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Connecting local active forces to macroscopic stress in elastic media

Pierre Ronceray∗ and Martin Lenz†

Univ. Paris-Sud; CNRS; LPTMS; UMR 8626, Orsay 91405 France.

In contrast with ordinary materials, living matter drives its own motion by generating active,
out-of-equilibrium internal stresses. These stresses typically originate from localized active elements
embedded in an elastic medium, such as molecular motors inside the cell or contractile cells in a
tissue. While many large-scale phenomenological theories of such active media have been developed,
a systematic understanding of the emergence of stress from the local force-generating elements is
lacking. In this paper, we present a rigorous theoretical framework to study this relationship.
We show that the medium’s macroscopic active stress tensor is equal to the active elements’ force
dipole tensor per unit volume in both continuum and discrete linear homogeneous media of arbitrary
geometries. This relationship is conserved on average in the presence of disorder, but can be violated
in nonlinear elastic media. Such effects can lead to either a reinforcement or an attenuation of the
active stresses, giving us a glimpse of the ways in which nature might harness microscopic forces to
create active materials.

I. INTRODUCTION

Forces in living systems are largely generated at the
nanometric protein level, and yet biological function of-
ten requires them to be transmitted to much larger length
scales. In the actomyosin cytoskeleton for instance, local
forces exerted by myosin molecular motors on a disor-
dered elastic scaffold of actin fibers determine the me-
chanical properties of the cell and help drive mitosis, cell
migration and adhesion [1]. At a larger scale, contractile
cells exert forces on their surroundings to participate in
muscular contraction, clot stiffening [2] and wound heal-
ing [3]. Due to their physiological relevance, such sys-
tems have been extensively studied in vitro, and direct,
dynamical imaging has recently progressed from macro-
scopic observations to visualizations of the networks’ mi-
crostructure [4, 5] as well as individual components [6]
during contraction.

The abundance of different macroscopic behaviors gen-
erated by apparently similar microscopic components,
which is particularly spectacular in the cytoskeleton,
has attracted significant theoretical attention over the
last decade. Two prominent theoretical strategies have
emerged.

On the one hand, so-called “active gels” models em-
phasize macroscopic flows within the cytoskeleton, and
do not formulate detailed assumptions about the micro-
scopic interactions between motors and filaments [7–9].
Instead, they rely on symmetry considerations to derive
the most general equations compatible with the problem
considered, and successfully predict intricate patterns of
motion resembling experimentally observed dynamical
structures. While very general, these approaches involve
a large number of unprescribed parameters enclosing the
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relevant aspects of the microscopic dynamics; in partic-
ular, the most important, specifically active aspects of
the cytoskeletal dynamics are typically described by a
phenomenological “active stress tensor”.

On the other hand, length scales too small to be accu-
rately captured by an active gel formalism have typically
been modeled using both continuum [10] and discrete [16]
elastic models, yielding insights into specific cellular pro-
cesses such as mitotic spindle organization [12], lamel-
lipodium growth [13] or intracellular propulsion [14].
However, although the bulk elastic properties of such
models have been thoroughly investigated [15] on a gen-
eral basis, force transmission from the microscopic to the
macroscopic level was only considered in numerical sim-
ulations of specific geometries [16–21], and a general the-
oretical framework to understand this process is lacking.

In this paper, we introduce such a formalism under the
form of a direct relation–termed “dipole conservation”–
between the macroscopic active stress and the force
dipole tensor, a local quantity describing the individual
force-exerting elements. Going beyond previous special-
case derivations, we show that this relation applies in
both continuum (Sec. II) and discrete (Sec. III) homo-
geneous, linear elastic media irrespective of their shape
and of the spatial distribution of the active forces. To
understand the biologically relevant influence of hetero-
geneities, we investigate the case of random spring net-
works in Sec. IV, and show that although dipole conser-
vation is violated in individual realizations of the network
it still holds in an average sense provided the disorder is
the same everywhere. Finally, in Sec. V we study a toy
model nonlinear elastic medium and show that nonlin-
ear elasticity can skew force transmission towards either
contraction or extension. Sec. VI then discusses the ap-
plicability of this result to existing models of force trans-
mission in tissues and the cytoskeleton.
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Figure 1 Boundary forces (purple arrows) transmitted by a two-dimensional homogeneous linear elastic medium under the
influence of a localized force dipole (black arrowheads) computed using finite elements. The boundary force distribution is
strongly influenced by both the medium’s material properties (ν denotes the Poisson ratio) and the geometry of the problem.
Nevertheless, in all cases the boundary dipole tensor is equal to the body forces’ dipolar moment.

