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In this paper, we present the implementation of an automatic sign language (SL) sign annotation framework based on a formal logic, the Propositional Dynamic Logic (PDL). Our system relies heavily on the use of a specific variant of PDL, the Propositional Dynamic Logic for Sign Language (PDL SL ), which lets us describe SL signs as formulae and corpora videos as labeled transition systems (LTSs). Here, we intend to show how a generic annotation system can be constructed upon these underlying theoretical principles, regardless of the tracking technologies available or the input format of corpora. With this in mind, we generated a development framework that adapts the system to specific use cases. Furthermore, we present some results obtained by our application when adapted to one distinct case, 2D corpora analysis with pre-processed tracking information. We also present some insights on how such a technology can be used to analyze 3D real-time data, captured with a depth device.

Introduction

Research in sign language (SL), both from the point of view of linguistics and computer science, relies heavily on video-corpora analysis [START_REF] Dreuw | Spoken language processing techniques for sign language recognition and translation[END_REF]. As such, several methods have been developed over time for the automatic processing of both video or other sensor-based corpora [START_REF] Ong | Automatic sign language analysis: a survey and the future beyond lexical meaning[END_REF]. Even though these kind of research efforts are usually geared toward recognition, few work has been done in relation to the unification of raw tracked data with high level descriptions [START_REF] Cooper | Sign language recognition[END_REF][START_REF] Bossard | Some issues in sign language processing[END_REF]. This calls to a reflection on how we represent SL computationally, from the most basic level. SL lexical representation research is focused on sign synthesis before than recognition. Works like [START_REF] Filhol | Zebedee: a lexical description model for sign language synthesis[END_REF][START_REF] Losson | Sign language formal description and synthesis[END_REF] present the use of geometric lexical descriptions to achieve animation of signing 3D avatars. While their approach is well suited for synthesis, it is not completely adapted for sign identification. Recognition tasks in both natural language processing and computer vision are well known to be error-prone. Also, they are highly susceptible of bumping into incomplete information scenarios which may require some kind of inference, in order to effectively resolve ambiguities. In addition, SL linguistic research has consistently shown the existence of common patterns across different SLs [START_REF] Aronoff | The paradox of sign language morphology[END_REF][START_REF] Meir | Re-thinking sign language verb classes: the body as subject[END_REF][START_REF] Wittmann | Classification linguistique des langues signées non vocalement[END_REF] that may be lost with the use of purely geometrical characterizations, as the ones needed in synthesis. This limits the application of these kind of sign representations for automatic recognition, especially since we would want to exploit known linguistic patterns by adding them as properties of our descriptions. Works like [START_REF] Kervajan | French sign language processing: Verb agreement[END_REF][START_REF] Dalle | High level models for sign language analysis by a vision system[END_REF] have acknowledged the necessity of introducing linguistic infor- † Supported by CONACYT (Mexico) scholarship program. mation to enrich interaction, in an effort to help automatic systems bear with ambiguity. Moreover, the use of additional linguistic data could simplify connections between lexical information and higher syntactic-semantic levels, hence pushing us closer to automatic discourse analysis. However, this has long been out of the scope of synthesisoriented description languages. On the side, research in SL recognition has to deal with other important drawbacks not present in synthesis, namely the use of very specialized tools or very specific corpora. This alone can severely impact the portability of a formal, computer-ready, representation out of the original research context, as it complicates the use of the same techniques across different information sources and toughens integration with new tools. The framework described here is based on previous work presented by [START_REF] Curiel | Sign language lexical recognition with propositional dynamic logic[END_REF] on the Propositional Dynamic Logic for Sign Language (PDL SL ). PDL SL is a formal logic created with the main purpose of representing SL signs in a computer-friendly way, regardless of the specific tools or corpora used in research. Such a representation can potentially reduce the overhead of manually describing SL signs to a computer, by establishing wellknown sets of rules that can be interpreted by both humans and automatic systems. This could, incidentally, reduce dependency on thoroughly geometrical descriptions. Moreover, the flexibility of PDL SL lets us combine any kind of information in our descriptions; for example, we can integrate non-manual markers if we have sight and eyebrow tracking, or we can add 3D movements if we are using a depth camera. In general, we propose an automatic SL lexical annotation framework based in PDL SL descriptions. Ideally, the system will:

