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BILINEARISED LEGENDRIAN CONTACT HOMOLOGY AND THE AUGMENTATION CATEGORY

 in our context, and interpret geometrically the bilinearised homology in terms of the Floer homology of Lagrangian fillings (following [8]).

Introduction

For a Legendrian submanifold Λ of a jet space J 1 (M ) Legendrian contact homology is the homology of a non-commutative differential algebra freely generated by double points of the projection of Λ to T * (M ) constructed in [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF] for M ≃ R and in [START_REF] Ekholm | The contact homology of Legendrian submanifolds in R 2n+1[END_REF] and [START_REF] Ekholm | Legendrian contact homology in P × R[END_REF] in general. We refer to this algebra as the Chekanov algebra of Λ denoted by (A(Λ), ∂) whose homology is denoted by LCH(Λ). The boundary operator counts holomorphic curves in the symplectisation whose domains are disks with points removed on the boundary. At one of these points, the holomorphic curve is required to have one positive asymptotic and at all the others it is required to have a negative asymptotic. When non zero, Legendrian contact homology is most of time infinite dimensional, hence this turns out to be difficult to distinguish two non-isomorphic LCH algebras.

Linearisation of semi-free DGA's is a process used in [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF] which associates finite dimensional invariants of Legendrian submanifolds from their Chekanov algebras. Linearisation is done using augmentations of A(Λ) that is DGA-maps ε : A(Λ) → K where K is the coefficient field we consider (most frequentely Z 2 ). Those invariants have the advantage to be both computable (once the boundary operator of Legendrian contact homology is known) and efficient to distinguish Legendrian submanifolds which were not distinguished by other invariants. However, the process of linearisation makes the theory commutative. Also, it is not efficient regarding the question of distinguishing augmentations of Chekanov algebra.

In this paper we propose a new invariant called bilinearised Legendrian contact homology which closely follows the process of linearisation but uses the fact that the theory is non-commutative in order to use two augmentations instead of one.

More precisely, for each pairs of augmentations (ε 0 , ε 1 ) we define a differential

d ε 0 ,ε 1 : C(Λ) → C(Λ)
in homology, and its dual

µ 1 ε 1 ,ε 0 : C * (Λ) → C * (Λ)
in cohomology, where C(Λ) is the vector space over K generated by Reeb chords of Λ. We denote by C ε 0 ,ε 1 the complex (C(Λ), d ε 0 ,ε 1 ), and by C ε 1 ,ε 0 the complex (C * (Λ), µ 1 ε 1 ,ε 0 ). The homology of those complexes are the bilinearised (co)homology groups, we denote them by LCH ε 0 ,ε 1 (Λ) and LCH ε 1 ,ε 0 (Λ) respectively. Those are generalisations of the standard linearised Legendrian contact homology, as it will appear obvious from the definition that the differential d ε,ε is the standard augmented differential d ε from [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF] and [START_REF] Ekholm | The contact homology of Legendrian submanifolds in R 2n+1[END_REF].

γ + ε 0 (γ - 1 ) ε 0 (γ - 2 ) γ - 3 ε 1 (γ - 4 )
Figure 1. Curve contributing to d ε 0 ;ε 1 (γ + ) (or µ 1 ε 0 ,ε 1 (γ - 3 )).

Our first result is that the set of those homologies is a Legendrian isotopy invariant as stated in the following Theorem 1.1. The set of isomorphism classes of LCH ε 1 ,ε 0 (Λ) (or of LCH ε 0 ,ε 1 (Λ)) over all pairs of augmentations (ε 0 , ε 1 ) of A(Λ) is a Legendrian isotopy invariant.

Geometrically, bilinearised Legendrian contact homology associated to two augmentations ε 0 and ε 1 amounts to counting the holomorphic curves decorated with the augmentations. An example of such a decorated curves is shown in Figure 1 note that the number of negative asymptotics on the left and on the right could be arbitrary (see Equation [START_REF] Civan | Product structures for Legendrian contact homology[END_REF] for an explicit algebraic definition).

We can use similar ideas and consider holomorphic curves decorated by d + 1 ≥ 3 augmentations to build structural maps µ d ε d ,...,ε 0 : 2 gives an example of such a curves, again the number of decorated negative ends is in general arbitrary, Equation [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF] gives the explicit formula of this operation.

C ε d ,ε d-1 ⊗ . . . ⊗ C ε 1 ,ε 0 → C ε d ,ε 0 . Figure
Those structural maps satisfy an A ∞ -relation which allows us to define an A ∞ -category whose objects are augmentations of the Chekanov algebra of Λ. We call this category the augmentation category of Λ. We denote it by Aug(Λ). This is a direct generalisation of the A ∞ -algebra constructed in [START_REF] Civan | Product structures for Legendrian contact homology[END_REF].

Under Legendrian isotopy this category changes by a pseudo-equivalence as stated in the following Theorem 1.2. If Λ is Legendrian isotopic to Λ ′ then the categories Aug(Λ) and Aug(Λ ′ ) are pseudo-equivalent.

γ + ε 0 (γ - 1 ) γ - 2 ε 1 (γ - 3 ) γ - 4 ε 2 (γ - 5 )
Figure 2. Curve contributing to µ 2 ε 0 ,ε 1 ,ε 2 (γ - 2 , γ - 4 )).

These categories are not (in general) cohomologically unital (in the sense of [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]). Therefore one cannot take the definition of quasi-equivalence as in [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]. In Section 2.3 we introduce the notion of pseudo-equivalence which will coincide with the notion of quasi-equivalence in the case of c-unital categories. We borrow many notations from [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] and try to give the necessary definitions to understand the main concepts in the present paper. As it will follow from this section that the morphism spaces in the corresponding homological categories are invariant under quasi-equivalences, Theorem 1.1 is a corollary of Theorem 1.2.

The benefit of having a category where the objects are augmentations of A(Λ) is that it allows to define the notion of equivalence of augmentations even when the ground field K is not of characteristic 0 (compare with the definition in [START_REF] Bourgeois | A survey of contact homology[END_REF]). After precisely defining equivalence of augmentations in Section 2.4.2 we prove that Theorem 1.3. If Λ is Legendrian isotopic to Λ ′ then the quasi-equivalence of Theorem 1.2 induces a bijection between the equivalence classes of augmentation of A(Λ) and those of A(Λ ′ ).

In particular if the characteristic of K is finite one gets that the (finite) number of equivalence classes is a Legendrian invariant.

The group LCH ε 0 ,ε 1 appears to be an efficient tool to distinguish some of those equivalence classes of augmentations using the following theorem.

Theorem 1.4. If ε 1 and ε 2 are equivalent then for all augmentation ε

LCH ε 1 ,ε (Λ) ≃ LCH ε 2 ,ε (Λ)
and

LCH ε,ε 1 (Λ) ≃ LCH ε,ε 2 (Λ).
The first part of the paper (Section 2) is devoted to the algebraic construction of the augmentation category for any semi-free differential graded algebra, we borrow the necessary definitions regarding A ∞ -categories from [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] and try to make this paper as self-contained as possible. In the second part, we apply this algebraic construction to the case of the Chekanov algebra of a Legendrian submanifold. We also give a geometrical interpretation of the bilinearised differential in terms of the Chekanov algebra of the 2-copy Legendrian link. We also investigate in Section 3.3 the generalisation of the duality exact sequence from [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF]. Where we prove the following theorem.

Theorem 1.5. Let ε 0 and ε 1 be two augmentations of Λ where Λ ⊂ J 1 (M ) is horizontally displaceable. Then there is a long exact sequence (1)

• • • → H k+1 (Λ) σ ε 0 ,ε 1 -→ LCH n-k-1 ε 1 ,ε 0 (Λ) → LCH ε 0 ,ε 1 k (Λ) ρ ε 0 ,ε 1 -→ H k (Λ) → • • •
In Section 4.1 we interpret the bilinearised Legendrian contact homology when ε 1 and ε 2 come from Lagrangian fillings in terms of the Lagrangian Floer homology of those fillings (as defined in [START_REF] Ekholm | Rational SFT, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology[END_REF]). In Section 5 we provide some simple example of computation which demonstrates the effectiveness of Theorem 1.4 to distinguish augmentations. 2.1.1. The n-copy algebra. Let K be a field. For each n ∈ N we denote by K n the semi-simple algebra over K generated by e i , i ∈ {1, . . . , n}, with the relations e i • e j = δ i,j e i and e i = 1. For a set A we denote by C n (A) the free K n -bimodule generated by the elements of A and by
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A n (A) = K n ⊕ C n (A) ⊕ (C n (A) ⊗ C n (A)) ⊕ . . . ⊕ C n (A) ⊗k ⊕ . . .
the tensor algebra over K n of C n (A) (here ⊗ denotes the tensor product of K n -modules). For each a ∈ A we denote by a i,j the element e i •a•e j ∈ C n (A). Note that as a K n -bimodule C n (A) decomposes as (i,j) C n (A) i,j where C n (A) i,j is the submodule generated by the a i,j . In the tensor algebra

A n (A), C n (A) i,j ⊗ C n (A) k,l is non zero iff j = k.
A pair of multi-indices (I, J) of the same length k, i.e. I = (i 1 , . . . , i k ) and J = (j 1 , . . . , j k ), is said to be composable if for every l = 1, . . . , k -1 we have j l = i l+1 . Then the tensor product C n (A) I,J := C n (A) i 1 ,j 1 ⊗ . . . ⊗ C n (A) i k ,j k does not vanish iff (I, J) is composable, so that the tensor algebra A n (A) decomposes as a K n -bimodule as the direct sum of submodules C n (A) I,J over all composable pairs (I, J). Note that, for i = 1, . . . , n, the K-subalgebra A n (A) i ⊂ A n (A) defined as the tensor algebra of C n (A) i,i , and corresponding to multi-indices I and J having all components equal to i, is naturally isomorphic to A(A) := A 1 (A) as a K-algebra.