II. DIPOLE CONSERVATION IN CONTINUUM
ELASTIC MEDIA

The transmission of localized active forces to the outer
boundary of a continuum elastic body is a geometrically
complex problem, and the distribution of transmitted
forces strongly depend on the body’s shape and ma-
terial properties (Fig. 1). Nevertheless, here we show
that strong nonlocal constraints exist between body and
boundary forces. In Sec. II A we introduce the bound-
ary dipole tensor, a quantity characterizing the bound-
ary forces that is directly related to the stress tensor.
Using general conditions of mechanical equilibrium, we
relate this boundary dipole to the spatial distribution of
body forces in Sec. II B. Specializing our result to ho-
mogeneous linear media, we then show in Sec. II C that
the boundary dipole is exactly equal to the dipolar mo-
ment of the body force distribution, which we refer to as
“dipole conservation”.

A. Boundary dipole tensor

Let us consider a general d-dimensional piece of elastic
material at mechanical equilibrium, filling a domain Ω of
space with boundary ∂Ω and volume V . We model the
active elements embedded in the elastic body as a dis-
tribution of body forces Fµ(R). To quantify the macro-
scopic consequences of these active forces, we consider
the response of the total system composed of the elas-
tic medium and the embedded elements to an infinitesi-
mal, affine deformation characterized by a strain tensor
γµν . Under this transformation, a point belonging to the
boundary ∂Ω of the elastic body with position R in the
resting state is displaced by a quantity δRµ(R) = γµνRν
(summation over repeated Greek indices is implied) [36].
Denoting the elastic stress tensor by σλµ(R) and consid-
ering a surface element dsλ lying on the boundary ∂Ω,
the force exerted by the outside world on the surface el-
ement reads −σλµ(R) dsλ. As the surface element gets

displaced by an infinitesimal δRµ, the work performed by
this force is [−σλµ(R) dsλ]× δRµ. The change in energy
of the total system is given by the work performed over
the whole boundary:

δE =

∮
∂Ω

[−σλµ(R) dsλ]× δRµ

= −γµν ×
∮
∂Ω

σλµ(R)Rν dsλ. (1)

Noting that the integral in the right-hand side of Eq. (1)
is the dipolar moment of the boundary forces, we refer to
this quantity as the “boundary dipole tensor” and denote
it as

∆µν =

∮
∂Ω

σλµ(R)Rν dsλ. (2)

The meaning of this new quantity becomes clear if we
note that according to Eq. (1), ∆µν is the derivative of
the energy of the total system with respect to the bound-
ary strain γµν . This is reminiscent of the definition of the
stress tensor σµν as the derivative of the energy density
e with respect to the local strain tensor γµν(R). Consid-
ering a coarse-grained approximation of the total system
with a uniform bulk deformation γµν and uniform stress
σ̃µν , we have E = V e with e a uniform elastic energy den-
sity and the boundary dipole tensor is directly related to
the coarse-grained stress tensor:

∆µν =
∂(V e)

∂γµν
= −V σ̃µν . (3)

Thus −∆µν/V is the medium’s coarse-grained stress ten-
sor and ∆/(V d) = ∆µµ/(V d) is the analog of a hydro-
static pressure. In an active medium language, ∆ < 0
thus characterizes a contractile medium while ∆ > 0 is
associated with extensility.

Note that in a system with periodic boundary condi-
tion, the boundary dipole tensor can be defined through
the relation ∆µν = −∂E/∂(γµν), where the affine defor-
mation can be imposed through Lees-Edwards boundary
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conditions. Unless explicitly stated, all the continuum
and discrete results presented in this manuscript can be
rederived under periodic boundary conditions with only
minimal modifications to their proofs.

B. Mean-stress theorem

As a first step towards establishing dipole conserva-
tion, here we rederive a result known as the mean-stress
theorem [17, 22]. We introduce the dipolar moment of
the active forces Fµ(R) as

Dµν =

∫
Ω

Fµ(R)Rν dV. (4)

Note that Dµν is independent of the origin of the coordi-
nates if the body forces sum to zero as expected for active
elements embedded in an elastic medium, and that the
total force dipole exerted by several active elements is
equal to the sum of the individual force dipoles.

