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Abstract. We consider a file of identical Brownian particles moving on the same
axis x′Ox without crossing each other. They all start from the origin O at time
t = 0 and are stopped at some time t. Denoting by T the time spent on the
half-line [Ox) by a given particle of the line, we establish analytical formulae for
the first two moments 〈T 〉 and

〈
T 2

〉
. In particular, considering the limit of an

infinite number of particles, we get, for the ‘middle’ particle〈(
T

t

)2
〉

=
3
8

+
1
8
J0(π) = 0.336 96...

(J0 is a Bessel function). This result (and also numerical simulations) shows that
the distribution of T , though being close to it, is not fully a constant one.
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1. Introduction

Single file diffusion is defined as the diffusion of a tracer particle in a one dimensional
system of hard-core Brownian particles. This type of model is used in many physical,
chemical, and biological processes to analyze the dynamics of particles in crowded quasi-
dimensional systems. Experimentally, it has been evidenced by passive microrheology in
zeolites, transport of confined colloidal particles, or charged spheres in circular channels [1–
4]. Due to the hard-core interactions, the order of particles is unchanged with time, which
results when infinitely many hard-core particles are present in a subdiffusive behavior
of the mean-square displacement of the tracer particle 〈X2

t 〉 ∝
√

t. This result, first
discovered analytically by Harris [5], has been extended in several directions, both for
discrete and continuous variants of the model. Examples include the determination of the
full propagator for the tracer particle [6], the treatment of the case where the motion
of the bath particles is subdiffusive [7], the case where the tracer particle performs a
biased diffusion [8] or the determination of first-passage properties [9]. In contrast, the
analysis of occupation times for single file diffusion—the cumulative time spent by the
tracer particle on the positive half-line up to a given observation time—does not seem to
have been considered so far.

Let us first recall that the study of occupation times for an isolated Brownian motion
(BM) traces back to the famous Levy’s arc-sine law [10, 11]. It states that, for a
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one-dimensional Brownian motion (BM(R)) starting at the origin at t = 0 and stopped
at t, the time T spent when x > 0 satisfies the probability law (0 < t1 < t):

P (T < t1) =
2
π

arcsin

√
t1
t

(1)

with the symmetric U-shape density:

P(T ) =
1
π

1√
T (t − T )

(2)

Barlow, Pitman and Yor [12] have extended Levy’s result to a BM on a set of n semi-
infinite lines originating from O (a kind of special graph). {Ti} being the set of occupation
times on all the lines, the authors computed explicitly the Laplace transform of the {Ti}
distribution. This study has itself been extended more recently [13] to a BM on a quite
general graph. A step further was done in [14] where the exit and occupation times were
studied, still on graphs, for a BM with general drift and boundary conditions.

On another hand, thoretical physicists [15] and also mathematicians [16] were
interested in the quadrant occupation time T for the planar BM. In particular, the first
four moments of this occupation time are computed in [15], with the result3:〈(

T

t

)〉
=

1
4

(3)〈(
T

t

)2
〉

=
5
32

− 1
8π2 = 0.143 58... ≈ 1

7
(4)

〈(
T

t

)3
〉

=
63
512

− 7
32π2 = 0.100 88... ≈ 1

10
(5)

〈(
T

t

)4
〉

=
907
8192

− 1
64π

− 631
2304π2 − 7

384π4 = 0.0778... ≈ 1
13

(6)

Despite the importance of the problem, the determination of occupation times for single
file diffusion does not seem to have been investigated so far. Here we consider hard-core
one-dimensional Brownian particles that all start from the origin O at time t = 0 and are
stopped at some time t. We will be interested in the time T spent on the half-line [Ox)
by a given particle of the line, both for a finite and infinite number of Brownian particles.
Note that, while the evolution of the full system is Markovian, the dynamics of the only
tracer is not. These memory effects make the determination of the occupation time T a
non-trivial problem. Here, we focus on the two first moments 〈T 〉 and 〈T 2〉.