Now suppose that the tensor algebra

A(A) is equipped with a differential ∂ such that (A(A), ∂) is a differential algebra. We define a differential ∂ n on A n (A) by setting ∂ n (e i • a • e j ) = e i • ∂(a)
• e j for all a ∈ A, where ∂(a) is interpreted as an element of A n (A). We then extend ∂ n to A n (A) by linearity and by the Leibniz rule. Note that since a = i,j a i,j in A n (A) and i e i = 1 in K n the formula tells us that any word of length k in ∂(a) appears as a sum in ∂ n (a) over all composable pairs of multi-indices of length k.

2.1.2. Grading. Assume also that the set A comes with a grading map gr : A → Z which defines a grading on homogeneous elements of A(A) by gr(ab) = gr(a) + gr(b). Defining the grading of elements of K n to be 0, this extends to a grading on A n (A). From now on we assume that the differential ∂ has degree -1, so that ∂ n has degree -1 as well and turns (A n (A), ∂ n ) a differential graded algebra (DGA) over K n . This means that the Leibniz rule becomes:

∂(ab) = ∂(a) • b + (-1) gr(a) a • ∂(b).
The DGA (A, ∂) with generating set A is commonly referred in the litterature to a semi-free DGA.

In order to agree with the degree convention in the literature (see [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]), there is a stabilisation process when going from the language of differential graded algebras to the language of A ∞ -categories which induces a difference between the notions of grading. We will give two different notations for those two different gradings. We denote by gr(a) the grading of a ∈ A as a generator of A, this grading will be referred to as the reduced grading according to the literature. We will denote by |a| = gr(a) + 1 the absolute grading of a as a generator of the dual module C * (A). Although we will pay careful attention to our notations, the convention is that whenever we speak in the world of A ∞ -categories the grading is assumed to be the absolute grading and in the world of DGA the grading is assumed to be the reduced grading.

If V is a graded vector space, we denote by V [d] the graded vector space isomorphic to V with degree shifted by d (i.e. the grading of a in V [d] is gr(a)d). When defined between graded vector space, we assume that all our linear maps preserve the degree hence a map F : V → W shifting the degree by d will be denoted by

F : V → W [d]. If T : (V, µ 1 V ) → (W [d], µ 1 W
) is a linear map between chain complexes, we will sometimes denote for short

T • µ 1 V + (-1) d µ 1 W • T by µ 1 (T ).

Augmentations of A n (A). Recall that an augmentation of a DGA

A over K is a DGA map from (A, ∂) to (K, 0). More precisely it as a map ε :

A → K satisfying • ε(a) = 0 if gr(a) = 0. • ε • ∂ = 0. • ε(ab) = ε(a) • ε(b).
Let E = (ε 1 , . . . , ε n ) be a n-tuple of augmentations of A(A) over K. We define ε E :

A n (A) → K n by ε E (a) = i ε i (e i • a • e i ) • e i .
In other words, ε E equals ε i • e i on A(A) i , and ε E vanishes on C n (A) I,J when the multi-indices I and J are not constant.

Proposition 2.1. ε E is an augmentation of A n (A) over K n .

Proof. First, one must check that ε E is an algebra morphism. For a ∈

C n (A) I,J and b ∈ C n (A) K,L , we have ε E (a • b) = ε i (a • b) • e i = ε i (a)ε i (b) • e i = ε E (a)ε E (b) if I, J, K, L have all components equal to i. Otherwise, a • b = 0 so that ε E (a • b) = 0 and at least one of ε E (a) or ε E (b) vanishes as well. Second, one must check that ε E • ∂ n = 0. Since ∂ n (e i • a • e j ) = e i • ∂(a) • e j , we have ε E • ∂ n (e i • a • e j ) = e i • ε i • ∂(a)δ i,j which vanishes since ε i is an augmentation.
Using the augmentation ε E one defines the K n -algebra map φ ε E : A n → A n which sends a generator a to a + ε E (a). Consider the induced differential

∂ ε E = φ ε E •∂ n •φ -1 ε E . Since ε E is an augmentation, ∂ ε E | Cn(A)
has no constant term and hence decomposes as a sum

∂ ε E 1 ⊕ ∂ ε E 2 ⊕ . . . ⊕ ∂ ε E d ⊕ . . . where ∂ ε E d : C n (A) → C n (A) ⊗d [-1]. From ∂ ε E •∂ ε E = 0 one gets that ∂ ε E 1 •∂ ε E 1 = 0.
Dualising each of ∂ ε E d one gets a family of maps µ d,n ε E :

C * n (A) ⊗d → C * n (A)[2- d]
(using the absolute grading here) define by the relation:

µ d,n (f )(b) = f (∂ ε E d (b))
for any K n -balanced forms f on C n (A).

Similarly to [START_REF] Civan | Product structures for Legendrian contact homology[END_REF] from

∂ ε E • ∂ ε E = 0 one gets that the family of maps µ d,n ε E is an A n -algebra structure on C * n (A) that is: d i=1 d-i j=0 (-1) j µ d-i+1,n ε E a d , a d-1 , . . . , a j+i+1 , µ i,n ε E (a j+i , . . . , a j+1 ), a j , . . . , a 1 = 0 (2) where j = |a 1 | + . . . + |a j | -j.
2.2. The augmentation category.

2.2.1. Bilinearised complexes. Note that µ d,n ε E maps C * i d ,i d-1 ⊗C * i d-1 ,i d-2 ⊗ • • • ⊗ C * i 1 ,i 0 to C * i d ,i 0 [2 -d]
and that this maps depends only on ∂ and ε i d , ε i d-1 , . . . , ε i 0 . This implies that, after identifying each C * i,j with C * (A) for each (d + 1)-tuple of augmentations ε 0 , . . . , ε d the map

µ d,n ε E induces a map µ d ε d ,••• ,ε 0 : C * (A) ⊗d → C * (A)[2 -d] independent of n ≥ d + 1
and the remaining augmentations in E. A similar discussion holds for the maps

∂ ε E d : C(A) → C(A)[-1].
From equation (2) one deduces that:

d i=1 d-i j=0 (-1) j µ d-i+1 ε d ,••• ,ε j+i ,ε j ,...,ε 0 a d , a d-1 , . . . , a j+i+1 , µ i ε j+i ,...,ε j (a j+i , . . . , a j+1 ), a j , . . . , a 1 = 0. ( 3 
)
In particular when d = 1 one gets

µ 1 ε 1 ,ε 0 • µ 1 ε 1 ,ε 0 = 0, similarly defining d ε 0 ,ε 1 the map on C(A) associated to ∂ ε E 1 one gets d ε 0 ,ε 1 • d ε 0 ,ε 1 = 0. Hence we get two complexes called the bilinearised complexes, C ε 1 ,ε 0 = (C * (A), µ 1 ε 1 ,ε 0 ) and C ε 0 ,ε 1 = (C(A), d ε 0 ,ε 1
). The homology of C ε 0 ,ε 1 is called the bilinearised homology of (A(A), ∂) with respect to ε 0 and ε 1 and the homology of C ε 1 ,ε 0 is called the bilinearised cohomology.

The maps µ d ε d ,...,ε 0 are higher order compositions of an A ∞ -category we describe here.

Definition of Aug(A). The augmentation category

Aug(A) is the A ∞ -category defined by • Ob(Aug(A)) is the set of augmentations of A. • Morphisms from ε 1 to ε 2 are the complexes C ε 2 ,ε 1 = (C * (A), µ 1 ε 2 ,ε 1 ). • The A ∞ -composition maps are µ d ε d ,...,ε 0 : C ε d ,ε d-1 ⊗ . . . ⊗ C ε 1 ,ε 0 → C ε d ,ε 0 [2 -d].
In order to facilitate computations, we unravel here the construction to give an explicit formula for those maps.