Inserting the force balance equation ∂νσµν = −Fµ into
Eq. (4) and integrating by part yields the mean stress
theorem

Dµν =

∮
∂Ω

σλµ(R)Rν dsλ +

∫
Ω

σµν(R) dV. (5)

Defining the integrated stress tensor Σµν =
∫

Ω
σµν dV

and using the definition of the boundary dipole Eq. (2),
Eq. (5) can be cast into a compact form:

∆µν = Dµν − Σµν . (6)

This result holds irrespective of the medium’s material
properties, including homogeneity and linearity.

C. Dipole conservation

Despite its universality, in the general case the result
of Eq. (6) involves a complicated unknown object Σµν
and is thus of limited practical use. Here we show that
this limitation is lifted when considering a linear homo-
geneous elastic medium with fixed boundaries.

In a linear homogeneous elastic medium, stress is re-
lated to strain through a position-independent stiffness
tensor: σµν(R) = Cµναβγαβ(R). Integrating this rela-
tion over space, we get

Σµν = CµναβΓαβ with Γαβ =

∫
Ω

γαβ(R) dV, (7)

with Γαβ the integrated strain. Reminding ourselves
that γαβ(R) = [∂αuβ(R) + ∂βuα(R)]/2 with uα(R) the
medium’s displacement vector, integration of Eq. (7)
yields a boundary integral

Γαβ =

∮
∂Ω

[
uβ(R)

2
dsα +

uα(R)

2
dsβ

]
. (8)

Equation (6) thus provides a decomposition of the bound-
ary stress as a sum of a bulk term Dµν involving active
forces and a boundary term Σµν = CµναβΓαβ related to
the system deformation. Note that the latter depends
on the system’s elastic properties through the stiffness
tensor Cαβµν , while the former does not. Now introduc-
ing the assumption of fixed boundary conditions, we find
that the boundary displacements in the right-hand side
of Eq. (8) vanish, implying that the whole integral van-
ishes. Using Eq. (7), we thus find that Σµν = 0, and
thus Eq. (6) can be rewritten as the dipole conservation
relation:

∆µν = Dµν (9)

which relates bulk and boundary forces. To understand
the meaning of this equation, we decompose it into the
equality of the traces, symmetric traceless parts and an-
tisymmetric parts of the two tensors. The equality of the
traces, ∆ = Dµµ = D, is of particular interest for bi-
ological systems as it relates the “hydrostatic pressure”
∆ of the medium to the local force dipole D, a quan-
tity routinely interpreted as the amount of contractil-
ity of the active elements [11, 17, 18, 20, 23]. Next,
the symmetric traceless part of each of the two dipole
tensors [(∆µν + ∆νµ)/2 and (Dµν + Dνµ)/2] is analo-
gous to a nematic order parameter characterizing the
anisotropy of the corresponding forces, and thus their
equality means that the anisotropy of the contractile
forces is also conserved across scales. Finally, the equal-
ity ∆µν −∆νµ = Dµν −Dνµ of the antisymmetric parts
is equivalent to torque balance in the elastic medium;
since embedded active elements exert a vanishing to-
tal torque on the elastic medium, it simply reduces to
∆µν − ∆νµ = 0, and thus expresses torque balance on
the total system.

For systems without fixed boundaries, Eq. (9) takes
the more general form

∆µν = Dµν − CµναβΓαβ , (10)

meaning that the total coarse-grained stress −∆µν/V is
the sum of an active contribution and of the elastic stress
CµναβΓαβ .

Note that Eq. (9), as well as the other dipole conser-
vation relations presented in this paper assume a homo-
geneous (or statistically homogeneous in Sec. IV) elas-
tic medium. Like these other results, it can however be
generalized to cases where a piece of elastic material is
removed to make space for the embedded active element
by introducing a correction to the local dipole accounting
for the missing piece.

III. DIPOLE CONSERVATION IN DISCRETE
ELASTIC MEDIA

We now prove dipole conservation in discrete media,
with similar implications as in the continuum case of
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Figure 2 Parametrization and point reflection invariance in
a discrete elastic system (a) Mobile bulk vertices (solid
circles) comprised in the bulk Ω of the network are
connected to each other and to zero-displacement boundary
vertices belonging to the boundary ∂Ω (open circles). Blue
arrows represent their displacements. (b) The partial
network Ωj is obtained by setting all displacements to zero
except that of vertex j. (c) The partial network Ωj is
invariant under point reflection about vertex j even though
the total network Ω (in grey) is not. The displacement of
vertex j is reversed under this transformation.

