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Excitation Retrieval of Microwave Linear Arrays
from Phaseless Far Field Data

Benjamin Fuchs,Member, IEEE,and Laurent Le Coq

Abstract— A methodology to recover the excitations of mi-
crowave linear arrays from the measurements of far field
magnitude only is proposed. The approach combines tools from
convex optimization (to solve the phase retrieval problem)and a
simple measurement procedure (to mitigate the non uniqueness
of the solution). Numerical simulations in various representative
and realistic configurations of noise and measurement sampling
are presented and discussed. They show that it is possible to
perfectly retrieve the array excitations from only the knowledge
of far field magnitude by simply solving a convex optimization
problem. In addition, the proposed approach, that only calls for
readily available routines, is stable with respect to noisesince the
reconstruction performances degrades gracefully as the signal to
noise ratio decreases.

Index Terms— Antenna measurements, phaseless measure-
ment, phase retrieval, convex optimization.

I. I NTRODUCTION

M ANY applications, in particular in imaging and optics,
seek to reconstruct an object from the measurements

of a signal. However, in many experimental setups, the phase
of this signal is often difficult to measure accurately. The
problem is then to reconstruct the object from magnitude
measurements only. This inverse problem, known as phase
retrieval, is frequently encountered in applied physics and
engineering including X-ray and crystallography imaging [1],
optics [2] and audio signal processing [3] to name just a few.
A famous example that arises in a variety of fields is the
one of recovering a signal from the magnitude of its Fourier
transform.
The phase retrieval problem is also of uppermost interest in
microwave antenna measurements where measuring accurately
the phase may be costly and difficult in particular when dealing
with high frequencies. Many efficient phaseless measurement
methods have thus been proposed for antenna metrology [4]–
[6], array diagnosis and imaging [7]–[9]. The advantages
of such approaches are manifold. The probe positioning
tolerances that is critical in near field measurement setups
is relaxed. Moreover, magnitude-only measurements are by
definition insensitive to potential instrument’s phase drifts.
Finally, phaseless measurements do not require the use of
vector instruments whose cost is prohibitive as the frequency
goes up.

Mathematically, the phase retrieval problem is notoriously
very challenging.
On the one hand, it requires the development of efficient
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and reliable reconstruction algorithms. A considerable amount
of methods have been proposed in the literature. So far,
most approaches were using alternating projection algorithms
inspired by the seminal works of Gerchberg and Saxton [10]
and Fienup [11]. These greedy techniques avoid an exhaustive
search and they turn out to often work well in practice.
However, these methods are not known to converge in general
and they can stall in a local minima. Recently, phase retrieval
problems have been treated using semidefinite relaxation and
low-rank matrix recovery ideas [12]–[16]. To date, these
convex approaches are the only ones providing guarantees
on the recovery performances under some specific conditions
(given in Section IV).
On the other hand, the phase retrieval problem may be ill-
posed since its solution is, in general, not unique. In particular,
the 1-D phase retrieval problem is known to admit multiple
solutions [17]. Most existing methods seek to overcome this
non uniqueness by imposing additional constraints on the
signal to be retrieved such as its non-negativity or its sparsity.
Recently, approaches assuming no prior information on the
signal at all but using multiple structured measurements have
been successfully proposed for optical setups [12], [18].

In this paper, we focus our investigation on the phase
retrieval for microwave 1-D (linear) arrays. Our objectiveis to
retrieve the complex array element excitations from its farfield
magnitude measurements. An efficient approach combining
convex programming (to solve the phase retrieval problem)
and two measurement runs (to mitigate the non uniqueness of
the solution) is proposed. To the authors’ best knowledge, it
is the first time that convex relaxation based approaches are
exploited to address phase retrieval problems in microwave
applications. The goal of this paper is to empirically show that
under appropriate conditions (of sampling and noise level), it
is possible to uniquely recover the excitations of 1-D array
from phaseless far field data.