If ∂(a j ) = i 1 ,...,i k x j i 1 ,...,i k • b j i 1 . . . b j i k with x j i 1 ,...,i k ∈ K and b j i 1 , . . . , b j i k ∈ A then ∂ ε 0 ,...,ε d d (a j ) = i 1 ,...,i k j 1 <j 2 <...<j d x j i 1 ,...,i k ε 0 (b j i 1 ) . . . ε 0 (b j i j 1 -1 ) ε 1 (b j i j 1 +1 ) . . . ε d-1 (b j i j d -1 )ε d (b j i j d +1 ) . . . ε d (b j i k ) • b j i j 1 b j i j 2 . . . b j i j d (4) 
and

µ d ε d ,...,ε 0 (b d , . . . , b 1 ) = a j ∈A l d <...<l 1 i 1 ,...,i k b d =b j i l d ,...,b 1 =b j i l 1 x j i 1 ,...,i k ε d (b j i 1 ) . . . ε d (b j i l d -1 ) ε d-1 (b j i l d +1 ) . . . ε 0 (b j i l 1 +1 ) . . . ε 0 (b j i k ) • a j (5) 
where we do a slight abuse and identify a j with its dual generator.

To make things clearer, if 1 and2). When obvious we will drop the subscripts and write µ d instead of µ d ε d ,...,ε 0 .

w d b d w d-1 b d-1 w d-2 . . . w 1 b 1 w 0 is a word in ∂(a) then we have a corresponding contribution ε d (w d ) . . . ε 1 (w 1 )ε 0 (w 0 ) • a in µ d ε d ,...,ε 0 (b d , . . . , b 1 ) (see Figures
The most useful special cases of Equations ( 4) and ( 5) are when d = 1 which gives

d ε 0 ,ε 1 (a j ) = i 1 ,...,i k l=1...k x j i 1 ,...,i k ε 0 (b j i 1 ) . . . ε 0 (b j i l -1 )ε 1 (b j i l +1 ) . . . ε 1 (b j i k ) • b j i l (6) µ 1 ε 1 ,ε 0 (b) = a j ∈A i 1 ,...,i k b=b j i l x j i 1 ,...,i k ε 1 (b j i 1 ) . . . ε 1 (b j i l -1 )ε 0 (b j i l +1 ) . . . ε 0 (b j i k ) • a j . (7) 
The homological category of Aug(A) is H(Aug(A)) whose objects are the same as those of Aug(A), the morphism spaces are Hom(ε 0 , ε 3) implies that this is well defined). The case d = 3 of Equation ( 5) implies that this composition is associative, hence (except for the existence of an identity morphism) H(Aug(A)) is a genuine category.

1 ) = H(C ε 1 ,ε 0 ) and the composition of morphism is given by [b 1 ] • [b 2 ] = (-1) |b 2 | [µ 2 ε 2 ,ε 1 ,ε 0 (b 2 , b 1 )] (note the case d = 2 of Equation (

Equivalence of non-unital

A ∞ -categories. By the stabilisation process for the grading when going from the world of DGA to the one of A ∞ -category, generators of degree 0 in the morphism spaces are elements a of A such that gr(a) = -1. This implies that, by degree considerations, the augmentation category has no reason for being unital (in any of the sense of [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]). The notion of equivalence of categories in this context is not immediate. For convenience for the reader we will recall here the basic definitions of A ∞ -functors and natural transformations from [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]. Then we will propose a definition for equivalence of A ∞ -categories which do not necessarily have units (cohomological or strict). For objects ε 0 and ε 1 in an A ∞ -category A we maintain the notation C ε 1 ,ε 0 for the morphism spaces from ε 0 to ε 1 . As we will consider several categories, we will sometimes denote those morphism spaces C A ε 1 ,ε 0 in order to specify in which category the morphism space is considered.

Definition 2.2. An A ∞ -functor F between two A ∞ -categories (A, {µ d A }) and (B, {µ d B }
) consists of the following:

• A map F : Ob(A) → Ob(B) • For each d ≥ 1 and (ε 0 , ε 1 , . . . , ε d ) ∈ Ob(A) d+1 , a map F d ε d ,...,ε 0 : C ε d ,ε d-1 ⊗ . . . ⊗ C ε 1 ,ε 0 → C F (ε d ),F (ε 0 ) [1 -d] satisfying: d r=1 s 1 +...+sr=d µ r B F sr ε d ,...,ε d-sr (a d , . . . , a d-sr+1 ), . . . , F s 1 εs 1 ,...,ε 0 (a s 1 , . . . , a 1 ) (8) = d i=1 d-i j=0 (-1) j F d-i+1 ε d ,...,ε j+i ,ε j ,...,ε 0 a d , . . . , µ i A (a j+i , . . . , a j+1 ), . . . , a 1 .
The terms d = 1, 2 of equation ( 8) imply that

F 1 ε 1 ,ε 0 descends to a map H(F 1 ) : H(C ε 1 ,ε 0 ) → H(C F (ε 1 ),F (ε 0 ) ) which is a functor from H(A) to H(B).
Again we drop the subscripts from the notation as they are most of the time obvious and write

F d for F d ε d ,...,ε 0 .
We now recall the definition of a pre-natural transformation between A ∞functors.

Definition 2.3. Let F and G be two A ∞ -functors from A to B. A pre- natural transformation of degree g from F to G is a family T = {T d } d≥0 where each T d consists of maps T d ε d ,...,ε 0 : C ε d ,ε d-1 ⊗ . . . ⊗ C ε 1 ,ε 0 → C G(ε d ),F (ε 0 ) [g -d].
The set of pre-natural transformations comes with a degree 1 differential defined by (a s 1 +...+s i , . . . , a s 1 +...+s i-1 +1 ), ( 9)

µ 1 (T ) d = d+1 r=1 r i=1 s 1 +•••+sr=d (-1) † µ r B G
F s i-1 (a s 1 +...+s i-1 , . . . , a s 1 +...+s i-2 +1 ), . . . , F s 1 (a s 1 , . . . , a 1 ) - d i=1 d-i j=0 (-1) j +g-1 T d-i+1 ε d ,...,ε j+i ,ε j ,...,ε 0 a d , . . . , a j+i+1 , µ i A (a j+i , . . . , a j+1 ), a j , . . . , a 1 where † = (g -1)(|a 1 | + . . . + |a s 1 +...+s i-1 | -s 1 -. . . -s i-1 ).
A natural transformation is a pre-natural transformation such that µ 1 (T ) = 0. For convenience of the reader we will explicitly detail the case d = 0, 1 and 2 of µ 1 (T ) d = 0 as it will be useful later.

• d = 0:

(10)

T 0 ∈ C G(ε 0 ),F (ε 0 ) s.t. µ 1 (T 0 ) = 0 • d = 1: (11) µ 2 (G(a 1 ), T 0 )+ (-1) (g-1)(|a 1 |-1) µ 2 (T 0 , F (a 1 ))+ µ 1 (T 1 (a 1 ))-T 1 (µ 1 (a 1 )) = 0 • d = 2: µ 3 (G 1 (a 2 ), G 1 (a 1 ), T 0 ) + (-1) (g-1)(|a 1 |-1) µ 3 (G 1 (a 2 ), T 0 , F 1 (a 1 )) (12) +(-1) (g-1)(|a 1 |+|a 2 |) µ 3 (T 0 , F 1 (a 1 ), F 1 (a 2 )) +µ 2 (G 2 (a 2 , a 1 ), T 0 ) + (-1) (g-1)(|a 1 |+|a 2 |) µ 2 (T 0 , F 2 (a 2 , a 1 )) +µ 2 (G 1 (a 2 ), T 1 (a 1 )) + (-1) (g-1)(|a 1 |-1) µ 2 (T 1 (a 2 ), F 1 (a 1 )) + µ 1 (T 2 (a 2 , a 1 )) +(-1) g T 2 (a 2 , µ 1 (a 1 )) + (-1) g+|a 1 |-1 T 2 (µ 1 (a 2 ), a 1 ) +(-1) g T 1 (µ 2 (a 2 , a 1 )) = 0
Equation [START_REF] Ekholm | Orientations in Legendrian contact homology and exact Lagrangian immersions[END_REF] implies that T 0 descends to a family of maps from

F (ε 0 ) to G(ε 0 ) in the homological category ([T 0 ε 0 ] ∈ H(C G(ε 0 ),F (ε 0 ) )) which by (11) satisfies H(G 1 )([a]) • [T 0 ε 0 ] = (-1) g•|a| [T 0 ε 0 ] • H(F 1 )([a]) i.e. [T 0
] is a natural transformation from H(F 1 ) to H(G 1 ). Now assume that T 0 = 0. Then equation [START_REF] Ekholm | Legendrian contact homology in P × R[END_REF] 

implies that T 1 ε 1 ,ε 0 : C ε 1 ,ε 0 → C G(ε 1 ),F (ε 0 ) [g -1] is a chain map inducing [T 1 ε 1 ,ε 0 ] in homology.
Following [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] we denote by nu-fun(F, G) g the set of pre-natural transformations from F to G. It comes with a filtration where F r (nu-fun(F, G) g ) are pre-natural transformations such that T k = 0 for k ≤ r. It is obvious from Equation ( 9) that µ 1 preserves this filtration. The previous remarks about the T 0 = 0 case is part of the statement in [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]Section (1f)] that the first page of the spectral sequence associated to this filtration is

E r,g 1 = ε 0 ,...,εr Hom g K (Hom H(A) (ε r-1 , ε r ) ⊗ . . . ⊗ Hom H(A) (ε 1 , ε 0 ), Hom H(B) (F (ε 0 ), G(ε r )).

