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By means of extensive contact dynamics simulations, we analyze the combined effects of polydispersity both
in particle size and in particle shape, defined as the degree of shape irregularity, on the shear strength and
microstructure of sheared granular materials composed of pentagonal particles. We find that the shear strength
is independent of the size span, but unexpectedly, it declines with increasing shape polydispersity. At the same
time, the solid fraction is an increasing function of both the size span and the shape polydispersity. Hence, the
densest and loosest packings have the same shear strength. At the scale of the particles and their contacts, we
analyze the connectivity of particles, force transmission, and friction mobilization as well as their anisotropies.
We show that stronger forces are carried by larger particles and propped by an increasing number of small
particles. The independence of shear strength with regard to size span is shown to be a consequence of contact
network self-organization, with the falloff of contact anisotropy compensated by increasing force anisotropy.

DOI: 10.1103/PhysRevE.91.032203 PACS number(s): 45.70.−n, 83.80.Fg, 61.43.−j

I. INTRODUCTION

Most granular materials in their natural state or processed
industrially are characterized by a broad range of particle
shapes and sizes. For example, it is often a tedious task to
describe in a simple way various shapes and size distributions
of the fragments found in a coarse material generated by
progressive fracturing of a rock or those of aggregates formed
in a sintered powder. Although this polydispersity in the
composition of granular materials is an obvious aspect of gran-
ular rheology, recent theoretical and experimental research
has mainly focused on monodisperse systems composed of
spherical particles. Hence, the effects of increasing departure
from spherical shape and increasing size span on the structure
and strength of granular materials are still largely open issues
in granular research.

Some of these effects have recently been addressed by
experiments and discrete numerical simulations [1–15]. For
particle size, the most relevant effects arise from size span,
which determines how in a packing the space is filled by
particles of different sizes [2,16,17]. A broader size span
leads to a denser packing, and it is commonly assumed that
denser packings have a higher shear strength. However, contact
dynamics (CD) simulations show that in cohesionless granular
materials the shear strength is nearly independent of size
span [4]. The shape of the particle size distribution is of second
order compared to the size span but has not yet been the subject
of systematic investigation. As for particle shapes, there is no
unique description, and several disjoint shape parameters, such
as roundedness and elongation, have been used to characterize
particle shapes [18,19]. It was recently shown that the solid
fraction and shear strength are mainly controlled by a generic
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parameter quantifying the difference between arbitrary particle
shapes and spherical shape [9]. The shear strength is an
increasing function of this parameter, whereas the packing
fraction first increases and then declines, with a peak value
well above the solid fraction of a disk packing.

In this paper, we numerically investigate the rheology of
packings of irregular pentagonal particles and the effects
of two polydispersity parameters: (i) size span and (ii)
degree of shape irregularity. Although all the particles have
pentagonal shapes, the degree of shape irregularity, defined
from the angular positions of vertices, may be considered a
shape polydispersity parameter that, together with size span,
controls the structural properties of the granular assembly
and its stress-strain behavior. In a previous paper, the rich
structural properties of similar pentagon packings were studied
for the same polydispersity parameters in dense states obtained
by isotropic compaction [20]. The focus of this paper is
the rheological properties of the same samples subjected to
biaxial compression. The packings are analyzed in terms of
their shear strength, solid fraction, particle connectivity, and
fabric and force anisotropies as functions of the size and shape
polydispersities.

We introduce in Sec. II the numerical approach, system
characteristics, and loading parameters. In Sec. III we focus
on the evolution of shear strength and packing fraction with
polydispersity parameters. The microstructure is analyzed
in Sec. IV in terms of connectivity, and fabric and force
anisotropies. We conclude in Sec. V with a summary of the
most important results of this work and possible routes to
future research.

II. MODEL DESCRIPTION

Simulations were carried out by means of the CD
method [21–24]. The CD method is a discrete element
approach for the simulation of nonsmooth granular dynamics
with contact laws expressing mutual exclusion and dry friction
between particles and an implicit time integration scheme.
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δ = 0 δ = 0.5 δ = 1.0

FIG. 1. (Color online) Regular pentagon (δ = 0) deformed into
irregular pentagons for two values of parameter δ.