The paper is organized as follows. The phase retrieval
problem is formulated for 1-D microwave array imaging in
Section II. Two algorithms to efficiently retrieve the array
excitations are described and compared in Section III. Their
application to array imaging problem and specifically a simple
procedure to mitigate the solution ambiguities is proposedin
Section IV. The numerical performances of the proposed phase
retrieval procedure, namely the influence of the oversampling
and the robutness to noise, are assessed in Section V. The
conclusion and perspectives of this work are finally discussed.
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II. PROBLEM FORMULATION

The phase retrieval seeks to reconstructN complex excita-
tions x given only the magnitude ofM linear measurements
y. It can be formulated as follows:

find x subject to|Ax| = y (1)

where A ∈ CM×N is the sensing matrix,x ∈ CN and
y ∈ RM . This problem is difficult to solve because the
set of real or complex numbers with a given magnitude is
non-convex. An exhaustive search is untractable since, even
in the real case, there are2M possible assignments of sign
to the M phaseless measurements. Moreover, the problem
may be ill-posed. Depending on the properties of the matrix
A, the mapping from the magnitude measurementsy to the
excitationsx is or is not one-to-one and hence unique recovery
is not possible in general.

The geometry of the investigated problem, i.e. the imaging
of a linear array, is represented in Fig. 1. The magnitude of

xn

θ

0

rn

fn(θ)

Linear array

excitations

Far field 

magnitude 

measurements
y(θm)

y(θ1) y(θM)

xNx1

Fig. 1. Geometry of the linear array imaging problem with thenotations.

the measured far field in the directionθm is related to the
excitationsx to be retrieved as follows:

y(θm) =

∣∣∣∣∣

N∑

n=1

Am,n xn

∣∣∣∣∣ with Am,n = fn(θm)ej
2π

λ
rn sin θm

whereλ is the free space wavelength,rn andfn(θm) are the
position and the far field pattern in the directionθm of then-th
antenna respectively and the time conventionejωt is omitted
for clarity. Let us denote witham the vector of dimensionN
whose elements are those of them-th row of A, it is the array
steering vector in the directionθm. The problem (1) can then
be rewritten:

find x subject to|amT x| = ym, for m = 1, ...,M (2)

with ym = y(θm) and where(.)T is the transpose operator.
The radiated field is thus related to the excitations by a discrete
Fourier transform in the case of isotropic sources, i.e. when
fn(θ) = 1, ∀n. The problem is then ill-posed since many
different sets of excitations have the same Fourier transform
magnitude.

The ways (a) to solve the non-convex phase retrieval
problem and (b) to mitigate the non-uniqueness (also called
ambiguities) of the solution in order to uniquely recover the

underlying excitations are addressed in Section III and IV
respectively.

III. R ESOLUTION METHODS

Two convex relaxation approaches are now described to
approximate in order to efficiently solve the phase retrieval
problem (2).

A. PhaseLift

The first convex relaxation of the phase retrieval problem
has been introduced by Candes et al. [12]–[14]. He observed
that the non-convex measurementsy on vectorsx become
linear measurements on matricesX = xxH where(.)H is the
Hermitian conjugate. The measurements can be rewritten:

y2m = xHAmx = Tr(AmX)

whereAm = amamH are hermitian matrices andX = xxH is
a rank-one Hermitian matrix.
The phase retrieval problem (2) becomes:

find X

subject to Tr(AmX) = y2m, m = 1, ...,M

X � 0

rank(X) = 1

(3)

that is equivalent to:

minimize rank(X)

subject to Tr(AmX) = y2m, m = 1, ...,M

X � 0

(4)

since there exists by definition a rank-one solution.
The problem (4) is a combinatorially hard problem. However,
for positive semidefinite matrices, i.e. in this case sinceX � 0,
the rank functional can be approximated by a convex surrogate,
the trace norm as proposed in [19]. The problem (4) becomes:

minimize
X

Tr(X)

subject to Tr(AmX) = y2m, m = 1, ...,M

X � 0

(5)

which is a semidefinite program that is then convex and effi-
ciently solvable. The original vectorial phase retrieval problem
is thus convexified by ”lifting” it up to a matrix recovery
problem hence the namePhaseLiftintroduced by [12], [13].
In practice, the measurements are contaminated by noise:

ym = |am
T x + nm|, for m = 1, · · · ,M

wherenm is a noise term. The equalities in (5) no longer hold
in presence of noise. The following formulation has then been
proposed in [14]:

minimize
X

M∑

m=1

∣∣Tr(AmX)− y2m
∣∣ (6)

subject toX � 0.

In words, solving (6) amounts to find the positive semidefinite
matrix X that best fits the observed data in anℓ1 sense. The
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solution of (6) will be from now on referred to as PL (for
PhaseLift).
If the solution X̂ of (6) happens to have rank one, then
X̂ = x̂x̂H and x̂ is the optimal solution of the original phase
retrieval problem (2). Otherwise, one extracts the best rank
one approximation of̂X: X̂1 = σ1u1u1

H where σ1 is the
largest eigenvalue of̂X and u1 is the associated eigenvector.
The vector̂x =

√
σ1u1 is then an approximate solution of (2).