Yoneda modules.

Recall from [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] that given an object ε of an A ∞ -category A one can see the assignment ε 1 → C ε,ε 1 as being part of the definition of a right A ∞ -module over A, called the right Yoneda module of ε and denoted by Y ε r . The action µ d

Y ε r : Y ε r (ε d-1 ) ⊗ C ε d-1 ,ε d-2 ⊗ . . . ⊗ C ε 1 ,ε 0 → Y ε r (ε 0 ) of A on Y ε r is given by the A ∞ operation µ d (see [17, Section (1l)]
). This assignment is part of an A ∞ -functor, called the Yoneda embedding and denoted by Y r , from A to the A ∞ -category of right modules over A. This functor is cohomologically faithful, it however fails to be cohomologically full if the category A lacks a cohomological unit (one cannot construct the retraction of [17, Section (2g)]).

Let ε and ε ′ be two objects of an A ∞ -category A, we say that

ε is pseudo- isomorphic to ε ′ if there exists a quasi-isomorphism of A ∞ -modules T : Y ε r → Y ε ′ r (i.e.
T induces an isomorphism in homology, see Definition 2.4). We will consider two A ∞ -categories A and B to be pseudo-equivalent if there exists a cohomologically full and faithful functor F : A → B such that any object of B is pseudo-isomorphic to an object of the form F (ε). In this situation F will be referred to as a pseudo-equivalence of A ∞ -categories. Of course, when both involved categories admit cohomological units the definition recovers the one from [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] since the Yoneda embedding is cohomologically full and the last part of the definition implies that H(F) is essentially surjective.

Cohomological adjunctions.

In order to prove that stable isomorphic DGAs have pseudo-equivalent augmentation categories, one needs to prove that the relation of pseudo-equivalence is an equivalence relation. In order to do so we will introduce the notion of cohomologically adjoint functors and cohomological adjunction.

It is worthwhile to unravel the definition of morphism of modules in the A ∞ sense. A morphism of Yoneda modules is given by a sequence T d :

Y ε r (ε d-1 ) ⊗ C ε d-1 ,ε d-2 ⊗ . . . ⊗ C ε 1 ,ε 0 → Y ε ′ r (ε 0 ), d ≥ 1, i.
e. a family of maps

T d : C ε,ε d-1 ⊗ C ε d-1 ,ε d-2 ⊗ . . . ⊗ C ε 1 ,ε 0 → C ε ′ ,ε 0 , such that (see [17, Equation (1.21)]): d-1 j=0 (-1) † µ j+1 (T d-j (a d , a d-1 , . . . , a j+1 ), a j , . . . , a 1 ) + d i=1 d-i j=0 (-1) † T d-i+1 (a d , a d-1 , . . . , µ i (a j+i , . . . , a j+1 ), a j , . . . , a 1 ) = 0. ( 13 
)
For d = 1 Equation ( 13) implies that T 1 is a chain map, we recall now the definition of quasi-isomorphism. Definition 2.4. A morphism T between two Yoneda modules Y ε r and Y ε ′ r is a quasi-isomorphism if for every object ε 0 the chain-map

T 1 ε 0 : C ε,ε 0 → C ε ′ ,ε 0 induces an isomorphism in homology.
Let F be a pseudo-equivalence from A to B then for any object ε of B there is an object of A that we denote by G(ε) such that ε is pseudo-isomorphic to F (G(ε)). Considering all together the pseudo-isomorphism leads to a family of maps

T d : C ε d ,ε d-1 ⊗ . . . ⊗ C ε 1 ,ε 0 → C F G(ε d ) ,ε 0 .
It follows from [17, Theorem 2.9] adapted in our context that G is part of an cohomologically full and faithful functor G : B → A. Hence the family of maps T d is a pre-natural transformation T ∈ F 1 (nu-fun(Id, F • G)). Comparing the equations ( 9) and ( 13) we get that this pre-natural transformation satisfies:

µ 1 (T ) d = d r=3 s 1 +•••+sr=d (-1) † µ r B (F • G) sr (a d , . . . , a d-sr+1 ), . . . , (F • G) s 3 (a s 1 +s 2 +s 3 , . . . , a s 1 +s 2 +1 ),
T s 2 (a s 1 +s 2 , . . . , a s 1 ), a s 1 -1 , . . . , a 0 .

Note that since F is cohomologically full and faithful it admits an inverse [F 1 ] -1 in homology, since we work over a field this map actually lifts to a chain map

U 1 : C B F (ε ′ 1 ),F (ε ′ 0 ) → C A ε ′ 1 ,ε ′ 0 . The composition U 1 G(ε 1 ),ε ′ 0 • T 1 ε 1 ,F (ε ′ 0 ) : C B ε 1 ,F (ε ′ 0 ) → C A G(ε 1 ),ε ′ 0 is a quasi-isomorphism inducing an isomorphism Θ : Hom(F (ε ′ 0 ), ε 1 ) ≃ Hom(ε ′ 0 , G(ε 1 )
). Combining equations ( 12) (with T 0 = 0) and ( 14) for the couple (F

1 (a), b) where a ∈ C A ε ′ 1 ,ε ′ 0 and b ∈ C B ε 0 ,F (ε ′ 0 ) one gets µ 2 B (T 1 (b), F 1 (a)) + T 1 (µ 2 A (b, F 1 (a)) = µ 1 (T 2 )(b, F 1 (a)).
This implies that a induces the following commutative diagram in homology:

Hom(F (ε ′ 0 ), ε 0 ) [µ 2 B (•,F (a))] Θ / / Hom(ε ′ 0 , G(ε 0 )) [µ 2 A (•,a)] Hom(F (ε ′ 1 ), ε 0 ) Θ / / Hom(ε ′ 1 , G(ε 0 ))
A similar diagram exists for left composition. All in all, the fact that T induces an isomorphism of Yoneda modules and that F and G are cohomologically full and faithful implies that T 1 induces an adjunction between H(F ) and H(G). This justifies the following definition. The previous discussion together with the adaptation of [17, Theorem 2.9] in our context implies the following proposition.

Proposition 2.6. An A ∞ -functor F : A → B is a pseudo-equivalence iff there exists a cohomologically full and faithful functor G : B → A and a cohomological adjunction T between F and G.

We cannot emphasise enough that the fact that we work over a field is absolutely necessary for the last claim to be true, recall that in [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF] one relies on the fact that we can split any complex as a sum of an acyclic complex and a complex with vanishing differential.

Note that the degree 1 pre-natural transformation T : Id → Id defined by T 1 = Id and T d = 0 for d = 1 satisfies µ 1 (T ) d = µ d for d even and 0 for d odd and thus is a cohomological adjunction from Id to Id. Under the geometric picture of Section 3.2, this should correspond to the interpolation between the two comparison maps given by the trivial cylinder which counts holomorphic curves with moving boundary conditions on (a small perturbation of) the trivial cylinder. In this situation only the trivial curves contribute which gives the definition of T 1 .

Note also that in the presence of c-unit, the evaluation T 1 (c) is an element of C G(F (ε 1 )),ε 0 which induces a natural isomorphism from H(G • F) to the identity as one expects from a quasi-equivalence in this context.

We are now able to prove the following proposition.

Proposition 2.7. The relation of pseudo-equivalence of A ∞ -categories is an equivalence relation.

Proof. The identity functor is obviously a pseudo-equivalence as T 1 = Id induces an isomorphism from Y r ε to itself hence the relation is reflexive. It follows from Proposition 2.6 that it is symmetric. In order to prove transitivity let F 0 : A → B and G 0 : B → A be cohomologically adjoint pseudoequivalences. Similarly let F 1 : B → C be the pseudo-equivalence from B to C with cohomological adjoint G 1 . Denote by T 0 and T 1 the respective homological adjunctions.

F 1 and G 1 being cohomologically full and faithful, one gets that the map

H(F 1 1 ) • H(G 1 1
) is an isomorphism. Again as we work over a field, this implies that there exists a chain map S ε 0 ,ε 1 :

C C F 1 G 1 (ε 1 ) ,F 1 G 1 (ε 0 ) → C C ε 1 ,ε 0 which induces H(F 1 1 ) • H(G 1 1 ) -1 in homology.
This implies that the following composition

C C ε 1 ,ε 0 T 0 •G 1 -→ C B F 0 •G 0 •G 1 (ε 1 ),G 1 (ε 0 ) F 1 -→ C C F 1 •F 0 •G 0 •G 1 (ε 1 ),F 1 •G 1 (ε 0 ) (15) 
S•T 1 -→ C C F 1 •F 0 •G 0 •G 1 (ε 1 ),ε 0
is a quasi-isomorphism. This is the first application necessary to define an adjunction from

F 1 • F 0 to G 1 • G 0 .
In order to define the higher order terms denote by A ′ the image of

F 1 • G 1 .
The homological perturbation lemma of [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]Section (1i)] allows to extend S to an A ∞ -functor on A ′ . The homological adjunction is thus given by µ 2 (L S T 1 , L F 1 R G 1 T 0 ) where µ 2 is the composition of natural transformations, L and R are respectively the left and right composition of a pre-natural transformation with a functor (see [17, Section (1e)]). We are brief here as in the present paper only the homological result will be relevant and thus only the first map matters.