• simplify the application of logical inference to recognize PDL SL -described signs;

• characterize and analyze corpora in terms of PDL SL models;

• represent SL with different degrees of granularity, so as to adapt the formulae to the specific technical capabilities available in each use case.

Our framework aims to ease the integration of PDL SL with various corpora and tracking technologies, so as to improve communication between different SL research teams. We expect that this will, in turn, enable the construction of both research and user-level applications in later stages. The rest of the paper is divided as follows. In section 2., we introduce the basic notions of our formal language, applied to 2D SL video-corpora analysis. Section 3. shows how we can describe SL lexical structures as verifiable PDL SL formulae. Section 4. gives a detailed description of the system's architecture. Finally, sections 5. and 6. present some preliminary results and conclusions, respectively.

Sign Language Formalization with Logic

The Propositional Dynamic Logic (PDL) is a multi-modal logic first defined by [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF] to characterize computer languages. Originally, it provided a formal framework for program descriptions, allowing them to be interpreted as modal operators. PDL SL is an specific instance of PDL, based on the ideas of sign decomposition by [START_REF] Liddell | American sign language: The phonological base[END_REF] and [START_REF] Filhol | Modèle descriptif des signes pour un traitement automatique des langues des signes[END_REF]. In general, PDL SL 's modal operators are movements executed by articulators, while static postures are interpreted as propositional states reachable by chains of movements.

A propositional state will be none other than a set of distinct atomic propositions. These can be used to represent articulators' positions with respect to one another; specific configurations; or even their spatial placement within a set of places of articulation. Basic movements can be described by atomic actions codifying either their direction, speed or even if they follow a particular trajectory. This is exemplified by the definitions on Table 2, which presents some of the operators used to characterize 2D corpus movements. Both atomic propositions and actions presented in this case were chosen specifically to capture information that we are able to detect with our tracking tools. Different sets of atoms can be defined depending of the technical capabilities available to assert their truth values (e.g. sight direction, eyebrow configuration, hand movement, etc). Atoms form the core of the PDL SL language, which is presented below in Backus-Naur Form (BNF) by way of definitions 1 and 2.

Definition 1 (Action Language for SL Body Articulators A SL ).

α ::= π | α ∩ α | α ∪ α | α; α | α *
where π is an atomic action.

Definition 2 (Language PDL SL ).

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ
where p denotes an atomic proposition and α ∈ A SL .

A more formal presentation of the model basis can be found in [START_REF] Curiel | Sign language lexical recognition with propositional dynamic logic[END_REF].

Extending PDL SL formulae to Describe Sign Language Lexical Properties

The presented PDL SL language lets us easily codify individual signs by way of our logic formulae. However, during implementation, we noticed the need to extend the original formalism in order to develop a better suited characterization of more general properties. We wanted to represent lexical structures common across multiple signs. With this in mind, we extended PDL SL to include lambda expressions, explained in [START_REF] Barendsen | Introduction to lambda calculus[END_REF], for variable binding.

The introduced syntax is presented in definition 3.

Definition 3 (Extended PDL SL ).

var ::= uniqueID | var, var

ϕ f ::= ϕ | var | ¬ϕ f | ϕ f ∧ ϕ f | λ var.(ϕ f ) | var = ϕ f where ϕ ∈ PDL SL .
The rules of quantification and substitution remain the same as in classic lambda calculus. Lambdas let us describe properties over sets of PDL SL atoms instead of one. For example, Figure 1 shows two french sign language (FSL) signs, SCREEN FSL and DRIVE FSL . Both can be described as instances of the same underlying common structure, characterized by both hands holding the same morphological configuration while being positioned opposite from one another.