Hence, this method is numerically unconditionally stable and
suited to the simulation of frictional contacts between particles.
It has been extensively used for the simulation of granular
materials [2–4,7,10–13,25–29].

For a systematical investigation of the effect of polydis-
persity, strict procedures need to be used in order to generate
particle shape and size with continuously varying parameters.
Let us consider a regular pentagon such as that shown in Fig. 1.
The angular position of a vertex k is given by θk = θ0 + 2kπ/5,
where θ0 is the position of the first vertex and k is an integer
varying from 1 to 5. This regular pentagon can be transformed
into an irregular pentagon by changing the angular positions
of vertices k as

θk = θ0 + k
2π

5
± π

5
r[0,δ], (1)

where r[0,δ] is a random variable in the range [0,δ]. The
parameter δ reflects the degree of shape irregularity and
represents, in this sense, a shape polydispersity parameter
for pentagons. Figures 1(b) and 1(c) show two examples of
irregular pentagons for two values of δ.

The size of a pentagonal particle is defined by the diameter
d of its circumscribed circle. The diameters of the particles are
varied in the range of [dmin,dmax] with a uniform distribution
of particle volume fractions. We define the size span s of the
distribution by [2]

s = dmax − dmin

dmax + dmin
. (2)

The case s = 0 corresponds to a monodisperse packing,
whereas s = 1 corresponds to “infinite” polydispersity. In this
work, s was systematically varied in the range [0.01,0.9].

For each choice of the values of s and δ, 5000 particles
are initially placed on a square network in a rectangular
box of dimensions l0 × h0 and deposited under the action
of gravity g. Then the gravity is set to 0 and the packings
are subjected to vertical compression applied on the upper
wall, with the left, bottom, and right walls kept immobile. The
friction coefficient between particles and with the walls is set
to 0 during compression in order to obtain dense and isotropic
packings. This procedure is stopped when a persistent contact
force network in obtained and fluctuations around the mean
values of the solid fraction and connectivity of the contact
network remain below 0.1%. The morphology and structure
of isotropic packings obtained by this protocol were analyzed
in a previous paper by Nguyen et al. [20].

The isotropic samples are then subjected to vertical com-
pression by downward displacement of the top wall at a
constant velocity ẏ for a constant confining stress σ0 acting on

the lateral walls. The friction coefficient μ between particles
is set to 0.4, and that with the walls to 0. The zero friction
with the walls prevents stress gradients such as those that lead
to the Janssen effect [30]. The vertical shear rate ẏ/y is low
enough to ensure quasistatic conditions by reducing the inertia
parameter I given by (in two dimensions) [31]

I = ε̇

√
m

p
, (3)

where m is the mean particle mass and p is the mean pressure.
The quasistatic limit is characterized by the condition I � 1.
In our simulations, I was below 10−3. Each sample is sheared
until a steady state is reached with a nearly constant packing
fraction.

Our system with 5000 particles is large enough to reflect
the macroscopic behavior of the granular material in shear.
By averaging the data over three independent simulations with
different initial configurations, we get accurate values of the
shear stress and packing fraction. The standard deviations
calculated over several snapshots during the residual steady
state and for three independent simulations are shown in Fig. 4
by error bars. We see that the variability of these data is quite
small compared to their average values. In this sense, up to wall
effects, which can, to some extent, affect the average values
of stress deviator and packing fraction, our system mimics a
representative volume element, as usually required for probing
the intrinsic rheology of a material.

For data analysis, for each set of the values of s and δ,
the mean behavior is obtained by ensemble averaging over
three independent initial configurations. The results presented
in this paper are based on 108 sheared samples for six values of
size polydispersity s ∈ [0.01,0.9] and for six values of shape
polydispersity δ ∈ [0,1]. Snapshots of packings obtained at
the end of compression are shown in Fig. 2. We see that
the resulting microstructures are very different for different
values of s and δ. In the following sections, we are interested
in the mechanical behavior of these different geometries. In
particular, we see that the shear strength is the same in the
samples in Figs. 2(a) and 2(b), which have the same shape
polydispersity but different size polydispersities, but it is lower
in the Fig. 2(c) sample, which has a larger shape polydispersity.
For video samples of the simulations, see Ref. [44].