Remark 2.8. Note that at the most elementary level one gets that for an A ∞ -category the set of isomorphism types of the groups H(C ε 1 ,ε 0 ) is invariant under quasi-equivalences.

Remark 2.9. Note that the map S •T appearing in the proof of Proposition 2.7 induces an isomorphism from Hom(ε 1 , F (ε ′ 0 )) to Hom(G(ε 1 ), ε ′ 0 ) for any ε ′ 0 ∈ A and ε 1 ∈ B whenever T is a homological adjunction. This justifies the ambiguity between left and right adjunction.

2.4. Invariance.

2.4.1. Construction of Functor on Aug(A).. Let A and B be two semifree DGAs with generating sets A and B respectively and let f : A → B be a DGA map. We denote by f n the associated map between A n and B n .

For an augmentation ε set

F (ε) = ε • f . For a n-tuple of augmentations E = (ε 1 , . . . , ε n ) one defines f E : A n → B n by the K n -algebra morphism φ ε E • f n • φ -1 F (ε) E . This is a DGA-map from (A n , ∂ ε E •f ) → (A, ∂ ε E ). Its restriction to C n (A) decomposes as a sum f ε E 1 ⊕ f ε E 2 ⊕ . . . ⊕ f ε E j ⊕ . . . where f ε E j : C n (A) → C n (B) ⊗j are K n -bimodule homomorphisms.
Note that there is no 0-order term in the decomposition as those coming from F n (ε E ) cancel with those coming from φ -1 ε E •fn . Dualising each of the f ε E j and restricting them to

C ε d ,ε d-1 ⊗ . . . ⊗ C ε 2 ,ε 1 one gets maps F d ε E : C ε d ,ε d-1 ⊗ . . . ⊗ C ε 2 ,ε 1 → C F (ε d ),F (ε 1 ) [1 -d]
(again note that here we use the absolute grading). As in Section 2.2.1 those only depend on the augmentations ε 1 , . . . , ε d and on f . We denote by F d the sets of maps

{F d ε d ,...,ε 1 } for all d-tuples of augmentations. From f ε E • ∂ F (ε E ) = ∂ ε E • f ε E one deduces the following Proposition 2.10. The family F = {F d } is an A ∞ -functor from Aug(B ) to Aug(A).
The construction is functorial with respect to the composition as stated in the following Proposition 2.11. Let f and g be two DGA maps then the A ∞ -functor associated to f • g is G • F, where the composition of A ∞ -functors is defined as in [START_REF] Seidel | Fukaya categories and Picard-Lefschetz theory[END_REF]Section (1b)].

Proof. Consider (f • g) ε E | C(A) . As f is a DGA map one gets the decompo- sition (f • g) ε E | C(A) (a) = f s 1 ⊗ • • • ⊗ f sr (g i (a)).
Dualising this equation and denoting H the functor associated to f • g leads to the formula

H d (a d , • • • , a 1 ) = r s 1 +...+sr=d G r (F sr (a d , . . . , a d-sr+1 ), . . . , F s 1 (a s 1 , . . . , a 1 ))
which is the composition formula of A ∞ -functors.

Equivalence of augmentations.

We are now ready to give the definition of equivalent augmentations.

Definition 2.12. Two augmentations ε 1 and ε 2 are equivalent if there is an A ∞ -functor F such that ε 1 = F (ε 2 ) and a homological adjunction T from F to the identity.

Note that in [START_REF] Bourgeois | A survey of contact homology[END_REF] equivalence of augmentation has a different shape. Precisely it is said that two augmentations are equivalent if there exists a derivation

K such that ε 1 = ε 2 • e K∂+∂K .
This definition is of course problematic if our coefficient ring is not an algebra over a field of characteristic 0. Equivalent augmentations from [START_REF] Bourgeois | A survey of contact homology[END_REF] are equivalent in our sense using f = e K∂+∂K to construct the A ∞ -functor. The natural transformation is given by dualising homogenous component of K. It is not clear to us wether or not the converse is true, compare also Formula ( 13) with the formula appearing in [13, Lemma 3.13].

Definition 2.4 and 2.9 imply the following Theorem 2.13. Let ε 1 and ε 2 be two augmentations of A. If ε 1 is equivalent to ε 2 then for any augmentation ε, we have

H(C ε 1 ,ε ) ≃ H(C ε 2 ,ε ) and H(C ε,ε 1 ) ≃ H(C ε,ε 2 ).

Invariance under stable isomorphisms.

Recall that a stabilisation of a DGA is a new DGA with two more generators b, c such that ∂b = c. Two DGAs are said to be stable isomorphic if they become isomorphic after a sequence of stabilisations. The aim of this paragraph is to prove the following:

Theorem 2.14. Let A and A ′ be two stable isomorphic DGAs. Then their augmentation categories are pseudo-equivalent.

Proof. From Proposition 2.7, it is sufficient to prove the theorem first for an isomorphism and second for a stabilisation. Let f : A → A be an isomorphism. Consider F the associated functor as in Proposition 2.10, and G the functor associated to f -1 . Then F • G = Id and G • F = Id imply that the categories Aug(A; ∂) and Aug(A, ∂ ′ ) are pseudo-equivalent.

Let A ′ be a stabilisation of A. The natural inclusion i : A → A ′ is a DGA morphism, inducing a functor I. Note that here I k = 0 for k ≥ 2. The map j : A ′ → A which sends b and c to 0 is also a DGA morphism inducing J . Obviously I and J are cohomologically full and faithful and J • I is the identity. Note that as vector spaces the morphism spaces C ε 1 ,ε 2 and C ε 1 ,I•J(ε 2 ) are canonically the same and that the augmented differential µ 1 ε 1 ,ε 2 corresponds to the one for I • J(ε i ). This implies that the pre-natural transformation defined under this identification by T 1 ε 1 ,ε 2 = Id and T d = 0 if d = 1 is a homological adjunction from I to J as noted in Section 2.3.

The set of equivalence classes of augmentations behave nicely with respect to stable isomorphisms of DGAs. Namely Theorem 2.15. Let A(A) be a free DGA. Then we have:

1) Let f be a isomorphism of A then ε 1 is equivalent to ε 2 iff ε 1 • f is equivalent to ε 2 • f . 2) Let i : A → A ′ be
the inclusion of a DGA into one of his stabilisation.

Then

ε 1 is equivalent to ε 2 iff ε 1 • i is equivalent to ε 2 • i and two augmentation ε ′ 1 , ε ′ 2 of A ′ are equivalent iff their restriction to A are.
Proof. The first part is obvious. It is sufficient to compose the natural adjunction with the functor induced by f -1 .

If the stabilisation is not of degree 0 the result is obvious, thus we suppose that the stabilisation has degree 0. One needs to prove that if ε ′ is an augmentation of

A ′ then ε ′ 0 defined by ε ′ 0 (a) = ε ′ (a) for all generators a ∈ A and ε ′ 0 (b) = ε ′ 0 (c) = 0 is equivalent to ε ′ .
To do so we proceed as in the proof of Theorem 2.14. We define the DGA morphism f :

A ′ → A ′ by f (a) = a for all a ∈ A, f (b) = b -ε ′ (b) and f (c) = c. Obviously F (ε ′ ) = ε ′ 0 .
The prenatural transformation T defined by T 1 = Id and T d = 0 induces the desired homological natural adjunction. The proof is complete as

ε ′ 0 = ε ′ | A • i.

Geometric interpretation

3.1. Legendrian contact homology. In this section we consider the jet space J 1 (M ) := T * M × R of a n-dimensional manifold M with the standard contact structure ξ = ker(dzθ) where z parametrises R and θ = pdq is the standard Liouville form on T * M with (q, p) the conjugate coordinates. A Legendrian submanifold Λ of J 1 (M ) is a n-dimensional submanifold such that T Λ ⊂ ξ. We assume here that all Legendrian submanifolds are compact.

We denote by π the canonical projection of J 1 (M ) to T * M and by Π the canonical projection of J 1 (M ) to M × R. For a Legendrian submanifold Λ, π(Λ) is called the Lagrangian projection and Π(Λ) is called the front projection.

A Reeb chord γ of Λ is trajectory γ : [0, T ] → J 1 (M ) of ∂ ∂z such that T > 0, γ(0) and γ(T ) belong to Λ. Those are in bijection with double points of the Lagrangian projection. A Reeb chord is non-degenerate if the corresponding double point of the Lagrangian projection is transverse and if all Reeb chords are non-degenerate Λ is called chord generic. We denote by R(Λ) the set of Reeb chords of Λ (if Λ is chord generic this is a finite set since Λ is compact).