Their common base can be described by way of a lambda expression as shown in example 1.

Example 1 (opposition lambda expression). left means that right hand lies in direction ← with respect to left, from the annotator's point of view. In this case we called our expression opposition, because both hands are in opposite horizontal positions from one another. Once we've defined the base structure, the SCREEN FSL and DRIVE FSL signs can be easily described in the database by passing the missing arguments to our lambda expression (as shown by example 2).

hands conf ig = λc.(F right c ∧ F left c ) opposition = λc.(right ← left ∧ hands conf ig(c)) SCREEN FSL DRIVE FSL COMMON STRUCTURE
Example 2 (opposition-derived signs).

SCREEN FSL = opposition(L FORM) DRIVE FSL = opposition(FIST FORM)
In example 2, L FORM is a morphological configuration of the hand where the thumb and the index fingers are held orthogonally. Similarly, FIST Form is a configuration where hand is held as a closed fist. Here we just expressed that opposition will substitute each apparition of its first argument with either form, so as to define two distinct signs. We could also have described both signs as standalone, independent formulae. However, by describing the common structures across different signs, we are able to cope better with incomplete information in recognition. For example, a generic opposition structure with free variables will correctly hit in states where we can recognize hand positions but no hand configurations (as it's often the case). This immediately derives into a list of possible signs that could be later reduced with either further processing or with user interaction. In this scenario, standalone formulae for SCREEN FSL and DRIVE FSL wouldn't be found, since only using position information isn't enough to tell them apart.

Detailed Framework Architecture

The objective of the system is to take an untreated SL video input, either in real time or not, and return a set of satisfied PDL SL formulae. Moreover, the system has to return a PDL SL model representing any relevant information contained in the video as a labeled transition system (LTS). This can only be fulfilled by adapting the modeling process on-the-fly to the specific characteristics of our data. To achieve this end, our framework generalizes the original architecture proposed by [START_REF] Curiel | Sign language lexical recognition with propositional dynamic logic[END_REF], shown in Figure 2, so as to enable module swapping depending on the technical needs presented by the inputs. Finally, the Verification Module takes both the generated LTS and a database of PDL SL formulae to determine which of them are satisfied in the model. As each formula corresponds to a formal description of a sign or property, the module can use logical satisfaction to verify if the property is present or not in the video. The complete process is shown in Figure 4. Finally, the system maps each state where a formula is satisfied to its corresponding frame interval, so as to generate an annotation proposition.
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Figure 4: Example of the different layers processed by an automatic annotation system

Observer Architecture Design

In order to be able to adapt dynamically to the particular needs of the input data, we devised the observer architecture shown in Figure 5.

The main idea behind this design rests upon two axes:

• the possibility of using several tracking tools, adapted to different kinds of corpora;

• the generation of PDL SL models consistent with the information generated by the different trackers.

Moreover, not only do models have to be consistent with every tracker but, as previously stated, not all trackers will give the same information nor track the same features. As such, the framework has to coordinate the loading of the proper modules depending on the corpus and the trackers. This process is entirely done by way of eventtriggering. The same mechanism enables communication between modules by implementing multiple-reader/singlewriter (MRSW) buffers, which allow every module to read their information but let only one of them write modifications. Each time a new modification is written in a MRSW register, an event is issued system-wide to notify of the existence of new information. This event is then available to every module listening to that register's notifications. For the sake of compatibility, modules are obliged to implement an internal listening thread which can be subscribed to the communication channels of any other module.

In general, the framework establishes development guidelines for the modules of the basic architecture, the one shown on Figure 2, so we can adapt them to specific cases without breaking compatibility. This is achieved by way of generic templates that implement the most basic functionalities of every module. These templates can later be extended to cover the specific cases arising in research; a developer can simply override the critical functionality in each template with their own code. Additionally, modules can register new events within the framework, so as to convey further information (if needed) for particular cases. As such, the system is capable of distributing self-contained, interchangeable, modules that can adapt to different situations.