The outline of the paper is more precisely as follows. We first define the dynamics of
the system and show that the determination of the occupation time of a given particle of
the line can be mapped onto a single particle problem. We next consider the particular
case when the tracer particle is the ‘middle’ particle of the line. Analytical formulae for
the two first moments of the occupation time are derived for an arbitrary (odd) number
of particles on the line. The limit of an infinite number of particles is then analyzed in
detail. Finally, these results are extended to the case of a tracer of arbitrary position in
the line.
3 Equation (2) is the beta law B1/2,1/2. It is worth noticing that, despite the complication of the results
equations (3)–(6), those moments are very close to the ones of the beta law B1,1/3 that are, respectively, 1

4 ,
1
7 , 1

10 , 1
13 . We will come back to those results in section 4.
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2. Basic setup

We adopt here a continuous space description of the system and consider a file of n = 2q+1
identical Brownian particles pl moving on a line x′Ox. Those particles are labelled by their
rank l (= 1, 2, ..., 2q + 1) and cannot cross each other. l = 1 labels the rightmost particle,
l = 2q + 1 the leftmost particle and l = q + 1 the ‘middle’ particle.

Two adjacent particles can experience elastic collisions. During such collisions, they
simply exchange their velocities because they are identical. Alternatively, we can consider
that the particles are free to cross each other, only exchanging their ranks at each collision.
Pushing this picture further, we are left with a unique Brownian particle P , freely moving
in R

n, whose coordinates xi represent the positions of the previous particles.
For the sake of simplicity, we will consider that P starts its motion at the origin

at t = 0 and stops somewhere at time t. This implies, in particular, that, at t = 0,
all the particles pl are at the same point O. This could seem unrealistic because the
particles are mutually impenetrable. Nevertheless we think this is not the case. Indeed,
this is equivalent to supposing that at t = 0 the particles are well separated (but chosen
arbitrarily close to their neighbours because they are all point-like) and that we stop the
motion at sufficiently large t.

We are interested in the time T spent by the particle of rank l on the half line x > 0.
T is equal to the time spent by P in all the orthants of R

n with, at least, l positive
coordinates. From general scaling properties of the Brownian motion starting from O, we
deduce that T scales like t and define4 the random variable u = T

t
. In the following, we

will be especially interested in the computation of the first two moments of u.

3. Occupation time of the middle particle (rank l = q + 1) of a file of n = 2q + 1
particles

3.1. The three particle case (q = 1)

Let us first consider the particular case of three particles and show how 〈T 2〉 can be
computed for the rank 2 particle.

Following the previous section, we consider a particle P freely wandering in R
3.

Among the 23 orthants in R
3, only four of them will be relevant for the computation

of the moments5
〈
T k

〉
: (x1, x2, x3 > 0) ≡ U1, (x1, x2 > 0, x3 < 0) ≡ U2,

(x1 > 0, x2 < 0, x3 > 0) ≡ U3, (x1 < 0, x2, x3 > 0) ≡ U4. Let us call U the sum
of these four orthants.

The moments
〈
T k

〉
are given by an expansion of the following identity in powers of λ:〈

e−λT
〉

=
∫

R3
d3−→r

〈
−→r |e−Hλ t|−→0

〉
(7)

where Hλ(−→r ) = − 1
2
∆ + λ 1U(−→r ) (8)

(1U(−→r ) = 1 if −→r ∈ U , = 0 otherwise).
4 We will see that the random variable u appears naturally in the following computations.
5 We immediately deduce the obvious result 〈u〉 = 1/2 for the middle particle.

doi:10.1088/1742-5468/2015/03/P03001 4
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The second order in λ leads to:〈(
T 2

2

)〉
=

t∫
0

dt2

t2∫
0

dt1

∫
U

dx1dx2dx3

∫
U

dx′
1dx′

2dx′
3

× G(x1, x2, x3; t1) G(x′
1 − x1, x′

2 − x2, x′
3 − x3; t2 − t1) (9)

where G is the 3D-propagator:
G(x1, x2, x3; t) = G(x1; t)G(x2; t)G(x3; t) (10)

with G(x; t) =
1√
2πt

exp
(

−x2

2t

)
(11)

Writing the spatial integral∫
U

dx1dx2dx3

∫
U

dx′
1dx′

2dx′
3 G(x1, x2, x3; t1) G(x′

1 − x1, x′
2 − x2, x′

3 − x3; t2 − t1)

as
∫

U
∫

U G G, we get, with standard manipulations:∫
U

∫
U

G G =
(

4
∫

U1

∫
U1

+6
∫

U1

∫
U2

+6
∫

U2

∫
U3

)
G G (12)

Now, let us introduce the integrals

J =

∞∫
0

dx

∞∫
0

dx′G(x; t1)G(x′ − x; t2 − t1) =
1
4

+
1
2π

arcsin
√

t1
t2

≡ 1
4π

(π + φ) (13)

J ′ =

∞∫
0

dx

0∫
−∞

dx′G(x; t1)G(x′ − x; t2 − t1) =
1
4

− 1
2π

arcsin
√

t1
t2

≡ 1
4π

(π − φ) (14)

where we have set t1
t2

= sin2(φ/2). It is worth noticing that a factor (π + φ) is generated
when xx′ > 0 and (π − φ) when xx′ < 0.