If Λ is chord-generic there is a grading map gr : R(Λ) → Z defined by the Conley-Zehnder index (see [START_REF] Ekholm | The contact homology of Legendrian submanifolds in R 2n+1[END_REF]).

We denote by C(R(Λ)) the graded K-vector space generated by R(Λ) and A(Λ) the tensor algebra of C(R(Λ)) as in Section 2. In general K will be Z 2 ; if Λ is relatively spin, one can also consider Q. This algebra is called the Chekanov algebra of Λ, it is a differential graded algebra with differential ∂ defined counting some holomorphic curves in R × J 1 (M ) (see [START_REF] Ekholm | Legendrian contact homology in P × R[END_REF] and [START_REF] Ekholm | Orientations in Legendrian contact homology and exact Lagrangian immersions[END_REF]).

Let J be an almost complex structure on T * M compatible with -dθ. To J we associate an almost complex structure J on R × J 1 (M ) by the following. The differential of the projection π induces an isomorphism between ξ| (q,p,z) and T (q,p) (T * M ); we set J| ξ = J under this identification. Finally we set J ∂ ∂t to be equal to ∂ ∂z . Such an almost complex structure will be referred to as a compatible almost complex structure.

We denote by D k the 2-dimensional closed unit disk with the (k + 1)-th roots of unity removed. For a complex structure j on D k we choose holomorphic coordinates [T, ∞] × [0, 1] near 1 and [-∞, -T ] × [0, 1] near the other punctures. A map u :

(D k , j) → R × J 1 (M ) is said to be holomorphic if du • j = J • du. If u is a holomorphic map then u| [T,∞]×[0,1] decomposes as a map (a, v, f ) with a : [T, ∞]×[0, 1] → R, v : [T, ∞]×[0, 1] → T * M and f : [T, ∞]×[0, 1] → R. Suppose u(∂D k ) ⊂ R × Λ t n
then for a Reeb chord γ we say that u has a positive asymptotic γ at 1 if v(z) → π(γ) and a(z) → ∞ when z → 1. Similarly, for a root of unity z 0 we say that u has a negative asymptotic γ at z 0 if v(z) → π(γ) and a(z) → -∞ when z → z 0 .

For Reeb chords γ + , γ 1 , . . . , γ k we denote by M(γ + , γ 1 , . . . , γ k ) the moduli space of holomorphic maps from (D k , j) to R × J 1 (M ) with boundary on R × Λ, positive asymptotics γ + and negative asymptotics γ 1 , . . . , γ k for all j modulo biholomorphism (D k , j) ≃ (D k , j ′ ) and translation in the R direction in R × J 1 (M ).

The differential ∂ on A(Λ) is defined by

∂γ + = γ 1 ,...,γ k gr(γ 1 ...γ k )=gr(γ + )-1 #M(γ + , γ 1 , . . . , γ k ) • γ 1 . . . γ k
on generators and is extended to A(Λ) by linearity and the Leibniz rule.

The homology of the DGA (A(Λ), ∂) is called the Legendrian contact homology of Λ and is denoted by LCH(Λ).

As the Chekanov algebra (see [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF] and [START_REF] Ekholm | The contact homology of Legendrian submanifolds in R 2n+1[END_REF]) of a Legendrian submanifold Λ is a semi-free DGA, the previous construction applies in this case to give the augmentation category for a Legendrian submanifold. We denote this category by Aug(Λ). In the next section, we will show that this augmentation category can be extracted from the geometrical data of the differential of the Chekanov algebra of the n-copy Legendrian link.

One can choose more sophisticated coefficient rings to define Legendrian contact homology, for instance one can keep track of the homology class of the curves defining the differential using the group ring K[H 1 (Λ)]. Even though this is not a field, one can still carry out the previous construction considering all the chain complexes, tensor products and dual spaces over K (the coefficient from H 1 (Λ) inducing a decomposition of the vector spaces).

3.2.

The augmentation category of Legendrian submanifolds.

The augmentation category Aug (Λ).

From Section 2, we deduce that there is an A ∞ -category associated to A(Λ) we denote this category by Aug(Λ). Note that from Theorem 3.2 the curve contributing to the products µ n are the curves shown in Figure 2.

The homologies of the morphisms (C(R(Λ)), d ε 0 ,ε 1 ) and (C(R(L)), µ 1 ε 1 ,ε 0 ) are called the bilinearised Legendrian contact homology and cohomology group, and are denoted by LCH ε 0 ,ε 1 (L) and LCH ε 1 ,ε 0 (L).

Recall that Legendrian isotopies induce stable tame isomorphisms (and thus stable isomorphisms) of the Chekanov algebra (see [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF], [START_REF] Ekholm | The contact homology of Legendrian submanifolds in R 2n+1[END_REF] and [START_REF] Ekholm | Legendrian contact homology in P × R[END_REF]). Thus Theorem 2.14 implies Theorems 1.2 and 1.1. Theorem 1.3 is itself a consequence of Theorem 2.13 which also implies Theorem 1.4.

We will now describe how the bilinearised differential appears naturally when considering the Chekanov algebra of the two copy Legendrian link associated to Λ.

3.2.2.

The n-copy Legendrian link. Let Λ be a Legendrian submanifold of J 1 (M ). Choose Morse functions f i , i = 2, . . . , n on Λ such that, for each i = j, the critical points of f i and f j are disjoint and f if j is a Morse function. We also set f 1 = 0 in order to simplify notations. We denote by Λ n the Legendrian link Λ 1 ⊔ Λ 2 ⊔ . . . ⊔ Λ n where Λ i is a perturbation of Λ + iε ∂ ∂z by the 1-jet of the function εf i .

3.2.3. Reeb chords of Λ n . Let R(Λ) be the set of Reeb chords of Λ. Reeb chords of Λ n are of three different types:

1) Reeb chords of Λ i for each i ∈ {1, . . . , n} called pure chords.

2) Critical points of f if j for each i = j called continuum chords.

3) Long (i.e. not continuum) Reeb chords from Λ i to Λ j for each i = j called mixed chords.

For a fixed i, the set of chords of type 1 of Λ i are in bijection with R(Λ); for γ ∈ R(Λ) we denote γ i,i the corresponding chord of Λ i . Similarly, for each i = j, chords of type 2 are in bijection with R(Λ) and for γ ∈ R(Λ) we denote by γ i,j the corresponding chord from Λ i to Λ j . 3.2.4. The differential. Let I c be the two-sided ideal of A(Λ n ) generated by continuum chords, i.e. Reeb chords coming from critical points of the functions f if j . Then we have: Proof. Let ℓ be the minimal length of all Reeb chords of type 1 and 2 and F be the maximum of all maxima of the functions f if j so that the length of any chord of type 3 is smaller than ε(n -1 + F ). Set ε < ℓ n-1+F . As ∂ decreases the length of chords, we get that for any chord of type 3 its boundary is in the algebra generated by chords of type 3. The Leibniz rule thus implies that ∂(I c ) ⊂ I c . We denote by A n (Λ) the quotient A(Λ n )/I c . Then the differential on A(Λ n ) descends to a differential ∂ n on A n (Λ). Note that A n (Λ) is isomorphic to the tensor algebra over K of C n (Λ) where C n (Λ) is the free K-vector space generated by Reeb chords of Λ n of type 1 and 2.

γ 1,1 γ 2,2 γ 1,2 γ 2,1
Proposition 3.1. For sufficiently small ε > 0, ∂(I c ) ⊂ I c . γ 1,1 γ 2,2 γ 1,2 γ 2,1 M m
We extend the vector space structure of C n (Λ) to a K n -module structure by setting

e i • γ j,k • e l = δ ij • δ kl • γ j,k .
3.2.5. Structure of ∂ n . Consider now the subalgebra of A n (Λ) linearly generated by γ i 1 ,j 1 ⊗ . . . ⊗ γ i k ,j k where (I = (i 1 , . . . , i k ), J = (j 1 , . . . , j k )) is a composable pair of multi-indices. As a K n -algebra it is isomorphic to the algebra A n (A) of Section 2.1 with A = R(Λ). As the differential ∂ counts connected holomorphic curves it is obvious that

∂ n (A n (R(Λ))) ⊂ A n (R(Λ)). Theorem 3.2. For sufficiently small ε > 0, ∂ n | An(R(Λ))
is the differential on the n-copy algebra of (A(Λ), ∂) as in Section 2.1.

Proof. Consider Λ 0 n the n-copy Legendrian link consisting of n-linked copies of Λ translated in the z direction, without perturbing them by Morse functions. Reeb chords of this link are not all non-degenerate as any point of Λ i belongs to a chord running from Λ i to Λ j for all j = i. However if chords of Λ are non-degenerate then chords of Λ 0 n are Morse-Bott. Similarly to [START_REF] Bourgeois | A Morse-Bott approach to contact homology[END_REF], one can consider the Morse-Bott approach to Legendrian contact homology using a Morse-Bott generic compatible almost complex structure J on R × M .