Sec. II. Although more technically involved, this new
derivation parallels the one of the previous section and
its results have a similar physical interpretation. We in-
troduce the active force dipole tensor and the boundary
dipole tensor in Sec. III A and show that it satisfies a dis-
crete mean-stress theorem in Sec. III B. Dipole conserva-
tion is then derived in Sec. III C under the assumptions
of linearity and local point reflection symmetry, a variant
of the homogeneity assumption used above.

A. Active force and boundary dipole tensors

We consider a d-dimensional system Ω comprised of in-
teracting vertices i located at positions R(i) in the refer-
ence configuration, and at R(i)+u(i) in the deformed con-
figuration characterized by the displacements u(i). The
system’s boundary ∂Ω consists in a set of additional ver-
tices whose displacements are set to zero [see Fig. 2(a)].
The active force dipole tensor and the boundary dipole
tensor are thus respectively defined as

Dµν =
∑
i∈Ω

F (i)
µ R(i)

ν , (11a)

∆µν =
∑
l∈∂Ω

f (i)
µ R(i)

ν (11b)

where F
(i)
µ is the body force applied on the elastic net-

work at vertex i and f
(i)
µ is the force exerted by the sys-

tem on boundary vertex i.

B. Mean-stress theorem

As in the continuum case, the discrete mean-stress the-
orem stems from force balance. Here we consider only
forces between pairs of vertices, as many-body interac-
tions can always be decomposed into sums of pair in-

teractions. We assume these interactions to have finite
range. Denoting by f

(ij)
µ the force exerted by vertex i on

vertex j, the force balance condition reads

F (i)
µ =

∑
j∼i

f (ij)
µ (12a)

f (i)
µ =

∑
j∼i

f (ij)
µ (12b)

for bulk and boundary vertices, respectively. Here
∑
j∼i

denotes a sum over the vertices j that interact with i.
Inserting Eq. (12a) into Eq. (11a), we obtain a double

sum over vertices of the form
∑
i∈Ω

∑
j∼i. Reorganizing

it into a sum over pairs of neighboring vertices and split-
ting the resulting expression into two sums, one over bulk
pairs and the other over pairs straddling the boundary,

we use Newton’s third law f
(ij)
µ = −f (ji)

µ to find

∆µν = Dµν +
∑
(ij)

f (ij)
µ

[
R(j)
ν −R(i)

ν

]
(13)

where the sum runs over all pairs of interacting vertices,
including boundary vertices. Defining the stress associ-
ated with a pair of interacting vertices as [37]

σ(ij)
µν = −f (ij)

µ

[
R(j)
ν −R(i)

ν

]
(14)

we obtain

∆µν = Dµν − Σµν with Σµν =
∑
(ij)

σ(ij)
µν , (15)

which constitutes the discrete mean-stress theorem.

C. Dipole conservation

As in the continuum case, here we assume linear elas-
ticity to demonstrate Σµν = 0, implying dipole conser-
vation. Linearity implies that Σµν is a linear function

of the set
{
u

(i)
λ

}
i∈Ω

of equilibrium vertex displacements,

which are themselves unspecified functions of the active
forces. Therefore, the integrated stress in the network
can be decomposed into a sum over fictitious partial net-
works Ωj where all displacements but that of vertex j are
set to zero [Fig. 2(a-b)]:

Σµν

({
u

(i)
λ

}
i∈Ω

)
=
∑
j∈Ω

ΣΩj
µν

(
u

(j)
λ

)
, (16)

where Σ
Ωj
µν is the integrated stress in partial network Ωj .

