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Abstract. One question that we investigate in this paper is, how can we build

log-concave polynomials using sparse polynomials as building blocks? More

precisely, let f =
∑d

i=0
aiX

i ∈ R
+[X] be a polynomial satisfying the log-

concavity condition a2
i > τai−1ai+1 for every i ∈ {1, . . . , d−1}, where τ > 0.

Whenever f can be written under the form f =
∑k

i=1

∏m
j=1

fi,j where the poly-

nomials fi,j have at most t monomials, it is clear that d 6 ktm. Assuming that

the fi,j have only non-negative coefficients, we improve this degree bound to

d = O(km2/3t2m/3log2/3(kt)) if τ > 1, and to d 6 kmt if τ = d2d.

This investigation has a complexity-theoretic motivation: we show that a suit-

able strengthening of the above results would imply a separation of the algebraic

complexity classes VP and VNP. As they currently stand, these results are strong

enough to provide a new example of a family of polynomials in VNP which can-

not be computed by monotone arithmetic circuits of polynomial size.

1 Introduction

Let f =
∑d

j=0 ajX
j ∈ R[X ] be a univariate polynomial of degree d ∈ Z

+. It is a

classical result due to Newton (see [4], §2.22 and §4.3 for two proofs) that whenever

all the roots of f are real, then the coefficients of f satisfy the following log-concavity

condition:

a2i >
d− i+ 1

d− i

i+ 1

i
ai−1ai+1 for all i ∈ {1, . . . , d− 1}. (1)

Moreover, if the roots of f are not all equal, these inequalities are strict. When d = 2,

condition (1) becomes a1 > 4a0a2, which is well known to be a necessary and sufficient

condition for all the roots of f to be real. Nevertheless, for d > 3, the converse of

Newton’s result does not hold any more [13].

When f ∈ R
+[X ], i.e., when f =

∑d
j=0 ajX

j with aj > 0 for all j ∈ {0, . . . , d},

a weak converse of Newton’s result holds true. Namely, a sufficient condition for f to

only have real (and distinct) roots is that

a2i > 4ai−1ai+1 for all i ∈ {1, . . . , d− 1}.
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Whenever a polynomial fulfills this condition, we say that it satisfies the Kurtz condition

since this converse result is often attributed to Kurtz [13]. Note however that it was

obtained some 70 years earlier by Hutchinson [6].

If f satisfies the Kurtz condition, all of its d+1 coefficients are nonzero except pos-

sibly the constant term. Such a polynomial is therefore very far from being sparse (recall

that a polynomial is informally called sparse if the number of its nonzero coefficients

is small compared to its degree). One question that we investigate in this paper is: how

can we construct polynomials satisfying the Kurtz condition using sparse polynomials

as building blocks? More precisely, consider f a polynomial of the form

f =

k
∑

i=1

m
∏

j=1

fi,j (2)

where fi,j are polynomials with at most t monomials each. By expanding the products

in (2) we see that f has at most ktm monomials. As a result, d 6 ktm if f satisfies

the Kurtz condition. Our goal is to improve this very coarse bound. For the case of

polynomials fi,j with nonnegative coefficients, we obtain the following result.

Theorem 1. Consider a polynomial f ∈ R
+[X ] of degree d of the form

f =

k
∑

i=1

m
∏

j=1

fi,j ,

where m > 2 and the fi,j ∈ R
+[X ] have at most t monomials. If f satisfies the Kurtz

condition, then d = O(km2/3t2m/3log2/3(kt)).

We prove this result in Section 2. After that, in Section 3, we study the following

stronger log-concavity condition

a2i > d2dai−1ai+1 for all i ∈ {1, . . . , d− 1}. (3)

In this setting we prove the following improved analogue of Theorem 1.

Theorem 2. Consider a polynomial f ∈ R
+[X ] of degree d of the form

f =

k
∑

i=1

m
∏

j=1

fi,j ,

where m > 2 and the fi,j ∈ R
+[X ] have at most t monomials. If f satisfies (3), then

d 6 kmt.