For sufficiently small ε > 0, J will be a generic almost complex structure in the sense of [START_REF] Ekholm | Legendrian contact homology in P × R[END_REF] for the link Λ t n obtained by perturbing Λ 0 n using the Morse function t • f i , for all t ∈ (0, ǫ). All chords of Λ t n are described as before and are therefore in natural bijection for all t ∈ (0, ǫ). When t = 0, all non-continuum chords are in bijection with non-continuum chords of Λ t n for t > 0 and are non-degenerate. Thus, as they are all in natural bijection, we drop the index t and denote them by the same letter.

Let M t (γ + , γ 1 , . . . , γ k ) be the moduli space of holomorphic maps on D k with boundary on R × Λ t n . We label the connected components of ∂(D k ) by C 0 , . . . , C k+1 starting from the arc connecting 1 to e 2πi/(k+1) . For a multi-index I = (i 0 , i 1 , . . . , i k+1 ) we denote by M I t (γ + , γ 1 , • • • , γ k ) the moduli space consisting of holomorphic maps such that the connected component

C j of ∂(D k ) is mapped to R × Λ t i j , for j = 0, . . . , k + 1.
If ε > 0 is small enough, if γ + , γ 1 , . . . , γ k are non-continuum chords, then the moduli spaces M I t (γ + , γ 1 , . . . , γ k ) are diffeomorphic for all t ∈ [0, ε), since all non-continuum chords are non-degenerate.

Recall that elements of M I (γ + , γ 1 , • • • , γ j ) are in bijection with holomorphic curves in T * M with boundary on the Lagrangian projection of Λ i with punctures to the double points corresponding to the Reeb chords (see [START_REF] Etnyre | Invariants of Legendrian knots and coherent orientations[END_REF]). As the Lagrangian projection of Λ + iε ∂ ∂z is equal to the Lagrangian projection of Λ, the moduli space of holomorphic curves M I (γ + , γ 1 , . . . , γ k ) and M J (γ + , γ 1 , . . . , γ k ) are in bijective correspondence for any multi-indices I and J of length k + 2.

For a n-tuple of augmentations E = (ε 1 , . . . , ε n ) of A(Λ) over K one gets an augmentation ε E of A(Λ n ) over K n setting ε E (γ i,i ) = ε i (γ) • e i for any γ ∈ R(Λ) and sending every mixed chord to 0 similarly as done in Section 2.1.3. The fact that this is an augmentation follows from Theorem 3.2, Proposition 3.1 and applying Proposition 2.1 to the quotient algebra.

For n = 2, the augmented complex decomposes as

C 1,1 ⊕ C 2,2 ⊕ C 1,2 ⊕ C 2,1 ⊕ C 1,2 ( 
f ) and from the fact that only the pure chords are augmented we get that C i,i are subcomplexes, the corresponding differential is the standard augmented differential. C 2,1 is also a subcomplex, it follows from Theorem 3.2 that its differential corresponds to the bilinearised differential

d ε 1 ,ε 2 . Finally C 1,2 ⊕ C 1,2 (f ) is a subcomplex with differential d ε 1 ,ε 2 0 ρ d f .
The differential d ε 1 ,ε 2 is the bilinearised differential and the complex (C(f ), d f ) is the Morse complex of f 2 . This can be seen by a standard Morse-Bott argument and follows for example from [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF]Theorem 3.6]. Finally ρ is a chain map and thus the complex C 1,2 ⊕ C 1,2 (ρ) is the cone over ρ, we denote it C(ρ).

Duality exact sequence.

A Legendrian submanifold Λ of J 1 (M ) is horizontally displaceable if there exists a Hamiltonian diffeomorphism φ of T * M such that φ(π(Λ)) ∩ π(Λ) = ∅. Note that if M is non-compact any compact Legendrian submanifold is horizontally displaceable.

In [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF], it is proved that linearised Legendrian contact homology and cohomology of horizontally displaceable Legendrian submanifolds are parts of an exact sequence (which generalise the duality of [START_REF] Sabloff | Duality for Legendrian contact homology[END_REF]):

(16) • • • → H k+1 (Λ) → LCH n-k-1 ε (Λ) → LCH ε k (Λ) → H k (Λ) → • • • called the duality exact sequence.
The same considerations allow us to prove Theorem 1.5.

Proof of Theorem 1.5. This is almost a direct application of the arguments in [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF] applied to the 4-component link 2Λ 2 which consists of two copies Λ 2 and Λ 2 of Λ 2 far apart in the z-direction (one perturbs the second copy using Morse functions in the same manner as in the previous section).

First note that the discussion at the end of the previous section implies that there is an exact sequence induced by ρ:

• • • → H k+1 (Λ) i * -→ H(C(ρ)) π * -→ LCH ε 1 ,ε 2 k (Λ) ρ -→ • • •
It remains to identify H(C(ρ)) with the bilinearised Legendrian cohomology. In order to do so, one must investigate how the exact sequence is built in [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF]. One closely follows the notation from here. The Reeb chords of 2Λ 2 are of 4 types: 1) Chords going from Λ 2 to itself denoted by q 0 and their corresponding chords on Λ 2 denoted by q 0 . 2) Chords going from Λ 2 to Λ 2 denoted by q 1 whose positive and negative ends are nearby the positive and negative ends of the corresponding chords on Λ 2 . 3) Chords going from Λ 2 to Λ 2 denoted by p 1 whose positive are nearby the negative ends of the corresponding chords on Λ 2 and negative ends are nearby the positive ends of the corresponding chords on Λ 2 . 4) Critical points of the Morse functions on Λ used to perturb Λ 2 .

The corresponding vector space complexes are denoted Q 0 , Q 1 , P 1 and C 1 . Since Λ 2 is itself a two-copy Legendrian link each of those vector spaces decomposes further. We label each of the summand by the positive and negative ends of the chords. For instance

Q 1 = Q 1 11 ⊕ Q 1 22 ⊕ Q 1 12 ⊕ Q 1 21 ⊕ Q 1 f 1
where the differential splits as in the previous section. The vector space Q 1 ⊕ C 1 is a subcomplex for the linearised differential given by the augmentation ε 12 of 2Λ 2 given by ε 1 and ε 2 . This subcomplex is shown to have the structure of a mapping cone of a map η :

(Q 1 , d ε 12 ) → (C f , d f ). With respect to the decomposition of Q 1 this map turns out to be η = ρ 11 ⊕ ρ 22 ⊕ 0 ⊕ 0 ⊕ 0; in other terms the vector space Q 1 12 ⊕ Q 1 21 ⊕ Q 1 f 1 is a subcomplex.
The long exact sequence of equation ( 16) is the one given by this mapping cone, this implies that the exact sequence for the link Λ 2 :

• • • →H k+1 (Λ) ⊕ H k+1 (Λ) → (17) 
LCH

n-k-1 ε 1 (Λ) ⊕ LCH n-k-1 ε 2 (Λ) ⊕ LCH n-k-1 ε 2 ,ε 1 (Λ) ⊕ H n-k-1 (C(ρ * )) → LCH ε 1 k (Λ) ⊕ LCH ε 2 k (Λ) ⊕ LCH ε 1 ,ε 2 k (Λ) ⊕ H k (C(ρ)) → • • •
splits as 4 exact sequences, the first two are the exact sequences for LCH ε 1 and LCH ε 2 and the other two lead to isomorphisms: 0

→ LCH n-k-1 ε 2 ,ε 1 (Λ) → H k C(ρ) → 0 and 0 → H n-k-1 (C(ρ * )) → LCH ε 1 ,ε 2 k (Λ) → 0. This completes the proof.
A difference with the duality exact sequence lies in the fact that since ε 0 is a priori different from ε 1 the manifold class (as in [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF]) is not well understood, this is due to the fact that one cannot describe the fundamental class (see Example 5.1).

Perspectives

4.1. Lagrangian fillings. In [START_REF] Ekholm | Rational SFT, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology[END_REF], Ekholm developed a Lagrangian intersection Floer theory for exact Lagrangian fillings related to the construction of the rational relative symplectic field theory of [START_REF] Ekholm | Rational symplectic field theory over Z2 for exact Lagrangian cobordisms[END_REF]. This construction is related to the wrapped Fukaya category of [START_REF] Abouzaid | An open string analogue of Viterbo functoriality[END_REF]. The convex part of this theory is the Lagrangian intersection theory of the Lagrangian fillings in the classical sense.

We recall the definition of Lagrangian filling which is a special case of Lagrangian cobordism as in [START_REF] Baptiste | Lagrangian concordance of Legendrian knots[END_REF].