The execution process is also fairly straightforward. At the beginning a Start event is fired-up, prompting to load both a video stream and a tracker. This corresponds to the Tracking and Segmentation Module on the basic architecture (Figure 2). The system chooses between the compatible video inputs and pairs the selection with the proper tracker. This is done by reading the events sent out by the loading functions. Likewise, the model construction rules are loaded after a compatible set of video/tracking inputs has been selected. In this way, we can assure that the modeling algorithm will only take in account pertinent rules, those relying on the specific features we are tracking. This mechanism avoids generating models based on hand positions, for example, if our tracker is only capable of detecting non-manuals. Once a compatible set of modules is activated, the process can continue as proposed by [START_REF] Curiel | Sign language lexical recognition with propositional dynamic logic[END_REF].

Experimental Results

We obtained some preliminary results on the proposed framework by implementing the system's core and a set of minimal templates for each of the modules on Figure 2. The core contains the necessary data structures to represent both PDL SL models and formulae, alongside the semantic rules necessary to acknowledge logical satisfaction.

For the creation of the module templates, we considered two possible scenarios:

• the system is being used to annotate previously captured video corpora;

• a camera as going to be used as input for real-time sign recognition.

Furthermore, we had to consider two distinct cases when treating video; whether we had 2D or 3D information available for determining relationships between hands and body.

For simplicity, we worked only with hand-tracking data.

Nevertheless, the addition of non-manual trackers is also a possibility, since introducing new modeling rules for nonmanuals follow the same principles of the 2D to 3D transition. Once all the framework tools were in place, we created a specific implementation for the 2D case, when tracking features over existing corpora.

Automatic Annotation in 2D Corpora

To obtain some initial results over real-world data, we developed the first modules based on the atoms originally presented with the PDL SL language. Additionally, we created a property database made of PDL SL formulae, adapted to be used with our tracking device. The database position in the architecture is shown in Figure 5, as the node Lexical Formulae. The formulae were exclusively constructed for the 2D case; this means that, for any other kind of tracking information, we would need to define new PDL SL database with different properties. For tracking, we used the tracker developed by [START_REF] Gonzalez | Robust body parts tracking using particle filter and dynamic template[END_REF], which is capable of finding 2D positions of the hands and head over SL video corpora. As for the SL resources, we used an instance of the DictaSign corpus (DictaSign, 2012) as video input for our system. Since the used tracking tool is not adapted for real-time processing, the implemented tracking module just recuperates the previously calculated information from an output file. This is done sequentially, after each successful querying of a new video frame, to simulate real-time.

To calculate the posture segmentation we used the method proposed by [START_REF] Gonzalez | Sign segmentation using dynamics and hand configuration for semi-automatic annotation of sign language corpora[END_REF], which is based on measuring speed-changes.

Our PDL SL description database contains four structures: ). One of the hands remains within the head region while the other signs.