This investigation has a complexity-theoretic motivation: we show in Section 4 that

a suitable extension of Theorem 2 (allowing negative coefficients for the polynomials

fij) would imply a separation of the algebraic complexity classes VP and VNP. The

classes VP of “easily computable polynomial families” and VNP of “easily definable

polynomial families” were proposed by Valiant [15] as algebraic analogues of P and

NP. As shown in Theorem 7, Theorem 2 as it now stands is strong enough to pro-

vide a new example of a family of polynomials in VNP which cannot be computed by

monotone arithmetic circuits of polynomial size.



2 The Kurtz log-concavity condition

Our main tool in this section is a result of convex geometry [3]. To state this result, we

need to introduce some definitions and notations. For a pair of planar finite sets R,S ⊂
R

2, the Minkowski sum of R and S is the set R + S := {y + z | y ∈ R, z ∈ S} ⊂ R
2.

A finite set C ⊂ R
2 is convexly independent if and only if its elements are vertices

of a convex polygon. The following result provides an upper bound for the number of

elements of a convexly independent set contained in the Minkowski sum of two other

sets.

Theorem 3. [3, Theorem 1] Let R and S be two planar point sets with |R| = r and

|S| = s. Let C be a subset of the Minkowski sum R + S. If C is convexly independent

we have that |C| = O(r2/3s2/3 + r + s).

From this result the following corollary follows easily.

Corollary 1. Let R1, . . . , Rk, S1, . . . , Sk, Q1, Q2 be planar point sets with |Ri| =
r, |Si| = s for all i ∈ {1, . . . , k}, |Q1| = q1 and |Q2| = q2. Let C be a subset of

∪k
i=1(Ri+Si)+Q1+Q2. IfC is convexly independent, then |C| = O(kr2/3s2/3q

2/3
1 q

2/3
2 +

krq1 + ksq2).

Proof. We observe that ∪k
i=1(Ri + Si) +Q1 +Q2 = ∪k

i=1((Ri +Q1) + (Si +Q2)).
Therefore, we partition C into k convexly independent disjoint sets C1, . . . , Ck such

that Ci ⊂ (Ri +Q1) + (Si +Q2) for all i ∈ {1, . . . , k}. Since |Ri + Q1| = rq1 and

|Si +Q2| 6 sq2, by Theorem 3, we get that |Ci| = O(r2/3s2/3q
2/3
1 q

2/3
2 + rq1 + sq2)

and the result follows.

Theorem 4. Consider a polynomial f ∈ R
+[X ] of degree d of the form

f =

k
∑

i=1

gihi,

where gi, hi ∈ R
+[X ], the gi have at most r monomials and the hi have at most s

monomials. If f satisfies the Kurtz condition, then d = O(kr2/3s2/3 log2/3(kr)+k(r+

s) log1/2(kr)).

Proof. We write f =
∑d

i=0 ciX
i, where ci > 0 for all i ∈ {1, . . . , d} and c0 > 0.

Since f satisfies the Kurtz condition, setting ǫ := log(4)/2 we get that

2log(ci) > log(ci−1) + log(ci+1) + 2ǫ. (4)

for every i > 2. For every δ1, . . . , δd ∈ R, we set C(δ1,...,δd) := {(i, log(ci) + δi) | 1 6

i 6 d}. We observe that (4) implies that C(δ1,...,δd) is convexly independent whenever

0 6 δi < ǫ for all i ∈ {1, . . . , d}.



We write gi =
∑ri

j=1 ai,jX
αi,j and hi =

∑si
j=1 bi,jX

βi,j , with ri 6 r, si 6 s

and ai,j , bi,j > 0 for all i, j. Then, cl =
∑k

i=1(
∑

αi,j1+βi,j2=l ai,j1bi,j2). So, setting

Ml := max{ai,j1bi,j2 | i ∈ {1, . . . , k}, αi,j1 + βi,j2 = l} for all l ∈ {1, . . . , d}, we

have that Ml 6 cl 6 krMl, so log(Ml) 6 log(cl) 6 log(Ml) + log(kr).