To demonstrate dipole conservation, we show that the

partial integrated stress Σ
Ωj
µν vanishes for all j in networks

invariant under local point reflection. Considering a spe-
cific partial network Ωj , we first note that reversing the
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vertex displacement also reverses the integrated stress by
linearity:

ΣΩj
µν

(
−u(j)

λ

)
= −ΣΩj

µν

(
u

(j)
λ

)
. (17)

We next introduce the assumption that each partial
network Ωj is invariant under local point reflection about
vertex j. The result of this transformation is illustrated
in Fig. 2(c), and we denote the symmetric of vertex i by
Ij(i). Since stresses are proper tensors, the integrated
stress is unchanged under this transformation:

ΣI
j(Ωj)
µν

(
Ij
(
u
Ij(j)
λ

))
= ΣΩj

µν

(
u

(j)
λ

)
, (18)

meaning that the point-reversed image of a system un-
der, e.g., overall compression is a system under the same
amount of overall compression. Since vertex j is its own
image under this transformation, its displacement is re-
versed:

Ij
(
u
Ij(j)
λ

)
= Ij

(
u

(j)
λ

)
= −u(j)

λ . (19)

Noting that local point reflection means that the par-
tial network Ωj is invariant under Ij , i.e., Ij(Ωj) = Ωj ,
Eq. (18) becomes

ΣΩj
µν

(
−u(j)

λ

)
= ΣΩj

µν

(
u

(j)
λ

)
. (20)

Combining Eqs. (17) and (20), we find that Σ
Ωj
µν = 0

for any j, which we insert into Eqs. (15) and (16) to prove
dipole conservation in the original, full network Ω:

∆µν = Dµν (21)

Although superficially different from the translational in-
variance used in Sec. II, our local point reflection sym-
metry has a similar physical meaning. Indeed, it states
that from any point of observation, the elastic medium
looks the same to two observers looking in opposite di-
rections. It is however more restrictive than translational
symmetry, as it does not apply to, e.g., the honeycomb
and diamond lattices—we do however believe that dipole
conservation could be established in these lattices by con-
sidering discrete rotational symmetries. Local point re-
flection symmetry is nevertheless fulfilled by most usual
lattices, including the triangular, square, simple-, face-
centered- and body-centered-cubic lattices, and thus the
discrete dipole conservation relation Eq. (21) remains of
wide practical interest. Furthermore, in a regular lattice
with periodic boundary conditions translational invari-
ance is sufficient to prove dipole conservation (with a
proof similar to that presented in Sec. IV A).

IV. AVERAGE DIPOLE CONSERVATION IN
RANDOM ELASTIC MEDIA

In this and the next section, we investigate how relax-
ing the assumptions of homogeneity and linearity respec-
tively affect dipole conservation. As shown in Fig. 3, in-
homogeneous elastic properties significantly affect dipole

Figure 3 Force transmission in a linear spring network is
strongly affected by elastic inhomogeneities. Here the
opacity of a bond is proportional to its stiffness, and black
arrowheads (purple arrows) represent body (boundary)
forces. (a) In a homogeneous network, dipole conservation
∆ = D is satisfied to the numerical precision. (b) In a
random spring network, dipole conservation is typically
violated; in this specific example, ∆/D ≈ 0.60. Here the
spring constants are drawn from a lognormal law with
standard deviation δα = 0.8.

transmission in a spring network. Nevertheless, we show
in Sec. IV A that in a random spring network with pe-
riodic boundary conditions dipole conservation is pre-
served in an average sense. Sec. IV B then shows numer-
ically that fixed boundary conditions spoil this result,
although deviations from it are small and go to zero for
large-size systems. Finally, in Sec. IV C we use an effec-
tive medium (i.e., mean-field) approach to quantify the
sample-to-sample variations in the amount of transmit-
ted force dipole, and find that it is proportional to the
amplitude of the local spring disorder.

A. Average dipole conservation in periodic
geometry

Consider the linear response of a regular lattice of in-
dependent, identically distributed random springs with
periodic boundary conditions subjected to a distribu-

tion of body forces F
(i)
µ of zero sum (i.e.,

∑
i F

(i)
µ = 0

as expected for active elements embedded in an elastic

medium). Let G
(i)
µνα be the sample-dependent linear re-

sponse function relating the body force at site i to the
integrated stress:

Σµν =
∑
i

G(i)
µναF

(i)
α . (22)

Denoting averages over lattice disorder by a bar, this
equation implies

Σµν =
∑
i

G
(i)
µναF

(i)
α = Gµνα

∑
i

F (i)
α , (23)

where the second equality stems from the statistical
equivalence of all sites in the network, implying that

the average response function G
(i)
µνα is independent of
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Figure 4 Deviations from average dipole conservation and
sample-to-sample fluctuations in random spring networks.
(a) The average dipole conservation condition ∆/D = 1
(grey line) is well respected for systems with large enough
number of mobile vertices N . Bars represent the standard
deviation of this ratio, thus indicating the magnitude of
sample-to-sample fluctuations. Each point in this figure
represents data averaged over O(105) samples, ensuring that
the plotted deviations in the average ∆ are statistically
significant. (b) Standard deviation of the boundary force
dipole, ∆ [proportional to the length of the bars in panel
(a)] normalized by the second moment of the effective
medium stress Σ0 (see Appendix A) as a function of
disorder. We find good agreement with the small-disorder
effective medium theory prediction Eq. (26) (dashed line) up
to δα ' 1.

