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Abstract

In this article, energy harvesting with a fluttering cantilevered plate covered by piezoelectric patches in an axial
flow is adressed. A theoretical model is presented which is then discretized and numerically integrated to perform
a parametric study of the energy harvesting efficiency of the system. When one, two or three piezoelectric patches
cover the plate, the optimal distributions of the patches that maximize the efficiency are obtained. Experimental
results are presented, which are in good agreement with the model. When a significantly high number of patches
of small size are considered, a continuous model is used to study the influence of a resonant harvesting circuit. A
lock-in phenomenon is evidenced, which is able to significantly increase the efficiency.
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I - INTRODUCTION

Recent efforts in the developement of new energy harvesting methods have been focused on the study of fluid-solid
coupled systems that allow the conversion of the kinetic energy of flows into electrical energy [1, 2]. Apart from the
classical technologies such as wind and water turbines, other techniques involving the deformation of elastic structures
under the action of fluid forces have attracted the attention of several research groups. The present study is focused
on the energy harvesting from the fluttering of a piezoelectric flag in an axial flow [3, 4].

A flexible plate in an axial flow can become unstable and develop self sustained flapping if the flow velocity exceeds
a critical value. If the flapping plate is made of a piezoeletric material, the plate’s deformation can be transformed
into electrical energy. Previous works [5, 6] have studied the fully coupled dynamics of a flexible plate covered by
an infinite number of piezoelectric patches connected to simple resistive circuits. The case of a unique piezoelectric
patch covering the entire length of the plate has also been considered [7]. The first question addressed in the present
paper is the influence of the number and dimensions of the piezoelectric patches on the harvesting efficiency. Existing
studies on the damping of vibrations with piezoelectric patches connected to passive circuits considered the influence
of a resonant circuit [8]. This motivates the second question in the present paper: what is the influence of a resonant
circuit on the non-linear dynamics of the system, and the resulting harvesting efficiency?

The paper is organized as follows. In section II, we present a non linear dynamic model of a plate in an axial flow
coupled to electrical circuits trough piezoelectric patches. Continuous and discrete configurations are presented. The
numerical methods are also briefly described. Next, a parametric study of the influence on the number and geometries
of the piezoelectric patches is presented. In this section, some experimental results are also compared to numerical
results. Finally, a study of the influence of a resonant circuit on the energy harvesting efficiency is presented.
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Figure 1: Top: two dimensional flapping of a flexible plate covered by pires of piezoeletric patches. Bottom: flexible
plate flapping in uniform axial flow.

II - MODELING

Euler-Bernoulli beam in an axial flow coupled to electrical circuity via piezoelectricity

Consider an elastic flexible plate of length L, width H and lineic density µ immersed in an axial flow of uniform velocity
U∞, as sketched on figure 1. The fluid’s density is ρ. The plate is inextensible and clamped at its leading edge. The
local orientation of the plate is noted θ(S, T ), where S is the curvilinear coordinate along the streamwise direction
and T is time. For simplicity only the 2D motion of the plate in the (xy) plane is taken into account. Piezoelectric
patches of length lp, width H and thickness hp are fixed on both sides of the plate. The negative electrodes of the
piezo-eletric patches are shunted across the plate while their positive electrodes are connected to an external circuit.
The surface density of the charge in each piezo pair is given by [9]:

Qi =
χ

li
[θ]

x+
i

x−
i

+ cVi , (1)

where li = x−i − x+i and Vi is the voltage between the positive electrodes of the ith piezo pair whose left and
right edges are positioned at x−i and x+i respectively. cli is the equivalent capacity of the piezo pair and χ is the
mechanical/piezoelectrical conversion factor of the piezoelectric material. The electrodes are connected to an external
circuit. Voltage and charge density are then linked through the following generic relation,

F (Qi, Vi) = 0, (2)

whose exact expression depends on the circuits considered.
The voltage Vi between both electrodes also generates an internal torque in the piezoeletric patches and thus on

the flexible plate. The total internal torque of the bent plate will then be given by M = B∂θ/∂S − χ
∑

i ViFi, where
B is the flexural rigidity of the plate and piezoeletric patches assembly (see [5]) and Fi is the polarization function of
the ith patch. In the present approach, Fi = Hs(x− x−i )−Hs(x− x+i ), with Hs the Heaviside step function.

