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Excitation Retrieval of Microwave Linear Arrays
from Phaseless Far Field Data

Benjamin FuchsMember, IEEEand Laurent Le Coq

Abstract— A methodology to recover the excitations of mi- and reliable reconstruction algorithms. A considerableam
crowave linear arrays from the measurements of far field of methods have been proposed in the literature. So far,
magnitude only is proposed. The approach combines tools fro most approaches were using alternating projection atyost

convex optimization (to solve the phase retrieval problemand a . . .
simple measurement procedure (to mitigate the non uniquerss "'SPired by the seminal works of Gerchberg and Saxton [10]

of the solution). Numerical simulations in various represetative and Fienup [11]. These greedy techniques avoid an exhaustiv
and realistic configurations of noise and measurement samiply search and they turn out to often work well in practice.
are presented and discussed. They show that it is possible toHowever, these methods are not known to converge in general
perfectly retrieve the array excitations from only the knowledge and they can stall in a local minima. Recently, phase rettiev

of far field magnitude by simply solving a convex optimizatim . e .
problem. In addition, the proposed approach, that only cals for problems have been treated using semidefinite relaxatidn an

readily available routines, is stable with respect to noissince the 10wW-rank matrix recovery ideas [12]-[16]. To date, these
reconstruction performances degrades gracefully as thegnal to convex approaches are the only ones providing guarantees

noise ratio decreases. on the recovery performances under some specific conditions
Index Terms—Antenna measurements, phaseless measure-(given in Section 1V).
ment, phase retrieval, convex optimization. On the other hand, the phase retrieval problem may be ill-

posed since its solution is, in general, not unique. In paldr,

the 1-D phase retrieval problem is known to admit multiple

solutions [17]. Most existing methods seek to overcome this

M ANY applications, in particular in imaging and opticsnon uniqueness by imposing additional constraints on the
seek to reconstruct an object from the measuremesfgnal to be retrieved such as its non-negativity or its sipar

of a signal. However, in many experimental setups, the phasgcently, approaches assuming no prior information on the

of this signal is often difficult to measure accurately. Theignal at all but using multiple structured measuremente ha

problem is then to reconstruct the object from magnitudgeen successfully proposed for optical setups [12], [18].
measurements only. This inverse problem, known as phase

retrieval, is frequently encountered in applied physicsl an _ ) o

engineering including X-ray and crystallography imagiag [ '" this paper, we focus our investigation on the phase
optics [2] and audio signal processing [3] to name just a fefigtrieval for microwave 1-D (linear) arrays. Our objectiseo

A famous example that arises in a variety of fields is tHé&trieve the complex array element excitations from itdigdd
one of recovering a signal from the magnitude of its Fouriépagnitude measurements. An efficient approach combining
transform. convex programming (to solve the phase retrieval problem)
The phase retrieval problem is also of uppermost interest31d two measurement runs (to mitigate the non uniqueness of
microwave antenna measurements where measuring acyurdf¥ solution) is proposed. To the authors’ best knowledge, i
the phase may be costly and difficult in particular when aegli 'S the. first time that convex rela_xatlon based approqches are
with high frequencies. Many efficient phaseless measurem&pPloited to address phase retrieval problems in microwave
methods have thus been proposed for antenna metrology [#RPlications. The goal of this paper is to empirically shbatt

[6], array diagnosis and imaging [7]-[9]. The advantagé_ﬁ“der a_pproprlate_ conditions (of sampllr!g gnd noise level)

of such approaches are manifold. The probe positionity possible to umqugly recover the excitations of 1-D array
tolerances that is critical in near field measurement setup@M Phaseless far field data.

is relaxed. Moreover, magnitude-only measurements are by

definition insensitive to potential instrument’s phaseftslri The paper is Organized as follows. The phase retrieval
Finally, phaseless measurements do not require the usepgfplem is formulated for 1-D microwave array imaging in
vector instruments whose cost is prohibitive as the frequensection I1. Two algorithms to efficiently retrieve the array