For further information related to convex relaxations of
quadratic problems, we refer the interested reader to the
tutorial [20].

B. PhaseCut

A different strategy has been proposed in [15], [16] to
solve the phase retrieval problem by explicitly separatingthe
amplitude and phase variables in order to only optimize the
value of the phase variables. By factoring out the magnitude
information, we can writeAx = diag(y)u whereu ∈ CM is a
phase vector satisfying|um| = 1 for m = 1, ...,M . The phase
retrieval problem can be expressed as follows:

minimize
u∈C

M ,|um|=1

x∈C
N

‖Ax − diag(y)u‖22 (7)

where we optimize over both variablesu andx.
The minimization overx is a standard least square and can
be solved explicitly:x = A† diag(y)u whereA† is the pseudo
inverse ofA. The problem (7) is equivalent to:

minimize
u∈CM ,|um|=1

‖AA† diag(y)u − diag(y)u‖22. (8)

The objective of (8) can be rewritten:

‖AA† diag(y)u − diag(y)u‖22 = ‖(AA† − I ) diag(y)u‖22
= uH diag(yT )R̃ diag(y)u

where R̃ = (AA† − I)H(AA† − I ) = (I − AA†). The phase
retrieval problem (1) becomes:

minimize
u∈CM

uHRu (9)

subject to|um| = 1, m = 1, ...,M

where the Hermitian matrixR = diag(y)(I − AA†) diag(y) is
positive semidefinite.
The problem (9) is equivalent to:

minimize
U

Tr(RU)

subject to diag(U) = 1

U � 0

rank(U) = 1.

(10)

By dropping the non-convex rank constraint, we obtain the
following convex relaxation:

minimize
U

Tr(RU)

subject to diag(U) = 1

U � 0

(11)

that is very similar to theMaxCutsemidefinite program hence
the namePhaseCut(denoted PC in the sequel).

As in the PL procedure, if the solution has a rank larger
than one, the leading eigenvector ofU is used to build an
approximate solution̂u of (11) from which an approximate
solution of (2) is derived:̂x = A† diag(y)û.

C. Discussion

By trading non-convex constraints into convex ones, we
have transformed a vector problem into a matrix one. This
“lifting” leads to a much larger representation of the state
space which means a higher computational cost. It also implies
that we must deal with a highly underdetermined problem
since for the PL procedure, there areN2 unknowns (instead
of only N ) for M = O(N) magnitude measurements. As
explained in [21], this apparent lack of data is compensated
by the fact that we are only looking for rank one matrices.
It is also worth noting that the computational complexity of
the PC algorithm (11) is higher than the one of PL (6) since we
are looking in the space of Hermitian matrices of dimension
M for PC instead of onlyN for PL.
Last but not least, both convex relaxations (6) and (11) can be
solved optimally by readily available software such as CVX
[22].

IV. A PPLICATION TO ARRAY IMAGING PROBLEMS

The problem of ambiguity in phase retrieval problems is first
discussed, existing solutions to mitigate this non uniqueness
are reviewed and a simple approach suitable to microwave
antenna arrays is proposed. Then, the way to quantify the
recovery performances of the proposed approach are detailed.

A. Non-uniqueness (Ambiguities) of the solution

In the general case, the solution to the phase retrieval
problem (1) is not unique and the best we can strive for is
to retrievexn up to a phaseα, a ”mirror function”, and an
unknown shiftδ. Indeed, ifxn with n=1,...,N is a solution
to (1), then ejαxn, x∗

N+1−n and xn at locationsrn − δ
are respectively also solution. Note thata∗ is the complex
conjugate ofa. Since we assume that the positionsrn of
the array elements are known, the last ambiguity (unknown
shift) type does not exist. More specifically, for a linear array
composed ofN equispaced identical elements, there are up to
2N−1 possible solutions as explained in [23].