III. MECHANICAL BEHAVIOR AT THE MACROSCALE

The shear strength of a granular material is characterized
by the coefficient of internal friction ϕ, which requires the
stress tensor σ at any stage of deformation calculated from
the contact network and forces. For the calculation of the
stress tensor, we use the internal moment M i of each particle
i defined by [25,32]:

Mi
αβ =

∑
c∈i

f c
α rc

β, (4)

where f c
α is the α component of the force exerted on particle i

at contact c, rc
β is the β component of the position vector of the

same contact c, and the summation runs over all contacts c of
neighboring particles with particle i (denoted c ∈ i). It can be
shown that the internal moment of a collection of rigid particles
is the sum of the internal moments of individual particles. The
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FIG. 2. (Color online) Snapshots of dense packings obtained at
the end of compression, here for (a) (s,δ) = (0.01,0), (b) (s,δ) =
(0.9,0), (c) (s,δ) = (0.01,1), and (d) (s,δ) = (0.9,1).

stress tensor σ in a portion of the material of volume V is
simply the bulk density of internal moments given by [25,32]

σ = 1

V

∑
i∈V

M i = 1

V

∑
c∈V

f c
α 
c

β, (5)

where �c is the intercenter vector joining the centers of the two
touching particles at contact c. Note that the first summation
runs over all particles, whereas the second summation involves
the contacts in the volume, with each contact appearing only
once. We extract the mean stress p = (σ1 + σ2)/2 and the
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(b)

FIG. 3. (Color online) Normalized shear stress q/p (a) and solid
fraction ρ (b) as a function of cumulative shear strain εq for different
values of the polydispersity parameters s and δ.

stress deviator q = (σ1 − σ2)/2, where σ1 and σ2 are the
principal stresses. The major principal direction during vertical
compression is vertical.

The strain parameters are the cumulative vertical, horizon-
tal, and shear strains ε1, ε2, and εq , respectively. By definition,
we have

ε1 =
∫ h

h0

dh′

h′ = ln

(
1 + �h

h0

)
, (6)

where h0 is the initial height and �h = h0 − h is the total
downward displacement, and

ε2 =
∫ l

l0

dl′

l′
= ln

(
1 + �l

l0

)
, (7)

where l0 is the initial box width and �l = l − l0 is the total
change of the box’s width. The cumulative shear strain is then
given by

εq = ε1 − ε2. (8)

Figure 3 shows the normalized shear stress q/p and solid
fraction ρ as a function of the shear strain εq for different values
of polydispersity parameters. During biaxial deformation, the
shear stress jumps initially to a high value before decreasing
to a nearly constant value in the steady state. The friction
angle sin ϕ∗, defined from the mean value of q/p in the
steady state [18], is independent of the initial state, and thus
it represents the intrinsic shear strength of the material. All
samples dilate during shear and ρ declines from its value ρ iso

(see Sec. II) in the initial isotropic state and levels off at a
constant value ρ∗ in the steady state. The samples undergo an
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FIG. 4. (Color online) (a) Normalized friction angle sin ϕ∗ as a
function of s for all values of δ averaged in the steady state. Inset:
q/p as a function of δ for all values of s. (b) Solid fraction ρ∗ as a
function of s for all values of δ averaged in the residual state. Inset:
ρ∗ as a function of δ for all values of s.

almost-homogeneous dilation at low shear strains and thus ρ

decreases rapidly. At larger strains, dilation is localized within
shear bands appearing throughout the system. As the shear
bands develop at different locations inside the system, a nearly
homogeneous density ρ∗ is reached practically at εq = 0.4.

For our rigid particles the final solid fraction ρ∗ is
independent of the confining pressure, and like sin ϕ∗ it is
an intrinsic property of the material, reflecting basically the
particle shape and size distributions as well as the friction
coefficient between particles, which are the only parameters
of our granular model.