I. INTRODUCTION

goes up. _ _ ~ excitations are described and compared in Section IIl. IThei
Mathematically, the phase retrieval problem is notoripushpplication to array imaging problem and specifically a senp
very challenging. procedure to mitigate the solution ambiguities is propdsed

On the one hand, it requires the development of efficieBection IV. The numerical performances of the proposedehas
_ _ _ retrieval procedure, namely the influence of the oversargpli
Manuscript received xx, 2014; revised xx, XX. d th b . d in Secti V. Th
The authors are with the IETR / University of Rennes |, Frarfeemail: and t e_ robutness to n(_)'se! are. assesse 'n ectllon : €
{benjamin.fuchs;laurent.le-cd@univ-rennes1.fr) conclusion and perspectives of this work are finally disedss



Il. PROBLEM FORMULATION underlying excitations are addressed in Section Il and IV

The phase retrieval seeks to reconstiictomplex excita- '€SPectively.

tions x given only the magnitude o#/ linear measurements

y. It can be formulated as follows: 1.

Two convex relaxation approaches are now described to
Q) a . . - ;
pproximate in order to efficiently solve the phase rettieva

where A € CM*N js the sensing matrixx € CV and problem (2).
y € RM. This problem is difficult to solve because the
set of real or complex numbers with a given magnitude j§ phaselLift
non-convex. An exhaustive search is untractable sincey eve
in the real case, there ag®’ possible assignments of sign
to the M phaseless measurements. Moreover, the probl
may be ill-posed. Depending on the properties of the mat
A, the mapping from the magnitude measuremsnts the
excitationsx is or is not one-to-one and hence unique recove
is not possible in general.

The geometry of the investigated problem, i.e. the imagin

— H it i _ H ;
of a linear array, is represented in Fig. 1. The magnitude ghereAn, = Ay, - are hgrmltlan matrices arki = xx™ is
a rank-one Hermitian matrix.

RESOLUTIONMETHODS

find x subject to|]Ax| =y

The first convex relaxation of the phase retrieval problem
has been introduced by Candes et al. [12]-[14]. He observed

m

?hat the non-convex measurememton vectorsx become
rix . B "
lnear measurements on matricés= xx* where(.)” is the

rHyermitian conjugate. The measurements can be rewritten:
2

y2 = x"A,x = Tr(A,X)

A The phase retrieval problem (2) becomes:
Far field _eA find X
magnitude B R () subject to Tr(A,X) =92, m=1,...M
measurements , ° . 3)
. . X=0
° °. rank(X) =1
¥(01)e £(6) g ¢(61) that is equivalent to:
Q ° minimize rank(X)
Linear array x----+- LA x subjectto Tr(A,X) =92, m=1,....M 4
excitations X1 Xn Xy : ( )= Y. T @
Th X=0
) , o _ _ since there exists by definition a rank-one solution.
Fig. 1. Geometry of the linear array imaging problem with twgations.

The problem (4) is a combinatorially hard problem. However,
for positive semidefinite matrices, i.e. in this case siXce 0,

the measured far field in the directidh, is related to the
excitationsx to be retrieved as follows:

Y(Om) = With A = fr (B )e? 5 750 0m

the rank functional can be approximated by a convex sureggat
the trace norm as proposed in [19]. The problem (4) becomes:

minixmize Tr(X)

N
§ Am,n T

n=1

M )

subject to Tr(A,,X) =y2, m=1,.
X>=0

ey

where ) is the free space wavelength, and f,,(9,,) are the

position and the far field pattern in the directiép of then-th  \yhich is a semidefinite program that is then convex and effi-

antenna respectively and the time conveniét is omitted ciently solvable. The original vectorial phase retrievalgem
for clarity. Let us denote witla,,, the vector of_ d_|men3|0n‘N is thus convexified by lifting” it up to a matrix recovery
whose elements are those of theth row of A, it is the array problem hence the nanfhaseLiftintroduced by [12], [13].

steering vector in the directiof},,. The problem (1) can then |p practice, the measurements are contaminated by noise:
be rewritten:
Ym = |a,rnTX+’er|, for m = 17 7M
find x subject to|a,,” X| =y, form=1,..,.M (2)
wheren,,, is a noise term. The equalities in (5) no longer hold

with y,, = y(6:») and where(.)" is the transpose operator. in presence of noise. The following formulation has thembee
The radiated field is thus related to the excitations by aretiec proposed in [14]:

Fourier transform in the case of isotropic sources, i.e.rwhe
fn(0) = 1, ¥n. The problem is then ill-posed since many
different sets of excitations have the same Fourier transfo
magnitude.