To mitigate the ambiguities arising in phase retrieval prob-
lems, the oversampling in the Fourier domain (i.e. the in-
creasing of the measurement pointsM ) has been shown to
almost always work in the case of 2D Fourier transform [24].
However, this technique offers no benefits for 1D recovery as
discussed in [12], [15], [17] and therefore cannot be used for
our application.
Another approach is to try to render the sensing matrixA
as “random” as possible in order to make unique recovery
possible. For that purpose, a measurement setup using of an
electronically controlled reflectarray between the microwave
antenna under test and the measurement probe has been
proposed in [25]. The idea is to switch randomly the elements
of the reflectarray to obtain a random sampling of the field
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radiated by the antenna under test. This solution, that is
theoretically very appealing, seems in practice difficult and
costly to implement.
In optics, many techniques have been successfully applied
to resolve the phase ambiguity problem. They consist in
using multiple independent measurements to somehow gather
different views of the object under test as reviewed in [12].
Thus, taking multiple diffraction patterns by adding a mask
or modulating the light beam with an optical grating usually
yields uniqueness. In that case, the sensing matrix can be
seen as the product between the discrete Fourier transform
matrix and a mask or filter that is a diagonal matrix with
either random binary or Gaussian entries.
Recently, an interesting framework [26] (called vectorialphase
retrieval by the authors) has been proposed to efficiently
solve the phase retrieval problem. It is shown that the unique
reconstruction of two signals is possible by measuring their
spectral intensity signals and their pairwise interferences.

The previously described techniques are difficult to imple-
ment in microwaves that is why we propose the following
approach. As done in holography [27], we assume that we have
a reference antenna whose complex radiation patternyref (θ)
(the vectoryref of dimensionM after discretization) is known.
We measure the magnitude of the far field radiated by:
- the array under testyAUT = |AAUT x| and
- the interference between the array under test and the refer-
ence antennayAUT+ref = |AAUT x + αyref |
where α is the excitation (not necessarily known) of the
reference antenna.
This simple procedure allows to mitigate the ambiguities
due to the “mirror function” and the excitations are then
determined up a global phase. If in addition the phase of the
excitationα is known (after a calibration for instance), then
the solutionx is unique.
The matrixA ∈ C2M×(N+1) and the measurement vectory in
(1) becomes:

A =

[
AAUT | 0M
AAUT | yref

]
andy =

[
yAUT

yAUT+ref

]
(12)

where0M is a vector of zeros of dimensionM .

B. Recovery Performances

1) Recovery Error:The phase retrieval algorithms (6) and
(11) compute an approximate solutionx̂ from y = |Ax|. Their
performances are typically assessed by computing the relative
“distance” between the exact solutionx and the recovered
one x̂. Special care must be taken since a solution may be
unique up to a global phase (for complex values) / sign (for
real values) (if the excitation of the reference antenna is not
known). Thus, the error in excitation denotedǫ(x, x̂) can be
computed as:

min
α∈[0,2π]

‖ejα x − x̂‖2
‖x‖2

or
‖xxH − x̂x̂H‖F

‖xxH‖F
(13)

where ‖.‖F stands for the Frobenius norm. This second
definition, easier to compute, will be used in Section V.

The error over the measured field amplitudes is:

ǫ(|Ax|, |Ax̂|) = ‖ |Ax| − |Ax̂| ‖2
‖Ax‖2

. (14)

If a low excitation errorǫ(x, x̂) implies a low error over the
measured field amplitudesǫ(|Ax|, |Ax̂|), the opposite is not
necessarily true. Indeed, when the phase retrieval problemdoes
not have a unique solution, we may have a lowǫ(|Ax|, |Ax̂|)
but ǫ(x, x̂) ≫ ǫ(|Ax|, |Ax̂|).
Although the quantities (13) and (14) are useful to assess
and compare the efficiency of the algorithms PL and PC,
they are not very speaking. In order to appreciate the results
with more physical insights, we compute the mean values of
the excitation amplitude ratio and phase difference (denoted
µm(x, x̂) andµp(x, x̂) respectively):

µm(x, x̂) =
1

N

N∑

i=1

δmi with δmi =
|x̂i|
|xi|

(15)

µp(x, x̂) =
1

N

N∑

i=1

|δpi| with δpi = (∠x̂i −∆φ)− ∠xi

where∆φ the global phase shift betweenx and x̂ is equal to
∆φ = 1

N

∑N
i=1(∠x̂i − ∠xi).

We derive from (15) the standard deviation in amplitude and
phase (σm(x, x̂) andσp(x, x̂) respectively):

σm(x, x̂) =

[
1

N

N∑

i=1

(δmi − µm(x, x̂))2
]1/2

(16)

σp(x, x̂) =

[
1

N

N∑

i=1

(δpi − µp(x, x̂))2
]1/2

in order to measure the degree of confidence in the retrieved
excitation magnitudes and phases.