The posture variable denotes the propositional state of an articulator. The moves(s) function can be interpreted as any action executed by articulator s. We omit the complete, formal definition of this operator for the sake of readability. To measure the hit ratio of the system, we manually annotated the apparition of the described properties in one video within the corpora. Table 3 shows the quantity of observed apparitions of each property over the chosen video. Figure 6 shows data from both Tables 3 and4, alongside a matching table where, for each property formula, we count the quantity of times it was verified on previously humanannotated frames. Each row represents the total number of human observed apparitions of one property, while each column represents the quantity of positive verifications reported by the system for each formula. For example, cell (opposition, opposition) shows the total number of times the opposition formula was correctly verified on humanannotated opposition frames. The next cell, (opposition, buoy), holds the number of times the buoy property was verified on human-annotated opposition frames. Positive verifications can overlap, i.e. the system could have verified two or more formulae over the same states of the model. Therefore, a single annotation could belong to different classes. The cells on the last row of the table correspond to false positives, reported detections that don't overlap with any human observation. Further analysis on the matching table is represented on Table 5, which shows the total number of correctly and incorrectly classified formulae, as well as the total mismatches. The results show a high recognition rate for opposition, buoy and tap, but also a high quantity of misclassification hits and false positives. Most of the erroneous hits are due to the definitions of the properties themselves. Take, for example, opposition and buoy properties. In the video, some of the states satisfying a buoy could easily be classified as opposition. When this happens, the only thing that differentiates them, if we only have tracking information, is their movement: if a hand is moving is a buoy, otherwise is an opposition. Even though this is not always the case, sometimes the situation arises and the system confuses these properties for one another; if some of the movements of the hands are too fast, or not ample enough, when performing a buoy, the system interprets them as a static posture, therefore classifying some of the internal states of the buoy as opposition. This, however, doesn't impede finding the buoy, since the definition of buoy specifies, from the beginning, an arbitrary number of internal states, hence not affected by having found one instead of two distinct states. The opposite case might also arise, when a short involuntary movement, is interpreted by the system as an intended action instead of noise, hereafter classifying an opposition as a buoy, or even as two sequential oppositions. Similar arguments can be made for tap and head anchor, where movement thresholds alone can affect the form and the quantity of states on the LTS. In the future, we expect that adding new information will reduce the quantity of misclassified data, specially because this will result in a more fine-grained model from the beginning. At this stage, the system returns a list of proposed properties as result of the verification phase. What the numbers on Table 5 mean is that, in most cases, the proposed annotation will almost never return single properties but rather sets of properties. This may not be a problem with simple formulae like the ones described, but would be problematic with complete sign descriptions; there is such thing as too much information. In that case, we would need a human being to complete the classification process. This points out the need or a higher level module in charge of cleaning the annotation proposal by way of machine learning techniques. Finally, most of the false positives that don't correspond to any overlap with human observations were caused by signer's movements without communication intent. For example, some opposition properties were found when a signer crossed his arms, when his hands were posed over his knees or when he assumed other natural repose positions. Similarly, some co-articulatory movements created chains of states that satisfied the formulae for buoy or tap. These cases could also be reduced with help of a higher level module or a human expert.

Extending to 3D

Currently, we are extending the system to model features tracked in 3D. We have already extended the framework to process data returned by the Kinect (Microsoft, 2013), a motion sensing device capable of tracking 3D positions on several body articulations. Figure 7 shows the points that can be tracked by using the Kinect with it's official development kit. For the moment, we have been able to reuse the same modeling rules that we implemented for the 2D case; mainly, we have used the Kinect tracker to obtain 3D position data of hands and head, and we have projected this information in 2D. This lets us create the same kind of models we build from corpora. However, the variety of the tracked articulations and the 3D capabilities of the sensor, call for the definition of more complex atoms and lambda properties, as well as 3D descriptions of individual signs. As of 2014, work is still ongoing on the matter and has not been properly evaluated. Nevertheless, we considered important to point out that we can already exchange trackers if needed, so as to showcase the flexibility of our framework.

Conclusions

Here we have presented an automatic annotation framework for SL based on a formal logic. The system lets us represent SL video inputs as time-ordered LTSs by way of PDL SL , a multi-modal logic. We have shown that it is possible to use the resulting graph to verify the existence of common lexical structures, described as logical formulae. Furthermore, the framework gives us the necessary tools to adapt the model generation for different corpora and tracking technologies.