The ways (a) to solve the non-convex phase retrieval
problem and (b) to mitigate the non-uniqueness (also calledwords, solving (6) amounts to find the positive semidedinit
ambiguities) of the solution in order to uniquely recovee thmatrix X that best fits the observed data in Gnsense. The

M
. . . 2
minimize > | Tr(ARX) — 2, | (6)

m=1

subject toX > 0.



solution of (6) will be from now on referred to as PL (forAs in the PL procedure, if the solution has a rank larger
PhaselLif]. ~ than one, the leading eigenvector Of is used to build an

If the solution X of (6) happens to have rank one, thempproximate solutioru of (11) from which an approximate
X = g andx is the optimal solution of the original phasesolution of (2) is derivedx = AT diag(y)Q.

retrieval problem (2). Otherwise, one extracts the besk ran

one approximation Qb(: X1 = oruu V\_/here o1 is the C. Discussion

largest eigenvalue oK andu; is the associated eigenvector. . ) ]

The vector = \/a7u, is then an approximate solution of (2). By trading non-convex constraints into convex ones, we
For further information related to convex relaxations dfave transformed a vector problem into a matrix one. This

quadratic problems, we refer the interested reader to tHEiNg” leads to a much larger representation of the state
tutorial [20]. space which means a higher computational cost. It also @spli

that we must deal with a highly underdetermined problem
since for the PL procedure, there ak&’ unknowns (instead
B. PhaseCut .
] ) of only N) for M = O(N) magnitude measurements. As

A different strategy has been proposed in [15], [16] t@ypjained in [21], this apparent lack of data is compensated
solve the phase retrieval problem by explicitly separatig 1y the fact that we are only looking for rank one matrices.
amplitude and phase variables in order to only optimize thejs aiso worth noting that the computational complexity of
value of the phase variables. By factoring out the E@gmtu% PC algorithm (11) is higher than the one of PL (6) since we
information, we can writé\x = diag(y)u whereu € C* isa  grg |ooking in the space of Hermitian matrices of dimension
phase vector satisfying.,,| = 1 form = 1,..., M. The phase ,, tor PC instead of onlyV for PL.

retrieval problem can be expressed as follows: Last but not least, both convex relaxations (6) and (11) @n b
minimize ||Ax — diag(y)u||§ (7) solved optimally by readily available software such as CVX
ueC™,Jupm |=1 [22].
xeCN
where we optimize over both variablesandx. IV. APPLICATION TOARRAY IMAGING PROBLEMS

The minimization overx is a standard least square and can
be solved explicitlyx = A" diag(y)u whereA' is the pseudo
inverse ofA. The problem (7) is equivalent to:

The problem of ambiguity in phase retrieval problems is first
discussed, existing solutions to mitigate this non unigssn
) are reviewed and a simple approach suitable to microwave
minimize  ||AAT diag(y)u — diag(y)ul|,. (8) antenna arrays is proposed. Then, the way to quantify the
UECH, Jum =1 recovery performances of the proposed approach are dktaile
The objective of (8) can be rewritten:

|AAT diag(y)u — diag(y)u”i = ||[(AAT — |)diag(y)u”§ A. Non-unigueness (Ambiguities) of the solution
= uf! diag(y" )R diag(y)u In the general case, the solution to the phase retrieval