i. Finally, inserting our assumption of vanishing sum
of the body forces into Eq. (23) yields Σµν = 0, and thus
through Eq. (15) the force dipole is conserved on average:

∆µν = Dµν . (24)

This result is valid in any system where all vertices are
equivalent, and thus also holds in infinite lattices.

B. Violations of average dipole conservation in the
presence of fixed boundaries

To investigate the influence of finite domain size on
the average dipole conservation Eq. (24), we numerically
study the linear response to a force dipole of a finite
hexagonal system with fixed boundary conditions, as pic-
tured in Fig. 3(b). The network is a two-dimensional
triangular lattice of independent identically distributed
random hookean springs of unit rest length. The spring
constant of the bond joining two neighboring sites i and
j is denoted α(ij) and drawn from a distribution dP (α)
with average α = 1 and variance Var(α) = δα2.

Assuming a lognormal form for dP (α), we minimize
the elastic energy of systems of different sizes using a
conjugate gradient algorithm. Our procedure uses dis-
placements of order 10−100 times the lattice constant,
thus guaranteeing that nonlinear effects are not present
in our results. Fig. 4(a) shows that average dipole con-
servation is violated for small systems, but that these
violations vanish for larger system sizes.

C. Influence of network disorder on the reliability
of force transmission

While in large enough systems the boundary dipole
becomes equal to the local force dipole on average,
Fig. 4(a) shows that significant fluctuations around this
average subsist even in infinite systems. Physically, this
stems from the fact that the configuration of the imme-
diate surroundings of the force-exerting active element
can strongly amplify or attenuate the local force dipole.
These near-field distortions are then faithfully propa-
gated to long distances by the more distant regions of the
network, which tend to transmit forces in a more dipole-
conserving way. Therefore, due to their local origin these
distortions are not cured by increasing the system size.
The resulting boundary dipole fluctuations have a clear
practical significance, as they represent an intrinsic limi-
tation on the reliability of force transmission through dis-
ordered elastic networks and thus represent a challenge
for biological systems.

To better understand the magnitude of this effect in
relation to the amount of network disorder, we compute
a mean-field-type approximation of the boundary dipole
fluctuations through an effective medium theory [27]. As
detailed in Appendix A, effective medium theories assim-
ilate the effect of bond disorder in a fully random network
to that of a single random bond with spring constant α
immersed in an effective regular network. The spring con-
stant αm associated with this effective network is chosen
so that the average of the displacement v of the random
bond in the regular network is equal to the elongation vm
of the non-random bonds, i.e., v = vm. This formalism
allows us to calculate an approximation of the tension of
each random bond, allowing us to compute the integrated
stress Σ. We find that the tension of the random bond is
equal to the bond tension in a fully regular medium plus
a quantity proportional to v − vm. Since the integrated
stress in the ordered medium vanishes [Eq. (21)], our ap-
proximate system has Σ ∝ v − vm. Now averaging this
relation and using v − vm = 0, we find

Σ = D −∆ = 0, (25)

i.e., the effective medium theory predicts average dipole
conservation irrespective of boundary conditions. Going
beyond this vanishing average stress, we further com-
pute the variance Σ2 of the integrated stress, which is
proportional to (v − vm)2. For small disorder, the typi-
cal mismatch v − vm between the random bond and its
deterministic neighbors is moreover proportional to the
mismatch α − αm of their spring constants, and thus to
the amplitude δα of the disorder. This finally yields

Std(Σ) = Std(∆) = Σ0δα, (26)

where the geometry-dependent prefactor Σ0 in the right-
hand side is given in Appendix A. Comparing this ef-
fective medium prediction with the numerical data of
Sec. IV B, we find an excellent agreement up to a bond



7

disorder δα ' 1, following which our small-disorder ex-
pansion breaks down [Fig. 4(b)].