For every l ∈ {1, . . . , d}, we set

λl :=

⌈

log(cl)− log(Ml)

ǫ

⌉

and δl := log(Ml) + λlǫ− log(cl), (5)

and have that 0 6 λl 6 ⌈(log(kr))/ǫ⌉ and that 0 6 δl < ǫ.

Now, we consider the sets

– Ri := {(αi,j , log(ai,j)) | 1 6 j 6 ri} for i = 1, . . . , k,

– Si := {(βi,j , log(bi,j)) | 1 6 j 6 si} for i = 1, . . . , k,

– Q := {(0, λǫ) | 0 6 λ 6 ⌈log(kr)/ǫ⌉},

– Q1 := {(0, µǫ) | 0 6 µ 6 ⌈
√

log(kr)/ǫ⌉}, and

– Q2 := {(0, ν⌈
√

log(kr)/ǫ⌉ǫ) | 0 6 ν 6 ⌈
√

log(kr)/ǫ⌉}.

If (0, λǫ) ∈ Q, then there exist µ and ν such that λ = ν⌈
√

log(kr)/ǫ⌉ + µ where

µ, ν 6 ⌈
√

log(kr)/ǫ⌉. We have,

(0, λǫ) = (0, ν⌈
√

log(kr)/ǫ⌉ǫ) + (0, µǫ) ∈ Q1 +Q2,

so Q ⊂ Q1 + Q2. Then, we claim that C(δ1,...,δd) ⊂ ∪k
i=1(Ri + Si) + Q. Indeed, for

all l ∈ {1, . . . , d}, by (5),

log(cl) + δl = log(Ml) + λlǫ = log(ai,j1) + log(bi,j2) + λlǫ

for some i ∈ {1, . . . , k} and some j1, j2 such that αi,j1 + βi,j2 = l; thus

(l, log(cl)+δl) = (αi,j1 , log(ai,j1 ))+(βi,j2 , log(bi,j1))+(0, λlǫ) ∈ ∪k
i=1(Ri+Si)+Q.

Since C(δ1,...,δd) is a convexly independent set of d elements contained in ∪k
i=1(Ri +

Si) +Q1 +Q2, a direct application of Corollary 1 yields the result.

From this result it is easy to derive an upper bound for the general case, where we

have the products of m > 2 polynomials. If suffices to divide the m factors into two

groups of approximately m/2 factors, and in each group we expand the product by

brute force.

Proof of Theorem 1. We write each of the k products as a product of two polynomials

Gi :=
∏⌊m/2⌋

j=1 fi,j and Hi :=
∏m

j=⌊m/2⌋+1 fi,j . We can now apply Theorem 4 to

f =
∑k

i=1 GiHi with r = t⌊m/2⌋ and s = tm−⌊m/2⌋ and we get the result.



Remark 1. We observe that the role of the constant 4 in the Kurtz condition can be

played by any other constant τ > 1 in order to obtain the conclusion of Theorem 1, i.e.,

we obtain the same result for f =
∑d

i=0 aiX
i satisfying that a2i > τai−1ai+1 for all

i ∈ {1, . . . , d − 1}. For proving this it suffices to replace the value ǫ = log(4)/2 by

ǫ = log(τ)/2 in the proof of Theorem 4 to conclude this more general result.

For f = gh with g, h ∈ R
+[X ] with at most t monomials, whenever f satisfies the

Kurtz condition, then f has only real (and distinct) roots and so do g and h. As a conse-

quence, both g and h satisfy (1) with strict inequalities and we derive that d 6 2t. Nev-

ertheless, in the similar setting where f = gh+ xi for some i > 0, the same argument

does not apply and a direct application of Theorem 1 yields d = O(t4/3 log2/3(t)), a

bound which seems to be very far from optimal.