- ; Honnt ; problem (1) is not unique and the best we can strive for is
whereR = (AAT — I)"(AAT —1) = (I — AAT). The phase g retrievex, up to a phasey, a "mirror function”, and an

retrieval problem (1) becomes: unknown shifts. Indeed, if z,, with n=1,...N is a solution
minimize uRu (9) to (1), then e, TN41-, and z, at locationsr, — o

ueCcM are respectively also solution. Note that is the complex

subject to|u,,| =1, m=1,... M conjugate ofa. Since we assume that the positions of

the array elements are known, the last ambiguity (unknown

shift) type does not exist. More specifically, for a linearagr

composed ofV equispaced identical elements, there are up to

2N—1 possible solutions as explained in [23].

miniumize Tr(RU) To mitigate the ambiguities arising in phase retrieval prob

lems, the oversampling in the Fourier domain (i.e. the in-

(10) creasing of the measurement poirts) has been shown to

Uxzo0 almost always work in the case of 2D Fourier transform [24].

rank(U) = 1. However, this technigue offers no benefits for 1D recovery as

I,ﬂgscussed in [12], [15], [17] and therefore cannot be used fo

our application.

o Another approach is to try to render the sensing ma#rix
minimize Tr(RU) as “random” as possible in order to make unique recovery
subject to  diag(U) = 1 (11) possmle_. For that purpose, a measurement setup using of an

electronically controlled reflectarray between the micxogy
Uu=o0 antenna under test and the measurement probe has been
that is very similar to thélaxCutsemidefinite program henceproposed in [25]. The idea is to switch randomly the elements
the namePhaseCut(denoted PC in the sequel). of the reflectarray to obtain a random sampling of the field

where the Hermitian matriR = diag(y)(I — AAT) diag(y) is
positive semidefinite.
The problem (9) is equivalent to:

subjectto diag(U) =1

By dropping the non-convex rank constraint, we obtain t
following convex relaxation:



radiated by the antenna under test. This solution, that Tike error over the measured field amplitudes is:
theoretically very appealing, seems in practice difficult a | 1AX] — |AX] [|2
costly to implement. e(|AX|, |AX]|) = —F—F——. (14)
In obti : ; [[AX]|2

ptics, many techniques have been successfully applied
to resolve the phase ambiguity problem. They consist Iha low excitation errore(x,X) implies a low error over the
using multiple independent measurements to somehow gatf@asured field amplitudes(|Ax|, |AX|), the opposite is not
different views of the object under test as reviewed in [12ecessarily true. Indeed, when the phase retrieval protiers
Thus, taking multiple diffraction patterns by adding a maskot have a unique solution, we may have a loAx|, |AX|)
or modulating the light beam with an optical grating usuallput €(X,X) > €(JAx|, |AX|).
yields uniqueness. In that case, the sensing matrix can Aghough the quantities (13) and (14) are useful to assess
seen as the product between the discrete Fourier transfé¥fifl compare the efficiency of the algorithms PL and PC,
matrix and a mask or filter that is a diagonal matrix witfhey are not very speaking. In order to appreciate the sult
either random binary or Gaussian entries. with more physical insights, we compute the mean values of
Recently, an interesting framework [26] (called vectoplahse the excitation amplitude ratio and phase difference (cehot
retrieval by the authors) has been proposed to efficientiy.(X,X) and i, (x,X) respectively):

solve the phase retrieval problem. It is shown that the wmiqu | X o
reconstruction of two signals is possible by measuringrthei ;. (x, %) = — Z&m with §,,; = [%il (15)
spectral intensity signals and their pairwise interfeesnc N i1 x|

N

The previously described techniques are difficult to imple- 1
ment in microwaves that is why we propose the following fip(X,X) = N Z |0pi| With 6,; = (£%; — Ag) — £X;
approach. As done in holography [27], we assume that we have i=1
a reference antenna whose complex radiation paffeth(6) whereA¢ the global phase shift betweenands is equal to
(the vectory™ef of dimension)/ after discretization) is known. Ap = % Zle(gxi — IX;).
We measure the magnitude of the far field radiated by:  We derive from (15) the standard deviation in amplitude and
- the array under tegt*V” = |[A*UTx| and phase ¢, (x,%X) ando,(x, X) respectively):
- the interference between the array under test and the- refer 12
ence antenngUT+ref — |AAUTx 4 qyref | R 1 & .
where o is the excitation (not necessarily known) of the Tm (X, X) = Nz(émi = fin (%, X)) (16)
reference antenna. ' o
This simple procedure allows to mitigate the ambiguities . 1 Y 9
due to the “mirror function” and the excitations are then op(X, X) = lNZ(‘Sm‘ — pp(X, X)) ]
determined up a global phase. If in addition the phase of the =1
excitationa is known (after a calibration for instance), therin order to measure the degree of confidence in the retrieved