Non-dimensional equations

To obtain the numerical results presented in the following, non-dimensional equations have been derived with L,
L/U∞, U∞

√
µ/c et U∞

√
µc as characteristic length, time, voltage and charge respectively. Using the conservation of

momentum [6], the non-dimensional equation describing the non-linear dynamics of the system are,

∂2x

∂t2
=

∂

∂s

(
ftτ −

1

U∗2
∂2θ

∂s3
n

)
+

α

U∗

∑
i

vi
[
δ′(x−i )− δ′(x+i )

]
n

−M∗pres −M∗H∗mapreac, (3)

qi = vi +
α

U∗γ
[θ]

x+
i

x−
i

, (4)

f(qi, vi) = 0, (5)
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where preac and presis are respectively the reactive and resistive forces exerted by the flow on the plate and ma is the
non-dimensional added mass coefficient of the local cross-section, namely ma = π/4 for a flat plate. They have been
introduced in the context of slender fish locomotion [10, 11, 12],

preac = ẇ − (wu)′ +
1

2
w2κ (6)

presis =
1

2
Cd|w|w, (7)

where w and u are respectively the normal and longitudinal non dimensional components of the plate’s velocity relative
to the fluid flow.

The set of equations (3-5) depends on the following non-dimensional parameters,

U∗ = LU∞

√
µ

B
, M∗ =

ρHL

µ
, H∗ =

H

L
, α =

χ√
Bc

, (8)

which are respectively the dimensionless flow velocity, mass ratio, aspect ration and piezoelectric coupling factor. In
the following, two kinds of electrical circuits will be considered. The first one consists in a shunted resistance of
conductance per unit length g. In this case, equation (5) becomes,

βq̇i + vi = 0, (9)

The second circuit consists in a resistance and an inductance in parallel. The lineic admittance of the inductance is
1/L. The dynamic equation modeling the circuit is here,

βq̈i + v̇i + βω2
0vi = 0, (10)

The two additional electrical parameters that are then introduced in the model are,

β =
U∞c

Lg
, ω0 =

L

U∞
√
cL

(11)

Finally, a plate clamped upstream and free downstream is considered.

Discrete and continuous distributions of electrodes

The model described above consider a discrete distributions of piezoelectric electrodes, as well as a finite number
of corresponding circuits. If the length of the electrodes is small compared to the typical lengthscale of the plate’s
deformation, it is possible to consider the limit of electrodes of infinitesimal length, as considered in refs [5, 6]. Charge
density q and voltage v are now condinuous functions of space and non-dimensional equations read,

∂x

∂t
=

∂

∂s

(
ftτ −

1

U∗2
∂2θ

∂s2
n+

α

U∗
∂v

∂s
n

)
−M∗pres −M∗H∗mapreac, (12)

q = v +
α

U∗γ
θ′, (13)

f(q, v) = 0. (14)

Equations (9) and (10) remain unchanged, with the indices i ommited.

Efficiency of the system

The definition of the efficiency used in the present article is similar to that classically used in windmill studies. It is
defined as the ratio between the mean harvested power and the kinetic energy flux through the surface occupied by
the energy harvesting system,

η =
Pe

Pf
. (15)

In the present approach, the harvested power is that dissipated in the resistance. The definition of the surface occupied
by the harvesting system is less trivial in the present case than that of windmill, where this surface is the disc occupied
by the rotating windmill. Here, we have chosen the rectangle defined by the width of the plate and its maximum
displacement during the oscillation.
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Figure 2: Schematic view and notations in the three studied cases: one, two or three electrodes.

Numerical methods

Following [13], equation (5) is projected onto x and y in order to obtain two equations for x(s, t) and y(s, t) respectively.
The x projection is used to eliminate the tension term from the y projection. Finally, x and its derivatives are eliminated
using the inextensibility condition.