Comparison with the setting of Newton polygons

A result similar to Theorem 1 was obtained in [12] for the Newton polygons of bivariate

polynomials. Recall that the Newton polygon of a polynomial f(X,Y ) is the convex

hull of the points (i, j) such that the monomial X iY j appears in f with a nonzero

coefficient.

Theorem 5 (Koiran-Portier-Tavenas-Thomassé). Consider a bivariate polynomial

of the form

f(X,Y ) =
k
∑

i=1

m
∏

j=1

fi,j(X,Y ) (6)

where m > 2 and the fi,j have at most t monomials. The Newton polygon of f has

O(kt2m/3) edges.

In the setting of Newton polygons, the main issue is how to deal with the cancel-

lations arising from the addition of the k products in (6). Two monomials of the form

cX iY j with the same pair (i, j) of exponents but oppositive values of the coefficient c
will cancel, thereby deleting the point (i, j) from the Newton polygon.

In the present paper we associate to the monomial cX i with c > 0 the point

(i, log c). There are no cancellations since we only consider polynomials fi,j with non-

negative coefficients in Theorems 1 and 4. However, the addition of two monomials

cX i, c′X i with the same exponent will “move” the corresponding point along the co-

efficient axis. By contrast, in the setting of Newton polygons points can be deleted but

cannot move. In the proof of Theorem 4 we deal with the issue of “movable points” by

an approximation argument, using the fact that the constant ǫ = log(4)/2 > 0 gives us

a little bit of slack.

3 A stronger log-concavity condition

The objective of this section is to improve the bound provided in Theorem 1 when

f =
∑d

i=0 aiX
i ∈ R

+[x] satisfies a stronger log-concavity condition, namely, when

a2i > d2dai−1ai+1 for all i ∈ {1, . . . , d− 1}.



To prove this bound, we make use of the following well-known lemma (a refer-

ence and similar results for polytopes in higher dimension can be found in [8]). For

completeness, we provide a short proof.

Lemma 1. If R1, . . . , Rs are planar sets and |Ri| = ri for all i ∈ {1, . . . , s}, then the

convex hull of R1 + · · ·+Rs has at most r1 + · · ·+ rs vertices.

Proof. We denote by ki the number of vertices of the convex hull ofRi. Clearly ki 6 ri.
Let us prove that the convex hull of R1 + · · ·+Rs has at most k1 + · · ·+ ks vertices.

Assume that s = 2. We write R1 = {a1, . . . , ar1}, then ai ∈ R1 is a vertex of the

convex hull of R1 if and only if there exists w ∈ S1 (the unit Euclidean sphere) such

that w · ai > w · aj for all j ∈ {1, . . . , r1} \ {i}. Thus, R1 induces a partition of S1

into k1 half-closed intervals. Similarly, R2 induces a partition of S1 into k2 half-closed

intervals. Moreover, these two partitions induce a new one on S1 with at most k1 + k2
half-closed intervals; these intervals correspond to the vertices of R1 + R2 and; thus,

there are at most k1 + k2. By induction we get the result for any value of s.

Proposition 1. Consider a polynomial f =
∑d

i=0 aiX
i ∈ R

+[X ] of the form

f =
k
∑

i=1

m
∏

j=1

fi,j

where the fi,j ∈ R
+[x]. If f satisfies the condition

a2i > k2d2mai−1ai+1,

then there exists a polynomial fi,j with at least d/km monomials.

Proof. Every polynomial fi,j :=
∑di,j

l=0 ci,j,l X
l, where di,j is the degree of fi,j , corre-

sponds to a planar set

Ri,j := {(l, log(ci,j,l)) | ci,j,l > 0} ⊂ R
2.