the solutionx is unique. excitation magnitudes and phases.
The matrixA € C2M*x(N+1) gnd the measurement vectomn 2) Noise: The reconstruction of the excitations in pres-
(1) becomes: ence of noise is crucial for practical applications. In our

experiments, the magnitude measuremgntis polluted by a
(12) Gaussian white noise,, as follows:y,, = |a,,” X+n,,|. The
level of this noise is quantified by the Signal-to-Noise Rati
(SNR): SNR;z = 10100, (Psignai/ Proise) Where Pg;gnq; =
max;,—1,... m(|am? x|2) is the maximum measured power.
In order to estimate the SNR of a far field measurement in
B. Recovery Performances an anechoic chamber, both the full equipment system (noise
) . . loor of the receiver, transmitted power and losses due to the
1) Recovery Error:The phase retrieval algorithms (6) an(Icables and rotary joints) and the reflectivity of the chamber

(11) compute an appr_oxmate solutiarfrom y = |AX|' The|r itself must be taken into account. A SNR value of 60dB, that
performances are typically assessed by computing theveslat . ;
“distance” between the exact solutionand the recovered corresponds to a reasonably good anechoic chamber, will be

. . : : Bonsidered for the numerical applications of Section V.
one X. Special care must be taken since a solution may e3) Sampling {£/N): Up to date, the convex approaches are
unique up to a global phase (for complex values) / sign (f% ) ’

. . . e only ones to offer guarantees on the recovery perforasanc
real values) (if the excitation of the reference antennaois Nor phase retrieval problems. It means that under a wpria
known). Thus, the error in excitation denotegk, X) can be P P | bp

computed as: conditions, the difficult problem (2) is equivalent to thengex
' program (6) or (11) in the sense that they have the same
e x — || IxxH — & || unique solution. If the numbei/ of equationsa,,” x| = yy,
TwwH I . (13) are sufficiently randomized and at least on the ordeNofit
has been demonstrated in [14] that the solution to the convex
where ||.||» stands for the Frobenius norm. This seconcklaxation (6) is exact (i.e. it is the same as the one of (2))
definition, easier to compute, will be used in Section V.  with a probability approaching one exponentially, &5 is

AAUT | g AUT
A= [AAUT i yi\e{f:| andy = [iAUTJrref}

where0,, is a vector of zeros of dimensialy.

min ————
aclo.2x]  [X]|2 (x|



increased. It is important to point out that these resulieha To evaluate the reconstruction quality as a function of the
been established for sensing matridewith Gaussian i.i.d. sampling, let us plot in Fig. 3 the reconstruction errors in
(independent and identically distributed) entries. amplitude and phase for a linear array 810 elements in

In the next Section, we will numerically check if similar uits presence of noise (SNR=60dB). We retrieve, as seen above,
hold in the case of 1-D microwave array imaging, i.e. whethe significant improvement in recovery performances when
the sensing matrix is not Gaussian but of the form of a discret/ = 2/N. Then, The oversampling helps to further improve
Fourier Transform. up to a certain extent the recovery performances as shown in

Fig. 3 for M > 2N.
V. NUMERICAL RESULTS

The goal of this Section is to numerically assess the recov-S
ery performances of the phase retrieval algorithm (6) addl (1co 4
In the retrieval procedure, the element positions and tiadia =
patterns of the array under test, i.e. of the sensing mat,nx
and the reference antenp&/ are assumed known.