Figure 4 shows the average values of sin ϕ∗ and ρ∗ as a
function of both s and δ. For all shape polydispersities, the
shear strength is almost independent of s. This finding thus
extends to polygonal particles a similar behavior previously
observed in the case of circular particles [4]. We also
observe that, for all values of s, the shear strength declines
as δ increases; see the inset in Fig. 4(a). This finding is
unexpected because, even if the mean angularity (i.e., the
mean exterior angle between sides) remains constant with
δ, the particle shape anisometry increases, and it is known
that the shear strength is an increasing function of particle
elongation [7,33,34].

We also observe in Fig. 4(b) that the solid fraction increases
with both size and shape polydispersities. In other words, our
densest packings have the same shear strength as the loosest.
This is also a rather counterintuitive behavior, as it is often
believed that the shear strength in granular materials should
increase with the solid fraction. Such paradoxical behaviors

show that polydispersity in shape and size has profound effects
on the granular microstructure.

IV. PARTICLE-SCALE ANALYSIS

The geometrical organization (i.e., texture) and force
transmission in our simulated packings can be described in
terms of different statistical descriptors. We consider here these
geometrical and mechanical descriptors in order to quantify
the combined effects of polydispersity parameters on the
microstructure and their link with the shear strength.

A. Topology of the contact network

Figure 5 shows a snapshot of the contact network in the
steady state for four samples. As in the case of random close
packings analyzed in Ref. [20], the contact network topology
varies strongly with both s and δ. The general impression is
that the floating particles are mostly isolated for the highest
level of shape polydispersity, whereas they tend to appear
preferentially in the vicinity of other floating particles for the
most regular shapes. In the same way, floating particles are
mostly small for both shape and size polydispersities.

At lowest order, the connectivity of the contact network is
characterized by the proportion Xf of floating particles and
coordination number Z. Figure 6(a) shows Xf and z as a
function of s for all values of δ. We see that Xf increases
quickly from 0.15 to nearly 0.60 as s is increased, with an
insignificant influence of δ. But surprisingly, the larger values
of s lead to samples where less than half of the particles
contribute to the contact network while such packings are
the most compact ones. Indeed, high compactness implies a
dense arrangement of the particles, where force chains involve
a large number of particles in the contact network. This result
is discussed below by considering the role of particle size in
force transmission.

The inset in Fig. 6(a) shows the variation of Z as a
function of s for all values of δ. In contrast to Xf , Z remains
nearly constant as a function of s but increases with δ. For
instance, for s = 0.01, it increases from 2.9 to 3.2, which is
significant. This increase can be explained by the fact that
the angular exclusions among the neighboring particles of a
particle decrease due to the sharp corners of the most irregular
particles. Figure 6(b) shows the average coordination number
〈Z〉 as a function of the reduced size dr defined by

dr = d − dmin

dmax − dmin
. (9)

Interestingly, whatever the values of s and δ, we see a nearly
linear relation between Z and dr , with a slope that increases
quickly with s and to a lesser extent with δ. Smaller particles
have a lower number of contacts and therefore they are more
likely to be excluded from the contact network. In contrast,
larger particles are the most connected ones. In this way, larger
polydisersity leads to enhanced diversification of topological
configurations in the system. As shown in Fig. 5, the small
particles usually occur in groups located in the space between
larger particles. These groups can be entirely excluded from
the contact network or, conversely, be involved and thus form
a local structure with few contacts per particle.
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(a)

(b)

(c)

(d)

FIG. 5. (Color online) Snapshots of the contact network for
(a) (s,δ) = (0.01,0), (b) (s,δ) = (0.9,0), (c) (s,δ) = (0.01,1), and
(d) (s,δ) = (0.9,1). Floating particles (i.e., particles with one or no
contacts) are shown in white, and contacts are represented by line
segments joining the centers of mass of the particles to the contact
points.

B. Force chains and friction mobilization

Figure 7 shows several maps of normal forces and friction
mobilization at all contacts, defined as the ratio Iμ = |ft |

μfn
,

where fn and ft are normal and tangential force, respectively.
Visual inspection reveals that, at a high size span, stronger
forces are supported by larger particles, whereas most mo-
bilized contacts belong to the smallest particles. At a low
size span, no peculiar organization of mobilized contacts is
observed. Shape polydispersity does not seem to influence
these features.
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FIG. 6. (Color online) (a) Proportion Xf of floating particles as
a function of size span for all values of shape polydispersity and
(b) mean coordination number Z as a function of reduced diameter
dr for all values of size polydispersity.