Two kinds of numerical approaches have then been used to obtain the results presented in the following. In the
case of a discrete system, the equations for y(s, t) are first written in a weakly non-linear form by keeping only terms
up to O(y3), as done in [13] in the uncoupled case. A Galerkin discretization is next used: the displacement y is
written as a sum of N clamped-free beam modes and the equilibrium equations are projected on these beam modes.
One obtain a set of N +Np ordinary differential equations which are integrated using an implicit numerical scheme.

In the case of a continuous system, nonlinear equations (12-14) are solved using an implicit second order time–
stepping scheme [14]. The flag is meshed by Chebyshev–Lobatto nodes, and a Chebyshev collocation method is used
to compute spatial derivatives and integration. At each time step, the resulting nonlinear system is solved using
Broyden’s method [15]. The simulation is started with a perturbation in the flag’s orientation (θ(s, t = 0) 6= 0), and
is carried out over a sufficiently long time frame so as to reach a permanent regime. The quantities necessary for
evaluating the efficiency are then obtained as follows: the harvested energy is computed as the time average of the
dissipation in the resistive elements, and the flapping amplitude is defined as the root–mean–square amplitude of the
trailing edge, both within the permanent regime.

III - RESULTS

In this section, different parametric studies of the efficiency of the system are presented. We focus only on the post-
critical dynamics of the system, once flutter instability has appeared. Only a few representative sets of mechanical
parameters M∗ and U∗ are investigated. The coupling coefficient is fixed at 0.3, which corresponds to reasonable
values one could obtain using PZT patches on steel plates [5].

At first we show the number and geometry of the electrodes affect the efficiency of the system. The cases of 1, 2
and 3 electrodes are successively considered. Next, we present a numerical/experimental compraison of the efficiency
for a piezoelectric patch of variable length. The circuit is a purely resitive circuit. Finally a case of a continuous
distribution is considered, where the harvesting circuit also contains an inductance.

Influence of the number and distribution of electrodes

Case I: one electrode We consider here that one piezoelectric patch of length lp covers partially the surface of
the plate. It is fixed at a distance δ from the clamped end. In the present approach, it is supposed that the present
piezoelectric patch does not affect the density and bending rigidity of the sandwich plate. For a study that takes into
account this effect, one could refer for instance to reference [16], in the context of the passive damping of vibrating
beams.

Figure 3 presents the efficiency of the harvesting system in the (δ, lp) plane, for two values of the mass ratio M∗,
just above the instability threshold. Each colored rectangle of these plots corresponds to one numerical simulation
where the value of β was adjusted to reach maximum efficiency.

For M∗ = 0.6, the maximum efficiency is achieved for δ ∼ 0.4 and lp ∼ 0.5. In this case, the electrode resides
mainly at the second half of the clamped-free plate. This result differ significantly to that obtained in works on energy
harvesting from vibrating beams, where the piezoelectric patch is generally placed at the clamp or covering the whole
length [17, 7].

For M∗ = 10, three local maxima of the efficiency in the (δ, lp) plane can be observed. They correspond to an
electrode of length lp ∼ 0.3 at δ ∼ 0.3, 0.5 and 0.75 respectively. The presence of more local maxima with shorter
electrodes is explained by the fact that the higher is M∗, the higher is the number of spatial oscillation is the unstable
mode [18].

Case II: two electrodes The case with two electrodes covering the whole plate is now considered. The parametric
study now depends on one parameter only: the length of the first electrode, noted xc. On figure 4, the parametric
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Figure 3: Case of one electrode per side of the flag. Effect of the electrode’s position and length on the energy
harvesting efficiency, at U∗ = 13, M∗ = 0.6 (top) and M∗ = 10 (bottom). For each pair of geometrical parameters, β
is varied to reach the maximum efficiency.

study is done in the same two cases: M∗ = 0.6 and M∗ = 10, with U∗ chosen just above the instability threshold,
U∗ = 13 and 8.5 respectively. For M∗ = 0.6, the maximum value of η is found for xc ∼ 0.35 and is approximately
twice the minimum efficiency η. For M∗ = 10 we find two local maxima, around xc = 0.5 and xc = 0.7 respectively.
These maxima represent a significant improvement of the efficiency. Indeed, in this case, the maximum efficiency is
approximately 9 times larger than the minimum efficiency. The contribution of each piezoelectric pair on the efficiency
is also plotted on this figures, showing that when the optimal efficiency is reached, the contribution of the downstream
piezoelectric pair is significantly higher than the upstream one. This is consistent with the results of case I presented
above.