For each configuration, the simulation is repeated 100 t|m€s
with different random excitations (whose magnitude andspha % 2 3 Z 5 1 2 3 4 5
are chosen uniformly betweef, 1] and [0, 27] respectively), ~ ~ sampling//N sampling M /N
different random measurement vectors (whose angle are cho- :

sen uniformly such that1 < sin# < 1) and a Gaussian white *°
noise in order to get meaningful results. All presented ltesu&. 30

are average values over these 100 simulations. > 20

om(X,X) [dB]

A. Linear Array of Isotropic Sources

1) Settings: We consider a linear array composed &f °
isotropic half wavelength spaced elements that are excited
by a random amplitude and phasg. A reference antenna _ . . -

. . h . s . Fig. 3. Recovery performances with PhaseLift (solid lined &haseCut
(also isotropic) with an arbitrary excitation (fixed but sea (dotted line) for a linear array oN=10 isotropic sources: influence of the
randomly in the simulations) is placed at an arbitrary diséa sampling (4/N) for measurements with a SNR of 60 dB.

(2 X in the simulations) from the extremity of the array under
test. It has been checked numerically that both the position3) Robustness to Noisé&et us choose a sampling = 2N
and excitation value of this source with respect to the arraty order to see the influence of the noise on the excitation
under test do not impact the recovery performances. recovery.
The influence of the SNR on the retrieved excitations and field

2) Influence of the SamplingThe influence of the ratio amplitudes €(x, X) ande(]Ax|, |AX|) respectively) is plotted in
M/N (number of measurement points over number of excitgig. 4. There is clearly a linear behavior between these®rro
tions to retrieve) on the recovery performances is invagid. and the SNR with a log-log scale. This graceful degradation
The error in excitations(x, X) is plotted as a function of the shows that both convex approaches PL and PC provide a stable
sampling for linear arrays of various elemed{sin Fig. 2. recovery in presence of noise.

In absence of noise, there is a clear transition between ‘ba@fhe reconstruction errors in excitation amplitude and phas
and ‘good’ recovery at\/ = 2N. In presence of a realistic

2 3 4 2 3 4
samplingM /N samplingM /N

noise (SNR=60dB), a less sharp transition also exists aroun [ T o
M = 2N. Generally speaking, for a given samplidd/N, o S,
the recovery performances are better for a small numberf*° = 20
array elementsV. X —40 < 4
Y -
— x
0 0 o —60 i $ —-60
\ no noise SNR=60dB _80 g 80
o 20 — 0 50 100 150 200 0 100 50 200
g o SNR [dB] SNR[dB]
o —
< < . . . . . N B .
& o ~20 Fig. 4. Error in the retrieved excitations and field amplésdor a linear
o 60 3\:/ array of N =10 elements as a function of the SNR with PhaselLift (solid)lin
\— and PhaseCut (dotted line). The markers (circle for PL andusgfor PC)
—80 _30 are the results without noise.
1 152 25 3 1 2 3 4
samplingM /N samplingM /N

are plotted in Fig. 5 as a function of the SNR. They show
Fig. 2. Error in the retrieved excitation amplitudes as acfiom of the that a_bov_e a given SN_R (Of 6(_)dB fM/N - 2)' the recon-
sampling with PhaseLift for linear array of various elenseiv=5, 10, 20, Struction is very good in amplitude and fairly good in phase.
30, 40). In presence of important noise (SNR60 dB), the algorithm



PC seems to yield a better reconstruction (especially isgha
than PL. This better performance may be explained by t@s @
decoupling between magnitude and phase reconstruction—of y
the PC procedure (see Section III-B). ‘:n 2 *x 2
x
s E
8 8 = IS
— 0 =
% 6 2 4 6 8
= samplingM /N
~ 25
< — —
~ o 20 (@]
g o 3
S Zs S,
100 00 X 4 >
= Ra¥
60 £ S
= ' [ E——
(] 40 \ 2 4 . 6 8 2 4 i 6 8
= samplingM /N samplingM /N
<
X 20 Fig. 7. Recovery performances for a linear array of five pegclinfluence of
S the sampling #//N) for measurements with a SNR of 60 dB with PhaselLift
0 0 (solid line) and PhaseCut (dotted line).
20 100 20 100