We set, Ci,l := max{0,∏m
r=1 ci,r,lr | l1 + · · · + lm = l}, for all i ∈ {1, . . . , k},

l ∈ {0, . . . , d}, and Cl := max{Ci,l | 1 6 i 6 k} for all l ∈ {0, . . . , d}. Since the

polynomials fi,j ∈ R
+[X ] and

al =

k
∑

i=1

(

∑

l1+···+lm=l

m
∏

r=1

ci,r,lr

)

for all l ∈ {0, . . . , d}, we derive the following two properties:

– Cl 6 al 6 kdmCl for all l ∈ {0, . . . , d},

– either Ci,l = 0 or (l, log(Ci,l)) ∈ Ri,1 + · · · + Ri,m for all i ∈ {1, . . . , k}, l ∈
{0, . . . , d}. Since al > 0 for all l ∈ {1, . . . , d}, we have thatCl > 0 and (l, log(Cl)) ∈
⋃k

i=1 (Ri,1 + · · ·+Ri,m)



We claim that the points in the set {(l, log(Cl)) | 1 6 l 6 d} belong to the upper

convex envelope of
⋃k

i=1(Ri,1 + · · · + Ri,m). Indeed, if (a, log(b)) ∈ ⋃k
i=1(Ri,1 +

· · ·+Ri,m), then a ∈ {0, . . . , d} and b 6 Ca; moreover, for all l ∈ {1, . . . , d− 1}, we

have that

C2
l > a2l /(k

2d2m) > al−1 al+1 > Cl−1Cl+1.

Hence, there exist i0 ∈ {1, . . . , k} and L ⊂ {1, . . . , d} such that |L| > d/k
and Cl = Ci0,l for all l ∈ L. Since the points in {(l, log(Cl)) | 1 6 l 6 d} belong

to the upper convex envelope of
⋃k

i=1(Ri,1 + · · · + Ri,m) we easily get that the set

{(l, log(Ci0,l)) | l ∈ L} is a subset of the vertices in the convex hull of Ri0,1 + · · · +
Ri0,m. By Lemma 1, we get that there exists j0 such that |Ri0,j0 | > |L|/m > d/km
points. Finally, we conclude that fi0,j0 involves at least d/km monomials.

Proof of Theorem 2. If d 6 k or d 6 m, then d 6 kmt. Otherwise, d2d > k2d2(d−1) >

k2d2m and, thus, f satisfies (3). A direct application of Proposition 1 yields the result.

4 Applications to Complexity Theory

We first recall some standard definitions from algebraic complexity theory (see e.g. [2]

or [15] for more details). Fix a field K . The elements of the complexity class VP are

sequences (fn) of multivariate polynomials with coefficients from K . By definition,

such a sequence belongs to VP if the degree of fn is bounded by a polynomial function

of n and if fn can be evaluated in a polynomial number of arithmetic operations (addi-

tions and multiplications) starting from variables and from constants in K . This can be

formalized with the familiar model of arithmetic circuits. In such a circuit, input gates

are labeled by a constant or a variable and the other gates are labeled by an arithmetic

operation (addition or multiplication). In this paper we take K = R since there is a

focus on polynomials with nonnegative coefficients. An arithmetic circuit is monotone

if input gates are labeled by nonnegative constants only.

A family of polynomials belongs to the complexity class VNP if it can be obtained

by summation from a family in VP. More precisely, fn(x) belongs to VNP if there

exists a family (gn(x, y)) in VP and a polynomial p such that the tuple of variables y is

of length l(n) 6 p(n) and

fn(x) =
∑

y∈{0,1}l(n)

gn(x, y).

Note that this summation over all boolean values of y may be of exponential size.

Whether the inclusion VP ⊆ VNP is strict is a major open problem in algebraic com-

plexity.

Valiant’s criterion [2,15] shows that “explicit” polynomial families belong to VNP.

One version of it is as follows.



Lemma 2. Suppose that the function φ : {0, 1}∗ → {0, 1} is computable in polynomial

time. Then the family (fn) of multilinear polynomials defined by

fn =
∑

e∈{0,1}n

φ(e)xe1
1 · · ·xen

n

belongs to VNP.