So, we can immediately write:∫
U1

∫
U1

G G = J3 (15)

∫
U1

∫
U2

G G = J2J ′ (16)

∫
U2

∫
U3

G G = JJ ′2 (17)

Finally, we get:〈(
T 2

2

)〉
=

t2

2

π∫
0

dφ
sin φ

2(4π)3

(
4(π + φ)3 + 6(π + φ)2(π − φ) + 6(π + φ)(π − φ)2) (18)

〈
u2〉 =

3
8

− 3
16π2 = 0.356 00... (19)

Recall that for a single particle (q = 0), we should have 〈u2〉 = 3
8 = 0.375. We observe

that, for the middle particle, 〈u2〉 decreases when n increases from 1 to 3. We will come
back to this point later in section 4.2.1.

doi:10.1088/1742-5468/2015/03/P03001 5
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Table 1. The second moment,
〈
u2

〉
, for the middle particle of a file of n particles.

q n l
〈
u2

〉
0 1 1 3

8 = 0.375

1 3 2 3
8 − 3

16π2 = 0.356 00...

2 5 3 3
8 − 15

32π2 + 135
64π4 = 0.349 16...

3 7 4 3
8 − 105

128π2 + 735
64π4 − 7875

128π6 = 0.345 78...

7 15 8 0.341 01...
50 101 51 0.337 53...

3.2. General q values

We now extend the previous results to the case of an arbitrary (odd) number of particles in
the file. Following the previous section 3.1, we have to consider two positions of the particle
P with, at least, (q+1) positive coordinates and we must distinguish the coordinates that
will keep their sign from the other ones. More precisely, we consider the configuration
built with:

(a) a first position with (m + k) negative coordinates

(b) a second position with (m + r) negative coordinates

such that m coordinates will stay negative and (k+r) will change of sign. So, 2q+1−(k+r)
coordinates will keep their sign. The contribution of such a configuration to 〈u2〉 will be
equal to:

1
2(4π)2q+1

π∫
0

dφ sin φ (π + φ)2q+1−k−r(π − φ)k+r

Now, the number of configurations with given m, k, r is simply (2q+1)!
m!k!r!(2q+1−m−k−r)! .

Observing that m + k � q and m + r � q, we get the general expression for 〈u2〉:

〈
u2〉 =

1
2(4π)2q+1

π∫
0

dφ sin φ

q∑
m=0

q−m∑
k=0

q−m∑
r=0

(2q + 1)!(π + φ)2q+1−k−r(π − φ)k+r

m!k!r!(2q + 1 − m − k − r)!
(20)

The results for different q values are quoted in table 1.
We observe that 〈u2〉 is written as a series in 1

π2 starting with the term 3
8 . Moreover, 〈u2〉

decreases when q increases and seems to have a limit close to 1
3 that could be consistent

with a constant distribution Pq+1(u). The same indication comes out from numerical
simulations that show that this distribution becomes flatter and flatter as long as q
increases (see figure 1 where the integrated probability density Fq+1(u) =

∫ u

0 Pq+1(v) dv
is plotted). All those considerations motivate us to study the limit of 〈u2〉 when q → ∞.

doi:10.1088/1742-5468/2015/03/P03001 6
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u

b)
c)

a)

d)

F (u)
q+1

Figure 1. The evolution of the integrated distribution Fq+1(u) for the middle
particle when the number of particles in the file increases. Numerical simulations
(5 × 106 events, 5 × 105 gaussian steps) for (a) a single particle (q = 0): + (the
curve is the arc-sine law); (b) a file of three particles (q = 1): × ; (c) a file of 11
particles (q = 5): *. (In (b) and (c), the lines are drawn to guide the eye.) In (d),
we display (dotted line) the diagonal Fq+1(u) = u that should appear for a flat
distribution Pq+1(u) = 1.

3.3. The limit q → ∞

To study 〈u2〉 in that limit, we first set: m ≡ qX, k ≡ qY , r ≡ qZ, and write the
summations in equation (20) as integrals:

q∑
m=0

q−m∑
k=0

q−m∑
r=0

(2q + 1)!(π + φ)2q+1−k−r(π − φ)k+r

m!k!r!(2q + 1 − m − k − r)!
≈ q3

1∫
0

dX

1−X∫
0

dY

1−X∫
0

dZ exp(I(X, Y , Z))

(21)
The integration domain D is displayed in figure 2(a): we integrate inside the pyramid
AOCBD.