40 60 80 40 60 8;)- i
SNR [dB] SNR [dB]
3) Robustness to Noisefhe error in the retrieved excita-
Fig. 5. Recovery performances for a linear arrayNo£10 isotropic sources t; ; i i i ; -
with a samplingM = 2N: influence of the SNR with PhaselLift (solid line) tl(.)ns and fle.ld amp.“tUdeS Increases Imearl.y (m a |Og kmys) .
and PhaseCut (dotted line). Wlth_ the noise. This robustqess to the noise (.not reported) i
similar to the one of isotropic sources of Section V-A.3.
The reconstruction errors in excitation magnitudes andgha
B. Linear Array of Realistic Sources are sh_own in Fig. 8 as a function of the SNR for an over-
1) Settings: Let id i £ 5 ich sampling of M = 3N. In that case, a very good recovery
) Settings:Let us consider a linear array of five patc €% achieved for SNRs greater than 60dB. The algorithm PC

with an open ended waveguide that play_s t.he role of t Yovides a slightly better recovery in case of low SNR as for
antenna of reference to overcome the ambiguity problem, & case of isotropic sources (see Section V-A.3)

Fig. 6. The field radiated by the array is computed by a 3
full wave commercial software (Ansys HFSS) in order to get 4

6
the sensing matripA and far field magnituds. = =
S, ’ S, 4
: 2 =
1 i ) yF B 1
e | . | i B § . bE .
B EE— 020 40 éO 80 100 020 40 60 80 100
0.6 -— NEE SNR [dB] SNR [dB]

1A

=)
Fig. 6. View of the array of five patchs whose excitations avebe %
retrieved with the reference antenna (an open ended walegig overcome —
the ambiguity problem. =<

2) Influence of the Samplindn absence of noise, a perfec§

recovery, i.e. an error in excitation amplitude and phase o 0
_ . 20 40 60 80 100 20 40 60 80 100

lower than10~® dB and deg respectively and a very low SNR [dB] SNR [dB]
standard deviation, is achieved as sooA% 2N. Generally
speaking, better recovery performances are achieved in HEB Recovery performances for a linear array of five pegciinfluence of
case of realistic sources compared to isotropic ones. Tthe SNR with PhaselLift (solid line) and PhaseCut (dotted)lior a sampling
ambiguity problem is indeed intrinsically reduced when th& = 3V.
radiation patterns of each element are not all identical.
The influence of the oversampling on the recovery perfor-
mances in presence of noise (SNR=60dB) are plotted in Fig. VI. CONCLUSION
7. An oversamplingM > 6N does not bring any further A methodology has been proposed to efficiently solve the
improvement. phase retrieval problem arising in microwave linear arfidne
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measurements and seems to be promising to significar}tllg(] problem,” Opt. Commun., vol. 30, no. 3, pp. 304-308, 1979.
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This work calls for several appealing extensions. Firs, t119]
application of the proposed approach to 2-D array phase
retrieval should be straightforward all the more as the j@ob |2
of ambiguities can be directly overcome by oversampling.
The effort should then focus on reducing the computatio
complexity to solve the convex relaxations. Second, it \ou
be of great interest to assess the efficiency of the propo$&d
phase retrieval approach in the case of near field data. T
proposed approach for far field data could be a priori use
by only changing the sensing matrix. However, several afuci
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problems: feasibility criteria and new strategies,” Jaliof elect. Waves
Appl., vol. 12, pp. 103-138, 1998.

parameters such as the distance array under test - probe [glﬂdM.H. Hayes, "The reconstruction of a multidimensiorsglquence from

the phase or magnitude of its Fourier transform,” IEEE Traktoust.

the range (_)f the probe measurements have to be carefully ad- speech Sig. Proc., vol. 30, no. 2, pp. 140-154, April 1982.
dressed. Finally, the phase retrieval method must be tested[25] M.D. Migliore and D. Pinchera, "Phase-transition beba in array

real measurement data and we hope to report such experinT%T

in a future publication.
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