Along with the force vector f , the local geometry asso-
ciated with the two contact neighbors is characterized by the
intercenter vector � joining the particle centers; see Fig. 8.
The length 
 of intercenter vectors varies greatly throughout
the network depending on the values of s and δ. For instance,
for regular pentagons (δ = 0) it is easy to show that




Rmax
∈

[
2

1 − s

1 + s
sin

π

3
; 2

]
. (10)

The upper bound corresponds to the case where two pentagons
are connected by a vertex-vertex contact. This is, however, a
statistically rare event. The lower bound corresponds to side-
side contacts between the smallest pentagons. The range of the
values of 
 becomes significant with increasing s and δ, and
we expect the intercenter vector lengths to be correlated with
the contact forces because of the contact configurations they
represent.

Figure 9(a) shows the average normal force 〈fn〉
 as a
function of 
 for all values of s at δ = 0 and δ = 1 (inset). For
s < 0.4, 〈fn〉
 is nearly equal to the mean force 〈fn〉. But for
larger size spans, allowing small particles to fit into the space
between largest particles, we observe two well-defined zones:
(i) the class of the shortest intercenter vectors 
 < Rmax, which
concentrates, on average, the forces above the mean 〈fn〉, and
(ii) the class of the longest intercenter vectors (
 > Rmax),
which carry a considerably stronger force. This increase
in the normal force with 
 means that the larger particles,
involved in longer intercenter vectors, capture stronger force
chains, whereas small particles concentrate small forces. This

032203-5
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(a)

(b)

(c)

(d)

FIG. 7. (Color online) Snapshots of force-bearing particles for
(a) (s,δ) = (0.01,0), (b) (s,δ) = (0.9,0), (c) (s,δ) = (0.01,1), and
(d) (s,δ) = (0.9,1). Floating particles (i.e., particles with one or no
contacts) are shown in white and normal forces are represented by the
thickness of the segments joining the particle centers. The diameters
of light-gray (red) circles are proportional to the friction mobilization
at each contact.

behavior recalls the bimodal feature of stress transmission in
granular materials [10,35,36], manifesting itself here in terms
of particle sizes.

Figure 9(b) shows the average friction mobilization 〈Iμ〉

as a function of 
 for all values of s at δ = 0 and δ = 1
(inset). At a low size span and shape polydispersity, 〈Iμ〉


FIG. 8. (Color online) Local geometry.

is nearly equal to the global mobilization 〈Iμ〉, except for
very long intercenter lengths, where 〈Iμ〉
 > 〈Iμ〉. But at larger
size spans the trend is reversed and we see that the class of
shortest branches is increasingly mobilized in friction (i.e.,
〈Iμ〉
 > 〈Iμ〉), whereas the distribution is nearly uniform for all
other contacts. Furthermore, as shown in the inset in Fig. 9, this
effect is enhanced with increasing shape polydispersity. This
class belongs to the weak force network as shown previously,
so that not only the friction mobilization 〈Iμ〉
 but also the
number of highly mobilized contacts is larger in the weak
force network. Note that a class of very weak forces was also
evidenced in a packing of disks deposited under gravity and
tilted towards its angle of stability [37,38] and in packings
composed of elongated particles subjected to shear [10].
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FIG. 9. (Color online) (a) Normal forces normalized by the mean
〈fn〉 and (b) friction mobilization index Iμ normalized by the mean
〈Iμ〉 as a function of the normalized intercenter length 
/Rmax.
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C. Anisotropy of the contact network

The most natural variables for the description of fabric
anisotropy are the probability distribution function P (n) of
contact orientations n and the average intercenter vector 〈�〉(n)
as a function of n. In a similar vein, the force anisotropy
can be characterized by the average contact force 〈 f 〉(n)
as a function of n [3,7,12,39–41]. In two dimensions, the
unit vector n is parametrized by a single angle θ , and the
intercenter vector � and contact force f can be represented by
their normal and tangential components. Thus, the probability
density Pθ (θ ) of contact orientations θ , the angular averages
of the components 〈
n〉(θ ) and 〈
t 〉(θ ) of the intercenter
vector, and the average components 〈fn〉(θ ) and 〈ft 〉(θ )
of forces as a function of contact orientation θ provide
a rich description of the anisotropic state of a granular
material.