Now, using the Stirling formula, we apply the saddle-point method (φ is fixed). With
the conditions

∂I

∂X

∣∣∣
X0,Y0,Z0

=
∂I

∂Y

∣∣∣
X0,Y0,Z0

=
∂I

∂Z

∣∣∣
X0,Y0,Z0

= 0

we get the saddle-point M0(X0, Y0, Z0) that lies between A and B (see figure 2(a)):

X0 =
1
2

+
φ

2π
(22)

Y0 = Z0 =
1
2

− φ

2π
= 1 − X0 (23)

exp(I(X0, Y0, Z0)) =
(4π)2q+12

√
π

q3/2(π − φ)(π + φ)
(24)

doi:10.1088/1742-5468/2015/03/P03001 7
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(a) (b)

Figure 2. (a) The integration domain D—the interior of the pyramid AOCBD,
the saddle-point M0 and the three perpendicular axes

−−−→
M0X

′,
−−−→
M0Y

′,
−−−→
M0Z

′; (b)
the integration domain D′.

Then, 〈u2〉 is written as:

〈
u2〉 =

√
πq3/2

π∫
0

dφ sin φ

(π − φ)(π + φ)

∫
D

dXdY dZ exp(V ) (25)

V = − q

X0

(
(X − X0)2 +

(Y − Y0)2 + (Z − Z0)2

2(1 − X0)

)
− q

X0
((X − X0)(Y − Y0) + (X − X0)(Z − Z0) + (Z − Z0)(Y − Y0)) (26)

Let us focus, for the moment, on the spatial (domain D) integration.
Introducing (see figure 2(a)) the three perpendicular axes (

−−−→
M0X

′,
−−−→
M0Y

′,
−−−→
M0Z

′) such
that

−−−→
M0X

′ ‖ −→
BA and such that

−−−→
M0Y

′ lies in the plane Y = Z, we get:

V = −q

(
X ′2

3X0(1 − X0)
+

(10 − 9X0)Y ′2

6X0
+

Z ′2

2(1 − X0)
− 2X ′Y ′

3
√

2X0(1 − X0)

)
q being large, we can perform the X ′ integration and get√

3πX0(1 − X0)
q

× I ′

where

I ′ ≡
∫

D′
dY ′dZ ′ exp

(
−q

(
3Y ′2

2X0
+

Z ′2

2(1 − X0)

))
(27)

The integration domain D′, for Y ′ and Z ′ is displayed in figure 2(b) (the angle between
the two planes X + Y = 1 and X + Z = 1 is equal to 2π/3).

doi:10.1088/1742-5468/2015/03/P03001 8
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l=9 l=10 l=11 l=12 l=13

2.

4.

0.
0. 1. 0. .0.0.0 .1.1.1.1

P(u)
l

u u u u u

Figure 3. Numerical simulations for a file of 21 (= 2q + 1) particles. The
distribution Pl(u) is displayed for the particles of ranks 9 � l � 13. For l = 11
(middle particle), Pl(u) still has a (flattened) symmetric U-shape. But Pl(u) has
a very different shape for the particles surrounding the middle one.

In the large q limit and using polar coordinates, we can compute

I ′ =
2
√

X0(1 − X0)
q
√

3
arcsin

√
X0

Now, with the equations (22), (23) and (25), we get:

〈
u2〉 =

1
2π

π∫
0

dφ sin φ arcsin

√
1
2

+
φ

2π
(28)

=
1
2π

π∫
0

dφ sin φ

(
π

4
+

1
2

arcsin
φ

π

)
(29)

Finally, we obtain the analytical result for q → ∞:〈
u2〉 =

3
8

+
1
8
J0(π) = 0.336 96... (30)

where J0 is a standard Bessel function.
Interestingly, it is found that 〈u2〉 �= 1

3 . We thus conclude that the distribution of u is
not constant.

4. Occupation time of a particle of general rank l

We now show that the previous results can be extended to determine the first two moments
of the occupation time of a particle of arbitrary rank l.

