of TOOLS EUROPE 2008, volume 11
of LNBIP, pages 218–237. Springer-Verlag, 2008.

Eug06. Patrick Eugster. Uniform proxies for Java. In Proceedings of the 21st an-
nual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, OOPSLA ’06, pages 139–152, New York, NY,
USA, 2006. ACM.

FKF98. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes
and mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 171–183. ACM
Press, 1998.

Fut99. Yoshihiko Futamura. Partial evaluation of computation process: An ap-
proach to a compiler-compiler. Higher Order Symbol. Comput., 12(4):381–
391, 1999.

HCN08. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3), March 2008.

HO93. William Harrison and Harold Ossher. Subject-oriented programming (a
critique of pure objects). In Proceedings OOPSLA ’93, ACM SIGPLAN
Notices, volume 28, pages 411–428, October 1993.

Kni99. Günter Kniesel. Type-safe delegation for run-time component adaptation.
In R. Guerraoui, editor, Proceedings ECOOP ’99, volume 1628 of LNCS,
pages 351–366, Lisbon, Portugal, June 1999. Springer-Verlag.

Kri96. Bent Bruun Kristensen. Object-oriented modeling with roles. Springer,
1996.

Lie86. Henry Lieberman. Using prototypical objects to implement shared be-
havior in object oriented systems. In Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, volume 21, pages 214–223, November 1986.

MKD03. H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimiza-
tion model for aspect-oriented programs. In Görel Hedin, editor, Compiler
Construction, volume 2622 of Lecture Notes in Computer Science, pages
46–60. Springer Berlin / Heidelberg, 2003.

MPBD+11. Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker, Stéphane
Ducasse, and Luc Fabresse. Efficient proxies in Smalltalk. In Proceedings
of ESUG International Workshop on Smalltalk Technologies (IWST’11),
Edinburgh, Scotland, 2011.

Ost02. Klaus Ostermann. Dynamically composable collaborations with delega-
tion layers. In ECOOP 2002—Object-Oriented Programming, pages 89–
110. Springer, 2002.

Pas86. Geoffrey A. Pascoe. Encapsulators: A new software paradigm in Smalltalk-
80. In Proceedings OOPSLA ’86, ACM SIGPLAN Notices, volume 21,
pages 341–346, November 1986.

PLW09. Frédéric Pluquet, Stefan Langerman, and Roel Wuyts. Executing code in
the past: efficient in-memory object graph versioning. In ACM SIGPLAN
Notices, volume 44, pages 391–408. ACM, 2009.

RGN+12. Jorge Ressia, Tudor Gîrba, Oscar Nierstrasz, Fabrizio Perin, and Lukas
Renggli. Talents: an environment for dynamically composing units of
reuse. Software: Practice and Experience, 2012.

SDNB03. Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black. Traits: Composable units of behavior. In Proceedings of European
Conference on Object-Oriented Programming, volume 2743 of ECOOP’03,
pages 248–274. Springer Verlag, July 2003.



STHFF12. T Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and
Matthew Flatt. Chaperones and impersonators: Run-time support for
contracts on higher-order, stateful values. Technical report, NU-CCIS-12-
01, 2012.

SU96. Randall B. Smith and Dave Ungar. A simple and unifying approach to
subjective objects. TAPOS special issue on Subjectivity in Object-Oriented
Systems, 2(3):161–178, 1996.

Tan08. Éric Tanter. Expressive scoping of dynamically-deployed aspects. In Pro-
ceedings of the 7th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2008), pages 168–179, Brussels, Belgium,
April 2008. ACM Press.

Tan10. Éric Tanter. Execution levels for aspect-oriented programming. In Pro-
ceedings of the 9th International Conference on Aspect-Oriented Software
Development, pages 37–48. ACM, 2010.

TCD13. Camille Teruel, Damien Cassou, and Stéphane Ducasse. Object Graph
Isolation with Proxies. In DYLA - 7th Workshop on Dynamic Languages
and Applications, Collocated with 26th European Conference on Object-
Oriented Programming - 2013, 2013.

TFD+09. Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario Süd-
holt. Expressive scoping of distributed aspects. In Proceedings of the 8th
ACM International Conference on Aspect-Oriented Software Development
(AOSD 2009), pages 27–38, Charlottesville, Virginia, USA, March 2009.
ACM Press.

TNCC03. Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial
behavioral reflection: Spatial and temporal selection of reification. In Pro-
ceedings of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46, nov 2003.

VCM10. Tom Van Cutsem and Mark S. Miller. Proxies: design principles for ro-
bust object-oriented intercession APIs. In Dynamic Language Symposium,
volume 45, pages 59–72. ACM, oct 2010.

VCM13. Tom Van Cutsem and Mark S. Miller. Trustworthy proxies — virtualizing
objects with invariants. In ECOOP’13, 2013.

vLDN07. Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented
programming: Beyond layers. In Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL 2007), pages 143–156. ACM
Digital Library, 2007.

VTB98. John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is a
viable alternative to multiple inheritance in class based languages. Uni-
versity of Virginia, Charlottesville, VA, 1998.


	Propagation of Behavioral Variations  with Delegation Proxies