Case III: three electrodes The case with three electrodes covering the entire plate is now adressed in the same two
configurations as before. There are now two parameters, xc1 and xc2, which are the junctions between two piezoelectric
patches.

For M∗ = 0.6 the maximum efficiency is reached for xc1 ∼ 0.4 and xc2 ∼ 0.9. In this configuration, the second
piezoelectric patch is approximately the same as in the one of case I, the two other patches covering the remaining space
on the plate. For M∗ = 10, the point of maximum efficiency (xc1 = 0.5, xc2 = 0.7) can not be related to the optimal
configuration of case I. For this large value of the mass ratio, the sensibility of the efficiency with the parameters is
important and it will be consequently more difficult to reach the optimal efficiency in practical applications.
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Figure 4: Case of two electrodes per side of the flag. Effect of the position of the cut between the two electrodes on
the energy harvesting efficiency, at U∗ = 13, M∗ = 0.6 (top) and M∗ = 10, U∗ = 8.5 (bottom). For each value of M∗,
β is varied to reach the maximum efficiency. Solid black line shows the total efficiency of the configuration. Red and
green lines show the individual contribution of each electrode.

6



x
c1

xc2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
2e-04

3e-04

4e-04

5e-04

x
c1

xc2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

5.0e-04

1.0e-03

1.5e-03

2.0e-03

2.5e-03

Figure 5: Case of three electrodes per side of the flag. Effect of the position of the cut between two consecutive
electrodes on the energy harvesting efficiency, at U∗ = 13, M∗ = 0.6 (top) and M∗ = 10 (bottom). For each pair of
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Figure 6: Experimental setup and description of the two tested configurations.
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Figure 7: Numerical and experimental energy harvesting efficiency η as function of the dimensionless length of the
piezoelectric patch lp with δ = 0, U∗ = 14.6, M∗ = 0.68, H∗ = 0.3, α = .073. The shunting resistance is adjusted so
get maximum dissipated power.

Before the presentation of some experimental results, let us discuss briefly the main results of this section. First of
all, we have presented results obtained by a weakly nonlinear model discretized using a small set of Galerkin modes,
allowing fast computations. Considering one, two or three electrodes covering entierely or partially the plate, we have
revealed the geometrical distributions that maximize the efficiency. We show that the optimal distributions strongly
depend on the mass ratio M∗. In the single-electrode case, we also showed that letting an extremity of the electrode
be at the clamp is far from being the optimal configuration. It is indeed possible to increase the efficiency by a factor
2 at M∗ = 0.6 and 10 at M∗ = 10 when looking for the best position and length of the electrode.

Experiments

A series of experimental measurements is now presented. A schematic view of the experimental setup is given in Fig.
6. Two experiments have been conducted, which consist basically in considering the case I, with one extremity of
the electrode fixed at x = 0 or x = 1. The former (experiment I on Fig. 6) is achieved by fixing δ = 0 and varying
lp from 0 to 1. The latter (experiment II on Fig. 6) is achieved by varying δ and imposing lp = 1 − δ. In both
experiments the studied plates are composed of a mylar sheet of length 12 cm, width 2.5 cm and thickness 100 µm. A
piezoelectric PVDF film fixed on each side of the sheet. The width of the piezoelectric sheet in the spanwise direction
is smaller than the width of the plate, in order to reduce the influence of δ and lp on the local flexural rigidity and
lineic mass of the system. PVDF films are covered with an external Cr/Au which serves as the electrode. During the
experiments the Cr/Au layer is sectioned in order to adjust the desired value of δ and lp. The thickness of the PVDF
film in experiment 1 is 40 µm while in experiment 2 is 50 µm. The system is placed in a wind tunnel of rectangular
transversal section 10 cm wide and 5 cm high with transparent walls that allow taking images from the outside. At a
given velocity above the instability threshold, the voltage is measured across the electrodes of the piezoelectric patches
with a variable resistance adjusted so that the dissipated power is maximum. The efficiency is then calculated using
equation (15).