Figure 3 displays the distribution Pl(u) for different particles of rank l belonging to
a file of n = 2q + 1 = 21 particles. We note that the shape of Pl(u) is very sensitive
to the value of l, especially for l close to 11 (= q + 1). We also remark that, obviously,
P10(u) = P12(1 − u), P9(u) = P13(1 − u), ... and, more generally,

Pl(u) = P2q+2−l(1 − u) = Pn+1−l(1 − u) (31)

This reflects the symmetry with respect to the middle particle of the file. We will come
back to this point later.
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In the following, we will consider a particle of general rank l in a file of n = 2q + 1
particles6. In particular, we will focus our attention on the limit q → ∞.

4.1. The first moment 〈u〉

To get 〈u〉, it is enough to count the number of orthants of R
2q+1 with, at least, l positive

coordinates:

〈u〉 =
∑2q+1

r=l

(2q+1
r

)
22q+1 (32)

With the Stirling formula and the replacement of the sum by an integral, we get, for large
q values:

〈u〉 =
1
2
erfc(a) (33)

where erfc is the complementary error function:

erfc(z) =
2√
π

∞∫
z

e−t2dt = 1 − erf(z) (34)

and

a =
√

1
q

(l − (q + 1)), 1 � l � 2q + 1 (35)

(a = 0 corresponds to the middle particle.)
As shown in figure 4(a), the agreement between equations (32) (for a file of n = 21

particles) and (33) is quite good.

4.2. The second moment 〈u 2〉

Following the same lines as in section 3.2, we get the general result

〈
u2〉 =

1
2(4π)2q+1

π∫
0

dφ sin φ

2q+1−l∑
m=0

2q+1−l−m∑
k=0

2q+1−l−m∑
r=0

(2q + 1)!(π + φ)2q+1−k−r(π − φ)k+r

m!k!r!(2q + 1 − m − k − r)!

(36)

We remark that this expression is the same as equation (20) except for a change in the
upper bounds of the summations; (20) is recovered when we set l = q + 1.

6 For n even, we will simply replace q by (n − 1)/2 in our results. For a file of n = 2 particles, we can take
advantage of the results obtained for the quadrant occupation time of the planar BM. Those results are recalled
in section 1. Considering the particle of rank l = 2, i.e. the particle at the left end of the file, we immediately
see that the four first moments

〈
uk

〉
are known and given by equations (3)–(6). We deduce the corresponding

moments for the rank l = 1 particle by using the equation (31).
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(b)(a)

<u ><u>

11 21 111 211
0.

0.5

1.0

0.

0.5

1.0

l l

Figure 4. For a file of n = 21 particles, computation of the moments 〈u〉 and〈
u2

〉
as a function of the particle rank l (1 � l � 21); (a) dots: equation (32),

dashed line: the erfc function, equation (33); (b) dots: equation (36), dashed line:
equation (40). We observe the agreement between the exact computation (dots)
and the computation done in the limit of an infinite file of particles (dashed
lines). The behaviours of 〈u〉 and

〈
u2

〉
look very similar. However, for l = 11, we

have 〈u〉 = 1/2 and
〈
u2

〉
= 0.339 81... ≈ 3/8 + (1/8)J0(π) ≈ 0.337.

Table 2. The two first moments, 〈u〉 and
〈
u2

〉
, for a particle of rank l belonging

to a file of three particles.

l 〈u〉
〈
u2

〉
1 7

8
1

128

(
105 − 18

π2

)
= 0.806 06...

2 1
2

3
8 − 3

16π2 = 0.356 00...

3 1
8

1
128

(
9 − 18

π2

)
= 0.056 06...

4.2.1. The three particle case. For q = 1, equations (32) and (36) lead to the results
quoted in table 2.

Looking at the values of 〈u〉 and 〈u2〉, we observe that the right-end (l = 1) particle
spends most of its time on the x > 0 half-line. This is due to the middle particle (l = 2)
that acts on it as a fluctuating and purely reflecting barrier [17]. The same argument
holds for the left-end (l = 3) particle that spends most of its time on the x < 0 half-line.
Let us now consider the middle (l = 2) particle. This one is subjected to the l = 1 and
l = 3 particles that act as two fluctuating barriers that are typically located, respectively,
in the x > 0 and x < 0 half spaces. As a consequence of the reflections, the middle particle
is repelled towards the origin O, the U-shape distribution P2(u) is flattened and 〈u2〉 is
decreased when compared to a single Brownian particle7.
7 In [17], the author shows that, for the middle particle, the diffusion constant D decreases when the number
of particles in the file increases. However, we think that this decrease of D cannot be directly invoked to explain
the decrease of

〈
u2〉. Indeed, if we consider a single Brownian particle, its diffusion constant plays no role in the

arc-sine law.
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(a) (b)

Figure 5. (a) The new integration domain—the interior of the pyramid
A′OC′B′D′. The saddle-point M0 and the three perpendicular axes−−−→
M0X

′,
−−−→
M0Y

′,
−−−→
M0Z

′ are unchanged; h is the distance between the parallel lines
(AB) and (A′B′); (b) the integration domain D′′ obtained by a translation of
the domain D′ (displayed in figure 2(b)) along

−−−→
M0Y

′.