2) Noise: The reconstruction of the excitations in pres-
ence of noise is crucial for practical applications. In our
experiments, the magnitude measurementym is polluted by a
Gaussian white noisenm as follows:ym = |amT x+nm|. The
level of this noise is quantified by the Signal-to-Noise Ratio
(SNR): SNRdB = 10 log10(Psignal/Pnoise) wherePsignal =

maxm=1,··· ,M (|am
T x|2) is the maximum measured power.

In order to estimate the SNR of a far field measurement in
an anechoic chamber, both the full equipment system (noise
floor of the receiver, transmitted power and losses due to the
cables and rotary joints) and the reflectivity of the chamber
itself must be taken into account. A SNR value of 60 dB, that
corresponds to a reasonably good anechoic chamber, will be
considered for the numerical applications of Section V.

3) Sampling (M/N ): Up to date, the convex approaches are
the only ones to offer guarantees on the recovery performances
for phase retrieval problems. It means that under appropriate
conditions, the difficult problem (2) is equivalent to the convex
program (6) or (11) in the sense that they have the same
unique solution. If the numberM of equations|am

T x| = ym
are sufficiently randomized and at least on the order ofN , it
has been demonstrated in [14] that the solution to the convex
relaxation (6) is exact (i.e. it is the same as the one of (2))
with a probability approaching one exponentially, asM is
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increased. It is important to point out that these results have
been established for sensing matricesA with Gaussian i.i.d.
(independent and identically distributed) entries.
In the next Section, we will numerically check if similar results
hold in the case of 1-D microwave array imaging, i.e. when
the sensing matrix is not Gaussian but of the form of a discrete
Fourier Transform.

V. NUMERICAL RESULTS

The goal of this Section is to numerically assess the recov-
ery performances of the phase retrieval algorithm (6) and (11).
In the retrieval procedure, the element positions and radiation
patterns of the array under test, i.e. of the sensing matrixA,
and the reference antennayref are assumed known.
For each configuration, the simulation is repeated 100 times
with different random excitations (whose magnitude and phase
are chosen uniformly between[0, 1] and [0, 2π] respectively),
different random measurement vectors (whose angle are cho-
sen uniformly such that−1 ≤ sin θ ≤ 1) and a Gaussian white
noise in order to get meaningful results. All presented results
are average values over these 100 simulations.

A. Linear Array of Isotropic Sources

1) Settings: We consider a linear array composed ofN
isotropic half wavelength spaced elements that are excited
by a random amplitude and phasexn. A reference antenna
(also isotropic) with an arbitrary excitation (fixed but chosen
randomly in the simulations) is placed at an arbitrary distance
(2λ in the simulations) from the extremity of the array under
test. It has been checked numerically that both the position
and excitation value of this source with respect to the array
under test do not impact the recovery performances.

2) Influence of the Sampling:The influence of the ratio
M/N (number of measurement points over number of excita-
tions to retrieve) on the recovery performances is investigated.
The error in excitationsǫ(x, x̂) is plotted as a function of the
sampling for linear arrays of various elementsN in Fig. 2.
In absence of noise, there is a clear transition between ‘bad’
and ‘good’ recovery atM = 2N . In presence of a realistic
noise (SNR=60 dB), a less sharp transition also exists around
M = 2N . Generally speaking, for a given samplingM/N ,
the recovery performances are better for a small number of
array elementsN .

1 1.5 2 2.5 3

−80

−60

−40

−20

0

no noise SNR=60dB

1 2 3 4
−30

−20

−10

0

ǫ(
x,

x̂)
[d

B
]

ǫ(
x,

x̂)
[d

B
]

samplingM/NsamplingM/N

Fig. 2. Error in the retrieved excitation amplitudes as a function of the
sampling with PhaseLift for linear array of various elements (N=5, 10, 20,
30, 40).

To evaluate the reconstruction quality as a function of the
sampling, let us plot in Fig. 3 the reconstruction errors in
amplitude and phase for a linear array ofN=10 elements in
presence of noise (SNR=60 dB). We retrieve, as seen above,
the significant improvement in recovery performances when
M = 2N . Then, The oversampling helps to further improve
up to a certain extent the recovery performances as shown in
Fig. 3 for M > 2N .
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Fig. 3. Recovery performances with PhaseLift (solid line) and PhaseCut
(dotted line) for a linear array ofN=10 isotropic sources: influence of the
sampling (M/N ) for measurements with a SNR of 60 dB.