On figure 7, the efficiency is plotted against lp for δ = 0. Numerical and experimental results are plotted on the
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Figure 9: Efficiency η (top) and flapping frequency U∗ω (bottom) as function of U∗ω0 for β = 0.05 (solid), β = 1
(dash-dotted), β = 4 (dashed) and β = 8 (dotted). For all figures, α = 0.3, M∗ = 1 and U∗ = 13.

same figure, and show a good agreement. The maximum efficiency is achieved when the piezoelectric patch occupy
the whole length of the plate.

On figure 8, the efficiency is plotted against lp with lp = 1−δ, so that the piezoelectric patch lies between x = δ and
x = 1. Here again, there is a good agreement between numerical results and experiments. The maximum efficiency is
reached when the piezoelectric patch upstream extremity is a x ∼ 0.1.

Hence, there is an overall good agreement between theory and experiments with respect to the influence of the
geometry of the electrode on the efficiency of the harvester. The slight discrepancies might be due difficulties of
controlling the parameters during the manufacturing process and to the influence of the piezoelectric patch on the
local bending rigidity and density, which is not taken into account bythe model.

IMPROVEMENT OF EFFICIENCY BY A LOCK-IN MECANISM

In this section, a different harvesting circuit is considered. It now consists in a resistance and an inductance in parallel.
Due to the fact that the piezoelectric patch behaves like a capacitor, the resulting circuit consists in an RLC circuit that
can enter in resonnance with the forcing coming from the piezoelectric coupling. In the present case, the continuous
limit is considered and numerical results using the full non-linear model are presented.

On figure 9(a), the efficiency is plotted against ω0 for different values of β. The other parameters are fixed to
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Figure 10: Flag’s deformation during one flapping cycle, comparison between no lock-in (a) and lock-in (b) cases. For
all figures, α = 0.3, M∗ = 1 and U∗ = 13.

M∗ = 1, U∗ = 13, H∗ = 0.5 and α = 0.3. In a range of ω0 around unity, the efficiency reach a maximum of the
order of 10−2, which is significantly higher than what can be achieved with purely resistive circuits. The flapping
frequency is plotted on figure 9 and shows that when high efficiencies are obtained, the flapping frequency ω = ω0.
This phenomenon is referred to as a frequency lock-in, and is mainly reported in works on Vortex-Induced Vibration
(VIV), [19]. In this phenomenon, the frequency of an active oscillator (the flapping flag) is dictated by the natural
frequency of a coupled passive oscillator (the circuit).

The deformation of the flag during one period of oscillation is plotted on figure 10 in a case without lock-in
(ω0 = 3.25), and in a case with lock-in (ω0 = 4.12). This plot shows that when the lock-in occurs, the fluttering
amplitude of the flag is significantly larger. This emphasizes that the efficiency is increased not only because of a
resonance in the RLC circuit, but also because of an increase of the flapping amplitude.

CONCLUSION

In this article a model of a piezoelectric flag coupled with energy harvesting circuits has been presented. The discrete
and continuous configurations have been defined. When the number of piezoelectric patches tends to infinity and their
length is small compared to the typical deformations of the flag, a continuous electrical model can be used.

In all the paper, we focused on the energy harvesting efficiency of the system, whose definition is similar to that
used in windmill studies. First, the influence of the number and arrangement of the piezoelectric patches has been
characterized. Optimal positions have been found, which depends on the mass ratio M∗. As in previous studies
[5, 6], higher efficiencies are obtained at higher mass ratios, but then the sensibility to the geometrical parameters is
larger. Finally, a lock-in phenomenon has been evidenced. The latter appears when a resonant circuit is considered
and corresponds to a situation where the flapping frequency is dictated by the frequency of the electrical circuit. In
the theoretical configuration presented above, this phenomenon is able to significantly increase the efficiency of the
harvester. Experiments should now be performed to assess the effectiveness of the efficiency increase after introducing
inductive elements to the energy harvesting circuits.
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