This proportionality of dipole fluctuations δΣ to the
network disorder δα suggests that reliable dipole trans-
mission is only possible in well-ordered media. However,
due to the linearity of the elastic medium, the fluctu-
ations stemming from many small contractile elements
scattered through space average out to zero. This scat-
tered geometry is reminiscent of the structure of force-
generating cytoskeletal networks.

V. BREAKDOWN OF DIPOLE
CONSERVATION IN NONLINEAR ELASTIC

MEDIA

Unlike the elastic disorder discussed above, nonlinear
elastic behavior introduces systematic violations of force
dipole conservation, as illustrated here on a simple exam-
ple. We consider a spherical, three-dimensional cavity of
radius R1 filled with a continuum homogeneous elastic
medium with elastic energy density

e =
λ

2
(Trγ)

2
+ µTr

(
γ2
)

+
β

3
(Trγ)

3
, (27)

where γ is the strain tensor, λ and µ are Lamé param-
eters that characterize the linear response of the mate-
rial, and β is a nonlinear compressibility, with β > 0
describing softening upon compression. We impose a ra-
dial displacement u0 at radius R0, resulting in a radial
displacement

uR(R) = AR+
B

R2
(28)

with

A =

{
u0/R0 R < R0

−u0R
2
0/(R

3
1 −R3

0) R0 < R < R1
(29a)

B =

{
0 R < R0

u0R0R
3
1/(R

3
1 −R3

0) R0 < R < R1
. (29b)

Although Eq. (28) matches the linearized solution of the
elastic problem, it is actually valid to arbitrary nonlin-
ear order for the specific form of the strain energy of
Eq. (27) [28, 29].

Restricting ourselves to small displacements, we can
use the usual Cauchy strain tensor γµν = 1

2 (∂µuν+∂νuµ)
and derive the resulting radial stress

σRR(R) = 3λA+ 2µ

(
A− 2B

R3

)
+ 9βA2, (30)

which we use to compute the local and boundary force

dipoles

D = 4πR3
0

[
σRR(R+

0 )− σRR(R−0 )
]

= u0 (λ+ 2µ)
12πR3

1R
2
0

R3
1 −R3

0

+ βu2
0

36πR3
1R0

(
R3

1 − 2R3
0

)
(R3

1 −R3
0)

2

∆ = 4πR3
1σRR(R1)

= u0 (λ+ 2µ)
12πR3

1R
2
0

R3
1 −R3

0

− βu2
0

36πR3
1R

4
0

(R3
1 −R3

0)
2

∼
R0�R1

D − 36πβu2
0R0. (31)

Thus the nonlinear elasticity of the material renormalizes
the local force dipole by a quantity −36πβu2

0R0 which
becomes negligible in the linear limit βu0 � λ, µ. This
violation of dipole conservation favors contraction (∆ <
0) for a material that softens under compression (β > 0)
as further discussed below.

VI. DISCUSSION

Stress-generating, active materials are essential con-
stituents of the cell, and their biological design is strongly
constrained by the physical laws governing force trans-
mission in elastic media. As shown here, these laws
take a simple, geometry-independent form in homoge-
neous linear elastic media, whereby the force dipole is
an invariant of linear elasticity. More specifically, the
macroscopic force dipole tensor exerted by the medium
on its boundaries is equal to the sum of the microscopic
force dipoles exerted on it by embedded active elements.
This dipole conservation relation is valid both for con-
tinuum media and for discrete media with unspecified
finite range interactions, making it relevant for popu-
lar biological fiber network models with stretching and
bending energies [15]. It also holds true in anisotropic
media. Due to its generality, dipole conservation is a
powerful tool to relate widely used macroscopic descrip-
tions of the cytoskeleton, sometimes termed active gels
theories, to the underlying microscopic phenomena. For
instance, in a homogeneous linear elastic medium with
a density ρ of embedded elements each exerting a force
dipole dµν , the active stress σµν—the central object of
active gel theories—is simply given by σµν = −ρdµν [see
Eqs. (3) and (9)].