Definition 4.1. A Lagrangian filling of a Legendrian submanifold Λ of a contact manifold (Y, ξ) in R × Y is a compact Lagrangian submanifold L of (-∞, 0) × Y such that (i) ∂L = Λ, (ii) L ∪ (R + × Λ) is a Lagrangian submanifold of R × Y .
In [START_REF] Ekholm | Legendrian knots and exact Lagrangian cobordisms[END_REF] and [START_REF] Ekholm | Rational SFT, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology[END_REF], it is shown that an exact Lagrangian filling with vanishing Maslov class of a Legendrian knot leads to an augmentation of its Chekanov algebra. We denote the augmentation induced by L by ε L . A consequence of the results of [START_REF] Ekholm | Rational SFT, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology[END_REF] is the following isomorphism:

LCH n-k+2 ε L (Λ) ≃ H k (L).
The proof relies on the existence of an exact triangle involving LCH ε L (Λ), HF (L) and the full Lagrangian Floer homology of L.

Similarly to the case of the wrapped Floer homology, in jet space the full Floer homology vanishes, so that LCH ε L (Λ) and HF (L) are isomorphic. Standard arguments then show that HF (L) ≃ H(L). In the context of bilinearised Legendrian contact homology, only the latter isomorphism fails to be true as two different Lagrangian fillings might not be Hamiltonian isotopic. Namely from [8, Theorem 4.9] we have: Theorem 4.2. Let L 1 and L 2 be two exact Lagrangian filling of Λ with vanishing Maslov class inducing augmentations ε L 1 and ε L 2 of A(Λ). Then

LCH n-k+2 ε L 1 ,ε L 2 (Λ) ≃ HF k (L 1 , L 2 ).
The proof is exactly the same as in [8, Section 4.4] but we make no use of the conjectural Lemma 4.10 from there as we do not need to compare holomorphic curves with Morse gradient trajectories here.

4.2.

Relation with generating families. This project is part of an attempt in producing a unified picture of the Legendrian invariants arising from holomorphic curves on one side and generating families on the other. Recall that a generating family for a Legendrian submanifold Λ in jet space J 1 (M ) is a function F : M × R m → R such that Λ = {(q 0 , p 0 , F (q 0 , η 0 ))| ∂F ∂η (q 0 , η 0 ) = 0 p 0 = ∂F ∂q (q 0 , η 0 )}. To such a family one associates the difference function

F : M × R m × R m → R (q, η 1 , η 2 ) → F (q, η 2 ) -F (q, η 1 )
and define the generating family homology to be GF (Λ, F ) = H * (F ≥ ǫ, F = ǫ). The set of those homology groups for all generating families form a Legendrian invariant bearing similarities with the linearised Legendrian contact homology. For instance, when M = R, it has been shown in [START_REF] Fuchs | Generating families and legendrian contact homology in the standard contact space[END_REF] that LCH ε (Λ) ≃ GF (Λ, F ε ) where F ε is an equivalence class of generating family associated to ε via graded ruling. It is a conjecture that this result holds in any dimension.

Bilinearised Legendrian contact homology appears naturally when trying to extend this conjectural isomorphism to a generalisation of generating family homology to an invariant communicated to us by Petya Pushkar and defined using the function:

F : M × R m × R m → R (q, η 1 , η 2 ) → F 1 (q, η 2 ) -F 2 (q, η 1 )
and constructing GF (Λ; F 1 , F 2 ) = H * ( F ≥ ǫ, F = ǫ) where F 1 and F 2 are two generating families for Λ (one assume that they have been stabilised to be defined on the same space). Conjecturally, those homologies correspond to the bilinearised Legendrian contact homology groups. More deeply, one can adapt a construction of Fukaya to construct an A ∞ -category whose objects are generating families for Λ and morphism spaces are the Morse complexes associated to F . One expects the existence of an A ∞ -functor from this category to Aug(Λ). It is not expected that this functor is a quasiequivalence, we however expect it to be cohomologically full and faithful and that it induces an equivalence of categories for the derived categories.

Note that the considerations in Section 4.1 also imply the existence of a cohomologically full and faithful functor from a Fukaya type category constructed using a Lagrangian filling of Λ to Aug(Λ) we similarely conjecture that this induce quasi-equivalence of the derived categories.

Examples

In this section we will show how bilinearised contact homology allows to distinguish augmentations of some DGAs.

5.1. Trefoil knot. We start with the example of the maximal Thurston-Bennequin right handed trefoil knot. It has 5 augmentations all of which lead to isomorphic linearised contact homologies. However we will see that in the bilinearised contact homology table non diagonal terms are not isomorphic to any diagonal term. As a consequence, all those five augmentations are pairwise non homotopic. Moreover, all five augmentations arise from Lagrangian fillings of the trefoil knot. Thus the computation implies that those Lagrangian fillings are pairwise non symplectically equivalent (a result claimed by Ekholm, Honda and Kàlmàn in [START_REF] Ekholm | Legendrian knots and exact Lagrangian cobordisms[END_REF]). b 1 b 2 b 3 ε 1 1 1 1 ε 2 1 0 0 ε 3 1 1 0 ε 4 0 0 1 ε 5 0 1 1 Table 1. Augmentations of the right handed maximal tb trefoil knot The Chekanov algebra of K has 5 generators. Two of degree 1: a 1 and a 2 , and three of degree 0: b 1 , b 2 and b 3 . The differential is given by:

∂a 1 = 1 + b 1 + b 3 + b 1 b 2 b 3 , ∂a 2 = 1 + b 1 + b 3 + b 3 b 2 b 1 .
This DGA admits five augmentations listed in Table 1.

An easy computation shows that LCH ε i ,ε j (K) = Z 2 [0] as soon as i = j and that LCH ε i ,ε i (K) = Z 2 [1] ⊕ Z 2 2 [0]. These 5 augmentations are thus all pairwise non-equivalent. As it is shown in [START_REF] Ekholm | Legendrian knots and exact Lagrangian cobordisms[END_REF], those 5 augmentations arise in this context from 5 different Lagrangian fillings of K (one gets them by resolving the crossing b i in various orders). It follows from our computation and Theorem 4.2 that those Lagrangian fillings are non Hamiltonian isotopic. Note that it follows from [START_REF] Ekholm | Legendrian knots and exact Lagrangian cobordisms[END_REF]Lemma 3.13] that isotopic exact Lagrangian fillings lead to equivalent augmentations (the map T d is defined counting degree -1 holomorphic curves along a generic isotopy Σ t ).

We compute also the maps of the exact sequence of Section 3.3 in order to show that there is no fundamental class in the context of bilinearised Legendrian contact homology. To get the explicit maps one needs to consider the differential of the 2-copy trefoil knot of Figure 6 (here the Morse function on S 1 has two minima m 1 and m 2 and two maxima M 1 and M 2 ). Specifically one needs to understand the map ρ : C 21 → C f of Section 3.2.5 arising while computing the differential ∂ on generators of type γ 12 . From Figure 6 we In this situation, LCH ε 1 ,ε 2 0 is generated by [b 2 ]. And the map ρ ε 1 ,ε 2 is injective. Similar considerations imply that the map σ : H 1 (S 1 ) → LCH 0 ε 2 ,ε 1 is surjective. The map from LCH 0 ε 2 ,ε 1 → LCH ε 1 ,ε 2 0 is thus 0. It is one of the two Legendrian knots which have been distinguished in [START_REF] Chekanov | Differential algebra of Legendrian links[END_REF] using Legendrian contact homology. The second one admits only one augmentation and hence has no non-trivial bilinearised Legendrian homology. However, this one admits three augmentations that are (as we will compute) non-equivalent. Again the degree of a i is 1 and the degree of b i is 0. The differential is given by 2. Augmentations of the Chekanov-Eliashberg knot.

For all of these augmentations, the linearised Legendrian contact homologies coincide and are given by

LCH ε i (K) ≃ Z 2 [1] ⊕ Z 2 2 [0], i = 1, 2, 3.
However for any choice of a pair ε i = ε j of augmentations, we get LCH ε i ,ε j (K) ≃ Z 2 [0] and we deduce that these three augmentations are pairwise non-equivalent.

As the second Chekanov-Eliashberg example has only one augmentation, we get that the set of equivalence classes of augmentations for those knots are different.

Definition 2 . 5 .

 25 Let F : A → B and G : B → A be two cohomologically full and faithful functors. A cohomological adjunction between F and G is a pre-natural transformation T : Id → F • G satisfying equation (14).

Figure 3 .

 3 Figure 3. Front projection of the 2-copy Legendrian unknot before perturbation.

Figure 4 .

 4 Figure 4. Lagrangian projection of the 2-copy Legendrian unknot after perturbation.

2 Figure 5 .

 25 Figure 5. Right handed maximal tb trefoil knot.

5. 2 .

 2 Chekanov-Eliashberg knot. Consider the Legendrian knot of Figure 7.

9 Figure 7 .

 97 Figure 7. Chekanov-Elisahberg Legendrian knot.

∂(a 1 ) = 1 + b 7 + b 7 b 6 b 5 + b 5 + b 9 b 8 b 5 ,∂(a 2 ) = 1 + b 9 + b 5 b 6 b 9 ,∂(a 3 ) = 1 + b 8 b 7 ,∂(a 4 ) = 1 + b 8 b 9 .the augmentations are b 5 b 6 b 7 b 8 b 9 ε 1
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