4.2.2. The limit q → ∞. To study this limit, we proceed as in section 3.3, equation (21):
2q+1−l∑
m=0

2q+1−l−m∑
k=0

2q+1−l−m∑
r=0

(2q + 1)!(π + φ)2q+1−k−r(π − φ)k+r

m!k!r!(2q + 1 − m − k − r)!

≈ q3

1−a′∫
0

dX

1−a′−X∫
0

dY

1−a′−X∫
0

dZ exp(I(X, Y , Z)) (37)

where

a′ =
a

√
q

=
l − (q + 1)

q
; −1 � a′ � 1

The new integration domain for X, Y , Z is shown in figure 5(a) and the saddle-point is
unchanged.

Let us define h, the distance between the two parallel lines (AB) and (A′B′):

h = a′
√

2
3

=
a
√

2√
3q

.

Still following the same lines as in section 3.3, we replace the integral I ′, equation (27),
by:

I ′′ =
∫

D′′
dY ′dZ ′ exp

(
−q

(
3Y ′2

2X0
+

Z ′2

2(1 − X0)

))
(38)

= 2

−h∫
−∞

dY ′

(−h−Y ′)
√

3∫
0

dZ ′ exp
(

−q

(
3Y ′2

2X0
+

Z ′2

2(1 − X0)

))
(39)
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The new integration domain D′′, for Y ′ and Z ′, is displayed in figure 5(b): this is simply
the domain D′ (see figure 2(b)) shifted by −h along the axis

−−−→
M0Y

′.
Finally, after some algebra, we get:

〈
u2〉 ≡ f(a) =

√
π

1/2∫
0

dx
sin(2πx)√

1 − x

∞∫
0

dy erf
(

y√
x

)
e− (y+a)2

(1−x) (40)

where a has been defined in equation (35) and erf is the error function (see equation (34)).
Using the property equation (31), the result (33) and, also, observing that the change

l → 2q+2−l only amounts to the change a → −a, we get the relationship: f(a)−f(−a) =
−erf(a). So, the odd part of f(a) is simply −1

2erf(a). Writing f(a) =
∑∞

0 cna
n, we

immediately deduce the odd coefficients

c2n+1 =
(−1)n+1

√
π n! (2n + 1)

(41)

Unfortunately, the situation is more tricky for the even coefficients. We only got the
analytical results:

c0 =
3
8

+
1
8
J0(π) = 0.336 96... (42)

c2 =
π

4
(H0(π) − J1(π)) = 0.183 16... (43)

J0 and J1 are Bessel functions and H0 is a Struve function [18] (H0(x) =
2
π

∫ π/2
0 sin(x cos u)du).
c0 (= f(0)), equation (42), is simply the result (30) obtained for the middle particle

in section 3.3.
In figure 4(b), we show the good agreement between the results (36) (for a file of n = 21

particles) and (40). We also observe that the distribution Pl(u) is peaked at 0 (1) as soon
as (l − (q + 1)) is of the order of

√
q (−√

q).

5. Conclusion

In conclusion, we have studied analytically the occupation time T of the half-line [Ox) of
a tracer particle among n hard-core Brownian particles starting all initially from O. These
particles are labelled by their rank l and cannot cross each other. While the dynamics
of the entire system is Markovian, the evolution of the only tracer is not, which makes
this question a non-trivial problem. However, this problem can be mapped onto a single
particle problem in R

n, which allowed us to obtain explicit results for the two first moments
of the occupation time T . Analytical results have been obtained for an arbitrary number
n of Brownian particles and an arbitrary choice of the rank l of the tracer particle. The
limit of an infinite number of particles n → ∞ has been analyzed in detail.

Natural extensions of this work concern the case of arbitrary initial conditions and the
determination of higher order moments. Another important generalization would be to
reconsider the problem when the tracer particle is different from the other bath particles,
and for example is the only particle to experience the effect of a bias.
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