Considering more biologically relevant, disordered elas-
tic media, we show that in a discrete linear system
where the disorder probability distribution is position-
independent, dipole conservation is satisfied on average.
This result again applies to fiber network models, but
can be violated in small systems where the influence of
the boundary conditions is not negligible. Dipole con-
servation is moreover not generally respected in every
statistical realization of the system, and fluctuations are
proportional to the amplitude of the disorder; they are
however self-averaging, leading to reliable, deterministic
stress generation in large enough systems.
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Unlike disorder, nonlinearities have a systematic effect
on force transmission. Indeed, we show that a material
that softens under compression tends to favor contrac-
tion, reminiscent of the enhanced contractility observed
in bundles and networks of filaments prone to buckling
under compressive stresses [30–32]. A similar effect has
been been predicted in shear stiffening materials [10]. It
is moreover worth keeping in mind that nonlinear behav-
ior in elastic materials is not limited to constitutive non-
linearities in the material properties, as nonlinear elas-
ticity can also stem from geometrical effects [33]. Impor-
tantly, such geometrical nonlinearities are more preva-
lent in disordered than homogeneous networks [34], im-
plying that disorder might significantly affect contractil-
ity by lowering the threshold to nonlinear behavior. As
a result, a reliable understanding of contraction in ac-
tive biological materials requires a good characterization
of the nonlinear property of the underlying elastic ma-

trix. Given impressive recent experimental advances in
this area, we believe that model-independent, rigorous
theoretical studies such as this one will be valuable in
analyzing new data and thus understanding the relation
between molecular motors and cell-wide force generation.
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Appendix A: Effective medium theory for
disordered spring networks

Here we derive the results of Sec. IV C by developing an effective
medium theory, following Ref. [27]. In this approach the disordered
network described in Sec. IV is approximated by an effective ho-
mogeneous network where every bond has a spring constant αm.
When subjected to the same body forces and boundary conditions
as the original network, the effective network deforms so that the

bond joining adjacent vertices i and j has elongation v
(ij)
m with

respect to its rest length. To determine the value of αm, we intro-
duce a third system obtained by replacing bond (ij) by a random
spring with constant α drawn with probability law dP (α). This
induces a change in the deformation field, and the elongation of
the considered bond in the single-random-bond system is denoted

v(ij) = v
(ij)
m + δv(ij). Mechanical equilibrium then imposes

δv(ij) = v
(ij)
m

αm − α
qαm + α

(A1)

where q = z/2d − 1 with z the network connectivity and d the
spatial dimension. The effective spring constant αm is fixed by
imposing

δv(ij) = v
(ij)
m

∫
αm − α
qαm + α

dP (α) = 0, (A2)

where the average is taken over the distribution of α.
To compute the integrated stress Σ, we note that displacements

in our single random bond system are the same as in a homoge-
neous lattice of αm springs with an active force dipole of amplitude
(α − αm)v(ij) applied along bond (ij). We further note that the
integrated stress in this homogeneous, linear system vanishes ac-
cording to Eq. (21). Since stresses in this system are identical to
those in our single-random-bond system except at bond (ij), the
integrated stress in the latter is equal to the integrated stress in
the former (i.e., zero) plus the contribution of bond (ij):

Σ = 0 + (α− αm)v(ij) =
zαm

2d
δv(ij) (A3)

where Eq. (A1) was used. Inserting Eq. (A2) into Eq. (A3), we ob-
tain Σ = 0, i.e., the average dipole conservation equation Eq. (25).

Denoting σ
(ij)
m = αmv

(ij)
m and δσ(ij) = σ

(ij)
m + δσ(ij), we plug

Eq. (A1) into Eq. (A3) and compute
[
δσ(ij)

]2
= C

[
σ
(ij)
m

]2
, where

C =

∫ [
αm − α

(1− 2d/z)αm + 2dα/z

]2
dP (α). (A4)

In the spirit of the effective medium theory, we approximate the
fully random lattice as a superposition of single random bond lat-
tices and sum the bond stresses σ(ij) as independent identically
distributed variables:

Σ2 =
∑
(ij)

[
δσ(ij)

]2
= CΣ2

0, (A5)

where Σ2
0 =

∑
(ij)

[
σ
(ij)
m

]2
can be computed from the stress field

in the homogeneous system with appropriate boundary conditions
and active body forces. This procedure is used to obtain the nor-
malization factor of Fig. 4(b). Note that C takes a simple form in
the weak disorder limit Var(α) = δα2 � α2. Indeed, setting α = 1
Eq. (A2) yields

αm = 1−
2d

z
(δα)2 +O

[
(δα)3

]
, (A6)

and the numerical factor becomes C = δα2 + O
[
(δα)3

]
, yielding

Eq. (26).
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