From the point of view of recognition, we noticed that the quality of the tracking tools is of utmost importance for both formula definition and model generation. The low presence of information and high levels of noise immediately took a toll on verification; in some cases, we lacked enough information to distinguish between intended movements and noise. In turn, this resulted on high rejection rates of what would otherwise be considered hit frames. Similarly, we noticed that modeling can be affected by the presence of low information, which can render states indistinguishable. For instance, without hand configurations every state satisfying opposition is, effectively, the same state. Therefore, every formula sharing the same opposition base would be satisfied on that single state. This could gravely affect the system's performance; in the worst case, all states could satisfy all formulae. On the other hand, a too fine-grained model can lead to a LTS that replicates the same problems we have in synthesis-oriented descriptions. In that case, we would need very specific formulae (with near to perfect SL corpora) to achieve any identification at all. Similarly, formula creation can't be neither too broad nor too specific, if we want to minimize the quantity of imperfect matches. Anyhow, one of the advantages we have by using a logical language is that we can control the granularity of information simply by defining or discarding atoms, which opens the door to the use of algorithmic techniques to control information quantity.

From the point of view of the implementation, the results of the 2D experiments show that further effort has to be put on integrating new sources of information to the system, especially if we want avoid false positives. Even though the system is in place and works as expected, the high quantity of erroneous hits reflects the gravity of the problems we can have with indistinguishable states. Further comparisons have to be done once the system completely incorporates 3D modeling, so as to measure the effective impact of additional information on verification. Future work in recognition will be centered on implementing machine learning techniques to improve verification. Using data analysis to find relationships between detected structures, could lead us to better results even in suboptimal environments. Additionally, we would like to integrate communication with user level software like the one presented by [START_REF] Dubot | Improvements of the distributed architecture for assisted annotation of video corpora. In 5th Workshop on the Representation and Processing of Sign Languages: Interactions between Corpus and Lexicon[END_REF], a manual annotation tool. This could lead to other possible uses of the framework as engine for higher applications, such as dictionary searching or even for automatic creation of sign description databases from SL videos. Further analysis will also target the building blocks of the language, by changing the semantic definitions of PDL SL operators to better suit SL. Changes to its syntax are also to be expected, in an effort to ease the development of extensions for different trackers and simplify descriptions. Finally, we want to steer further into 3D representation and the inclusion of non-manual features, important stepping stones towards higher level language processing.
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 1 Figure 1: Comparison of signs SCREEN FSL and DRIVE FSL sharing the same underlying structure
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 2 Figure 2: Block diagram of a generic PDL SL -based SL lexical structure recognition system

  .

Figure 3 :

 3 Figure 3: Example of modeling over four automatically identified frames as possible key postures
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 5 Figure 5: Information and control flow in the SL annotation framework
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 7 Figure 7: Points tracked by the Kinect device (Microsoft, 2013)

Table 1

 1 

			shows a brief summary of
	the atomic propositions defined to analyze 2D corpus data.
	Symbol Meaning
	β 1	δ β2	articulator β 1 is placed in relative direc-
			tion δ with respect to articulator β 2 .
	F β1 c	articulator β 1 holds configuration c.
	Ξ β1 λ	articulator β 1 is located in articulation
			place λ.
	T β1 β2	articulator β 1 and β 2 touch.

Table 1 :

 1 Atomic propositions for PDL SL

Table 2 :

 2 Atomic actions for PDL SL

	Symbol Meaning
	δ β1	articulator β 1 moves in relative direction
		δ.
	β1	articulator β 1 trills, moves rapidly with-
		out direction.
	skip	denotes the execution of any action

Table 4 .

 4 

	ϕ	oppos. buoy tap h. anch.
	Total	164	248	79	138

Table 4 :

 4 Total reported hits of property formulae on one videoOn Table4we can see the total number of times each of the formulae were verified on the video, as returned by the system. We compare the human annotations with these results on Figure6.

			TOTAL OBSERVATIONS	
		ϕ	oppos. buoy tap h. anch.
		By hand	76	43	33	74
		Automatic	164	245	79	138
				Automatic	
		ϕ	oppos. buoy tap h. anch.
		oppos.	67	64	10	33
	Human	buoy tap h. anch.	22 15 23	40 24 50	7 25 13	17 11 44
		False P.	37	67	24	33
		Figure 6: Formulae verification results