Note that more general versions of Valiant’s criterion are know. One may allow

polynomials with integer rather than 0/1 coefficients [2], but in Theorem 7 below we

will only have to deal with 0/1 coefficients. Also, one may allow fn to depend on any

(polynomially bounded) number of variables rather than exactly n variables and in this

case, one may allow the algorithm for computing the coefficients of fn to take as input

the index n in addition to the tuple e of exponents (see [9], Theorem 2.3).

Reduction of arithmetic circuits to depth 4 is an important ingredient in the proof of

the forthcoming results. This phenomenon was discovered by Agrawal and Vinay [1].

Here we will use it under the form of [14], which is an improvement of [11]. We will

also need the fact that if the original circuit is monotone, then the resulting depth 4

circuit is also monotone (this is clear by inspection of the proof in [14]). Recall that a

depth 4 circuit is a sum of products of sums of products of inputs; sum gates appear on

layers 2 and 4 and product gates on layers 1 and 3. All gates may have arbitrary fan-in.

Lemma 3. Let C be an arithmetic circuit of size s > 1 computing a v-variate polyno-

mial of degree d. Then, there is an equivalent depth 4 circuitΓ of size 2
O
(√

d log(ds) log(v)
)

with multiplication gates at layer 3 of fan-in O(
√
d). Moreover, if C is monotone, then

Γ can also be chosen to be monotone.

We will use this result under the additional hypothesis that d is polynomially bounded

by the number of variables v. In this setting, since v 6 s, we get that the resulting depth

4 circuit Γ provided by Lemma 3 has size sO(
√
d).

Before stating the main results of this section, we construct an explicit family of

log-concave polynomials.

Lemma 4. Let n, s ∈ Z
+ and consider gn,s(X) :=

∑2n−1
i=0 aiX

i, with

ai := 2si(2
n−i−1) for all i ∈ {0, . . . , 2n − 1}.

Then, a2i > 2s ai−1 ai+1.

Proof. Take i ∈ {1, . . . , 2n − 2}, we have that

log (2sai−1ai+1) = s+ s2n(i− 1)− s(i− 1)i+ s2n(i + 1)− s(i+ 1)(i + 2)

= 2s2ni− 2si(i+ 1)− s

< 2s2ni− 2si(i+ 1)

= log(a2i ).



In the next theorem we start from the family gn,s of Lemma 4 and we set s = n2n+1.

Theorem 6. Let (fn) ∈ N[X ] be the family of polynomials fn(x) = gn,n2n+1(x).

(i) fn has degree 2n − 1 and satisfies the log-concavity condition (3).

(ii) If VP = VNP, fn can be written under form (2) with k = nO(
√
n), m = O(

√
n)

and t = nO(
√
n).

Proof. It is clear that fn ∈ N[X ] has degree 2n − 1 and, by Lemma 4, fn satisfies (3).

Consider now the related family of bivariate polynomials gn(X,Y ) =
∑2n−1

i=0 X iY e(n,i),
where e(n, i) = si(2n− i− 1). One can check in time polynomial in n whether a given

monomial X iY j occurs in gn: we just need to check that i < 2n and that j = e(n, i).
By mimicking the proof of Theorem 1 in [12] and taking into account Lemma 3 we get

that, if VP = VNP, one can write

gn(X,Y ) =

k
∑

i=1

m
∏

j=1

gi,j,n(X,Y ) (7)

where the bivariate polynomials gi,j,n have nO(
√
n) monomials, k = nO(

√
n) and m =

O(
√
n). Performing the substitution Y = 2 in (7) yields the required expression for

fn.

We believe that there is in fact no way to write fn under form (2) so that the pa-

rameters k,m, t satisfy the constraints k = nO(
√
n), m = O(

√
n) and t = nO(

√
n).

By part (ii) of Theorem 6, a proof of this would separate VP from VNP. The proof of

Theorem 7 below shows that our belief is actually correct in the special case where the

polynomials fi,j in (2) have nonnegative coefficients.