3) Robustness to Noise:Let us choose a samplingM = 2N
in order to see the influence of the noise on the excitation
recovery.
The influence of the SNR on the retrieved excitations and field
amplitudes (ǫ(x, x̂) andǫ(|Ax|, |Ax̂|) respectively) is plotted in
Fig. 4. There is clearly a linear behavior between these errors
and the SNR with a log-log scale. This graceful degradation
shows that both convex approaches PL and PC provide a stable
recovery in presence of noise.
The reconstruction errors in excitation amplitude and phase
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Fig. 4. Error in the retrieved excitations and field amplitudes for a linear
array ofN =10 elements as a function of the SNR with PhaseLift (solid line)
and PhaseCut (dotted line). The markers (circle for PL and square for PC)
are the results without noise.

are plotted in Fig. 5 as a function of the SNR. They show
that above a given SNR (of 60 dB forM/N = 2), the recon-
struction is very good in amplitude and fairly good in phase.
In presence of important noise (SNR< 60 dB), the algorithm
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PC seems to yield a better reconstruction (especially in phase)
than PL. This better performance may be explained by the
decoupling between magnitude and phase reconstruction of
the PC procedure (see Section III-B).
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and PhaseCut (dotted line).

B. Linear Array of Realistic Sources

1) Settings:Let us consider a linear array of five patches
with an open ended waveguide that plays the role of the
antenna of reference to overcome the ambiguity problem, see
Fig. 6. The field radiated by the array is computed by a 3D
full wave commercial software (Ansys HFSS) in order to get
the sensing matrixA and far field magnitudey.

0.6 λ

1 λ

Fig. 6. View of the array of five patchs whose excitations are to be
retrieved with the reference antenna (an open ended waveguide) to overcome
the ambiguity problem.

2) Influence of the Sampling:In absence of noise, a perfect
recovery, i.e. an error in excitation amplitude and phase
lower than 10−5 dB and deg respectively and a very low
standard deviation, is achieved as soon asM ≥ 2N . Generally
speaking, better recovery performances are achieved in the
case of realistic sources compared to isotropic ones. The
ambiguity problem is indeed intrinsically reduced when the
radiation patterns of each element are not all identical.
The influence of the oversampling on the recovery perfor-
mances in presence of noise (SNR=60 dB) are plotted in Fig.
7. An oversamplingM > 6N does not bring any further
improvement.
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Fig. 7. Recovery performances for a linear array of five patches: influence of
the sampling (M/N ) for measurements with a SNR of 60 dB with PhaseLift
(solid line) and PhaseCut (dotted line).

3) Robustness to Noise:The error in the retrieved excita-
tions and field amplitudes increases linearly (in a log-log scale)
with the noise. This robustness to the noise (not reported) is
similar to the one of isotropic sources of Section V-A.3.
The reconstruction errors in excitation magnitudes and phases
are shown in Fig. 8 as a function of the SNR for an over-
sampling ofM = 3N . In that case, a very good recovery
is achieved for SNRs greater than 60 dB. The algorithm PC
provides a slightly better recovery in case of low SNR as for
the case of isotropic sources (see Section V-A.3).
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Fig. 8. Recovery performances for a linear array of five patches: influence of
the SNR with PhaseLift (solid line) and PhaseCut (dotted line) for a sampling
M = 3N .

VI. CONCLUSION

A methodology has been proposed to efficiently solve the
phase retrieval problem arising in microwave linear array.The
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goal is to retrieve the complex array excitations from the
measurements of the far field magnitude only. A procedure
combining convex optimization and two measurement runs has
been developed and numerically assessed in various represen-
tative and realistic conditions of noise and sampling. Promis-
ing results have been obtained: an excellent amplitude and
phase excitation recovery is achieved for a sampling (number
of measurement samples over excitation points) of above a
factor two in presence of a realistic noise of SNR equal to
60 dB. This procedure is new in the field of microwave antenna
measurements and seems to be promising to significantly
reduce the cost of future microwave imaging systems.

This work calls for several appealing extensions. First, the
application of the proposed approach to 2-D array phase
retrieval should be straightforward all the more as the problem
of ambiguities can be directly overcome by oversampling.
The effort should then focus on reducing the computational
complexity to solve the convex relaxations. Second, it would
be of great interest to assess the efficiency of the proposed
phase retrieval approach in the case of near field data. The
proposed approach for far field data could be a priori used
by only changing the sensing matrix. However, several crucial
parameters such as the distance array under test - probe and
the range of the probe measurements have to be carefully ad-
dressed. Finally, the phase retrieval method must be testedon
real measurement data and we hope to report such experiment
in a future publication.
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