The above functions tend to take a simple unimodal shape,
which can be well approximated by their truncated Fourier
expansions [3,7,39],

P (θ ) = 1

2π
{1 + ac cos 2(θ − θc)}, (11a)

〈
n〉(θ ) = 〈
n〉{1 + aln cos 2(θ − θln)}, (11b)

〈
t 〉(θ ) = 〈
n〉alt sin 2(θ − θlt), (11c)

〈fn〉(θ ) = 〈fn〉{1 + afn cos 2(θ − θfn)}, (11d)

〈ft 〉(θ ) = 〈fn〉aft sin 2(θ − θft), (11e)

where ac is the contact orientation anisotropy, aln is the normal
branch anisotropy, alt is the tangential branch anisotropy,
afn is the normal force anisotropy, and aft is the tangential
force anisotropy. The angles θc, θln, θlt, θfn, and θft are the
corresponding privileged directions. These directions can all
be different, but they nearly coincide with the principal stress
direction θσ in a sheared granular material, as illustrated in
Fig. 10 for different values of s and δ.

Figure 11 displays the anisotropy parameters, averaged in
the steady state, as a function of s for all values of δ and as
a function of δ for all values of s. We see that ac declines as
a function of both s and δ. The decrease in ac in the steady
state is compatible with the fact that the larger particles are
surrounded by an increasing number of small particles as s

and δ increase, as shown in Sec. IV A. At the same time, the
normal branch length anisotropy a
n increases with s since
the longest branch vectors occur between the largest particles,
which tend to align themselves along strong force chains. It is
remarkable that a
n is almost independent of δ, whereas a
t is
independent of both s and δ. Geometrically, the anisotropy a
t

reflects some degree of shape eccentricity or elongation of the
particles [7,42]. The polydispersity parameters s and δ do not
affect eccentricity.

The behavior of force anisotropies is quite similar. The
normal force anisotropy afn increases slightly with s but
is independent of δ. On the other hand, the friction force
anisotropy aft remains independent of both s and δ. Note
that the friction force anisotropy is proportional to the friction
mobilization Iμ. Indeed, integrating Eq. (11a e) in the range
[0,π/2] yields 〈Iμ〉 = 2aft/μ.

The anisotropy parameters ac, aln, alt, afn, and aft are inter-
esting not only as descriptors of the granular microstructure

θ=0

θ=π/2
s=0.01 ; δ=0
s=0.90 ; δ=0
s=0.01 ; δ=1
s=0.90 ; δ=1

(a)

θ=0

θ=π/2

(b)

θ=0

θ=π/2

(c)

θ=0

θ=π/2

(d)

θ=0

θ=π/2

(e)

FIG. 10. (Color online) Polar representation of the functions
(a) P (θ ), (b) 〈
n〉(θ ), (c) 〈
t 〉(θ ), (d) 〈fn〉(θ ), and (e) 〈ft 〉(θ ) (symbols)
and with truncated Fourier approximations (solid lines) for different
values of s and δ.

0.0 0.2 0.4 0.6 0.8 0.9
s

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 ac
afn
aft
aln
alt

0.0 0.2 0.4 0.6 0.8
s

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

δ=0.0
δ=0.2
δ=0.4
δ=0.6
δ=0.8
δ=1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
δ

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 ac
afn
aft
aln
alt

0.0 0.2 0.4 0.6 0.8 1.0
δ

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

s=0.01
s=0.20
s=0.40
s=0.60
s=0.80
s=0.90

(b)

FIG. 11. (Color online) Evolution of state anisotropies (a) as a
function of s for all values of δ and (b) as a function of δ for all values
of s in the steady shear state. Error bars correspond to the standard
deviation of the fluctuations in the steady state.
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FIG. 12. (Color online) Normalized shear stress as a function
of s for all values of δ (symbols and solid line) together with
harmonic approximations given by Eqs. (11) (dashed line). Error
bars correspond to the standard deviation of the fluctuations in the
steady state.