The main point of Theorem 7 is to present an unconditional lower bound for a

polynomial family (hn) in VNP derived from (fn). Note that (fn) itself is not in VNP

since its degree is too high. Recall that

fn(X) :=

2n−1
∑

i=0

22n2
ni(2n−i−1)X i. (8)

To construct hn we write down in base 2 the exponents of “2” and “X” in (8). More

precisely, we take hn of the form:

hn :=
∑

α∈{0,1}n

β∈{0,1}4n

λ(n, α, β)Xα0
0 · · ·Xαn−1

n−1 Y β0

0 · · ·Y β4n−1

4n−1 , (9)

where α = (α0, . . . , αn−1), β = (β0, . . . , β4n−1) and λ(n, α, β) ∈ {0, 1}; we set

λ(n, α, β) = 1 if and only if
∑4n−1

j=0 βj2
j = 2n2ni(2n − i − 1) < 24n, where i :=

∑n−1
k=0 αi,k2

k. By construction, we have:

fn(X) = hn(X
20 , X21 , . . . , X2n−1

, 22
0

, 22
1

, . . . , 22
4n−1

). (10)

This relation will be useful in the proof of the following lower bound theorem.



Theorem 7. The family (hn) in (9) is in VNP. If (hn) is computed by depth 4 monotone

arithmetic circuits of size s(n), then s(n) = 2Ω(n). If (hn) is computed by monotone

arithmetic circuits of size s(n), then s(n) = 2Ω(
√
n). In particular, (hn) cannot be

computed by monotone arithmetic circuits of polynomial size.

Proof. Note that hn is a polynomial in 5n variables, of degree at most 5n, and its

coefficients λ(n, α, β) can be computed in polynomial time. Thus, by Valiant’s criterion

we conclude that (hn) ∈ VNP.

Assume that (hn) can be computed by depth 4 monotone arithmetic circuits of size

s(n). Using (10), we get that fn =
∑k

i=1

∏m
j=1 fi,j where fi,j ∈ R

+[X ] have at most

t monomials and k,m, t are O(s(n)). Since the degree of fn is 2n − 1, by Theorem 2,

we get that 2n − 1 6 kmt. We conclude that s(n) = 2Ω(n).

To complete the proof of the theorem, assume that (hn) can be computed by mono-

tone arithmetic circuits of size s(n). By Lemma 3, it follows that the polynomials hn

are computable by depth 4 monotone circuits of size s′(n) := s(n)O(
√
n). Therefore

s′(n) = 2Ω(n) and we finally get that s(n) = 2Ω(
√
n).

Lower bounds for monotone arithmetic circuits have been known for a long time

(see for instance [7, 16]). Theorem 7 provides yet another example of a polynomial

family which is hard for monotone arithmetic circuits, with an apparently new proof

method.

5 Discussion

As explained in the introduction, log-concavity plays a role in the study of real roots of

polynomials. In [10] bounding the number of real roots of sums of products of sparse

polynomials was suggested as an approach for separating VP from VNP. Hrubeš [5]

suggested to bound the multiplicities of roots, and [12] to bound the number of edges

of Newton polygons of bivariate polynomials.

Theorem 6 provides another plausible approach to VP 6= VNP: it suffices to show

that if a polynomial f ∈ R
+[X ] under form (2) satisfies the Kurtz condition or the

stronger log-concavity condition (3) then its degree is bounded by a “small” function of

the parameters k,m, t. A degree bound which is polynomial bound in k, t and 2m would

be good enough to separate VP from VNP. Theorem 1 improves on the trivial ktm

upper bound when f satisfies the Kurtz condition, but certainly falls short of this goal:

not only is the bound on deg(f) too coarse, but we would also need to allow negative

coefficients in the polynomials fi,j . Theorem 2 provides a polynomial bound on k,m
and t under a stronger log-concavity condition, but still needs the extra assumption that

the coefficients in the polynomials fi,j are nonnegative. The unconditional lower bound

in Theorem 7 provides a “proof of concept” of this approach for the easier setting of

monotone arithmetic circuits.
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