and force transmission, but more fundamentally because they
add together to build the shear strength of the material. Indeed,
it can be shown that the general expression, (5), of the stress
tensor leads to the following simple relation [7,12,39–41]:

sin ϕ � 1
2 (ac + aln + alt + afn + aft). (12)

The predicted values of sin ϕ∗ by this equation are shown in
Fig. 12 together with the measured values as a function of s

for all values of δ. We see that Eq. (12) approximates well
the friction angle for all values of s and δ. By virtue of this
equation, the independence of sin ϕ∗ with respect to s is a
consequence of the opposite variations of ac and a
n + afn

together with the fact that aft is independent of both s. On the
other hand, the decrease in sin ϕ∗ as a function of δ is due only
to the decrease in ac.

V. CONCLUSION

In this paper, a systematic investigation of the combined
effects of size span and particle shape polydispersity in
the quasistatic rheology of two-dimensional sheared granular
media has been undertaken by means of CD simulations.
We have worked with irregular pentagons characterized by
a shape polydispersity parameter δ, representing the degree
of deviation from a regular pentagon, and their size span s.
The numerical samples were subjected to biaxial compres-
sion until a steady shear state without volume change was
reached.

A central finding of this work is that the shear strength
is independent of the size span but declines as the shape
polydispersity increases. In contrast, the solid fraction in-
creases in a strongly nonlinear manner with both size span
and shape polydispersity. We have also performed a detailed
analysis of the microstructure. In particular, the fabric and
force anisotropies were analyzed as a function of the size and
shape polydispersity.

The independence of shear strength with respect to size
span was shown to be due to the falloff of geometrical
anisotropy compensated by an increase in the normal force
and branch anisotropies. This behavior is explained by the fact
that strong force chains are captured by the largest particles.

Schematically, the effect of increasing size span is to replace
the larger particles with a growing population of smaller
particles. The mean number of contacts around larger particles
increases and leads to a decrease in contact anisotropy and an
increase in branch and normal force anisotropies. We also
evidenced a correlation between contact forces and branch
vectors reflecting a subnetwork of very weak contacts with
high friction mobilization and small branch vector lengths.

A similar mechanism was observed for the decrease in shear
strength as a function of the shape polydispersity. The mean
number of contacts around the largest particles increases with
δ, reflecting the fact that the sharp corners of very irregular
particles allow for more contact neighbors than with regular
particles. As result, the contact orientation anisotropy declines
with δ, thus leading to the decrease in shear strength.

To our best knowledge, this work is the first systematic
investigation of shape polydispersity together with size poly-
dispersity in granular materials. Our findings clearly show
that an “average shape” is insufficient for modeling a granular
material. The shear strength is affected by the dispersion of
particle shapes, which control the local particle environments.
The size span, on the contrary, has almost no effect on the
shear strength as a result of the correlations between forces and
particle sizes (or branch vector lengths). Hence, the particles
may be represented by their “average size” as far as the shear
strength is considered.

Such rather counterintuitive features suggest the necessity
of further investigations of polydispersity effects with different
particle shapes such as elongated and/or nonconvex shapes,
in both two and three dimensions, in view of the realistic
modeling of naturally occurring or manufactured granular
materials. Complex particle shapes may be modeled through
their contour surface or as aggregates composed of spherical
particles. In molecular dynamics simulations, it is advanta-
geous to work with aggregates, as the contact interactions
between spheres are straightforward. But when the contours
of particles involve plane faces, it is necessary to resort to
special treatment of face-face contacts such as that employed
in the present work in the framework of the CD method.
In the same way, most natural granular materials involve
cohesive contacts. According to the Mohr-Coulomb criterion,
the shear strength of cohesive materials can be split into
an internal angle of friction and a macroscopic cohesion,
which reflects the aptitude of the material to sustain tensile
stresses. An open issue is how the macroscopic cohesion
is influenced by particle shape and size [43]. In all cases,
three-dimensional simulations require a much larger number
of particles compared to two-dimensional simulations for the
sake of statistical representativity of size populations and, thus,
a much more demanding computation time.
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