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Phase Change Simulation for Isothermal Compressible
Two-Phase Flows

F. Caro* F. Coquel |
CEA Saclay, 91191 Gif-sur-Yvette Cedex, France LJLL, Paris VI University, 75013 Paris, France
D. Jamet * S. Kokh §

CEA Grenoble, 38054 Grenoble cedex 9, France CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

We present a numerical scheme based on a two-step convection-relaxation strategy for
the simulation of compressible two-phase flows with phase change. The core system used
here is a simple isothermal model where stiff source terms account for mass transfer.

I. Introduction

For the past years a great deal of attention has been paid to the simulation of two-phase flows. These
flows are involved in a wide range of industrial applications from boiling crisis prediction to cavitating flows.
We focus here on the simulation of dynamical phase change between two compressible fluids. Previous works
such as Le Metayer'® managed to achieve such task for the case of very fast mass transfer phenomena.
We rather deal here with slower processes as Jamet® where both fluids are close to the thermodynamical
equilibrium. Moreover, we restrict ourselves to the case of isothermal flows and we also assume that both
fluids are in thermal equilibrium.

The phase change model adopted here has been introduced by Caro.* This model encompasses two
relaxation mechanisms through stiff source terms: a mechanical relaxation effect and a thermodynamical
effect that accounts for mass transfer.

We will first briefly recall the basic model and its properties. We shall then describe two equilibrium
submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Two numerical
schemes will then be introduced. Both schemes are based on a two-step strategy involving a convective step
(by the mean of a Godunov-type method) followed by a relaxation step. Finally, we shall present 1D and
2D numerical results with convergence tests.

II. Governing Equations

We consider a flow involving two phases represented by two compressible fluids. Each fluid o = 1,2 is
equipped with an equation of state (EOS) po — fa(pa) verifying

P, = _pidfa/dpav dPa/dpa = padga/dpaa
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where p,, is the density of fluid «, f,, Py and g4 = fo + Pa/pa are respectively the free energy, the pressure
and the free enthalpy of fluid . We note z,, the volume fraction of phase . We suppose that z; + 29 = 1
and note z = z;. Setting my = zapa, the model we study here reads

dymy + div(mau) = Mgz —g1),

Oyma + div(mau) = —Xg2 —g1), (1)
O¢(pu) +div(pu®@u+ PId) = 0,

Oiz+u-Vz = k(P — P),

where A and k are non negative parameters, p = mi + mg is the global density and P is defined as P =
> o ZaPa. This model shall be referred to as the relaxed system.
A. Hyperbolicity of the Relaxed System

Considering smooth solutions V = (p121, paz2, pu, 2)T, the system (1) is equivalent in 1D to the quasilinear
formulation

g2 — g1) uy2 —uyr Y
—Xg2 — g1) —uys uy1 y2 0
OV + A(V)2,V = R(V), R(V)= LAV = ,
2 (V) (V) (V) 0 (V) 2o 2o o M
k(P — P) 0 0 0 wu

where Yo = paza/p is the mass fraction of the a phase, ¢2 = dP, /dp, is the squared sound velocity of phase
o and M = OP/dz. Denoting by ¢ the mixture sound velocity defined by ¢ = > yac?, the matrix A(V)
possesses three distinct eigenvalues: A\ = u—c, Ay = A3 = u, Ay = u+c. The corresponding left eigenvectors
1, and right eigenvectors r; read

¢t +uc -t +c? —yac? c? —uc
1 3+ uc —y163 1| ¢ —yac? 1 c3 — uc
112—2 ) 122—2 ) 13:—2 ) 142—2 )
2¢ —c c 0 c 0 2c c
M —nM —y2 M M
Y1 1 0 (1
r; = b2 ) ro = 0 ’ r3 = 1 ) ry = &
uU—c U U u—+c
0 —c2/M c3/M 0

This eigenstructure shows that the system (1) is hyperbolic.

The system (1) is endowed with a (mathematical) entropy-entropy flux pair [pf +plu|?/2, (pf + plul?/2+
P)u]. Although (p121, pazz2, pu, 2) — (pf + plul?/2) is not convex, the following entropy equation is available

|u2 . |u2 2 2
O (pf + 07) + div Kpf too-+ P) u] = -1 — 92)° — k(P1 — P2)°,

which allows to derive an entropy inequality associated with the entropy-entropy flux pair

[u

2 . lu/?
O <pf+p7> +d1V|:<pf+PT+P) ll:| <0.
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B. Limit System k = 400, A < +00 (M-equilibrium)

The x = 400 assumption in the system (1) is formally equivalent to compute z € [0, 1] such that

() n (72).

for given fixed values my = p12z1 and mgy = pazs.

Proposition 1. We suppose that the functions P, : pa +— Pa(pa) are CL(RT), are strictly increasing on R
and tend to 400 when p, — +o0o. Then there exists a unique z*(my,mz) € [0,1] solution of the equation
(2). Moreover my — z*(mq,msg) is non-decreasing on RY, mo — z*(my,ms) is non-increasing on R*,
(m1, ma) — z*(my, me) is as reqular as po — Py, a =1,2.

Using z*, the M-equilibrium system reads

Oymq + div(myu) = AMg2—q1),
Oyma + div(mau) = =92 —g1), (3)
Ot(pu) +div(pu®@u+ PId) = 0,

with P =3 25P, =P, = P,.
Considering smooth solutions W = (p; 21, p222, pu)” of (3), the system (3) is equivalent in 1D to

u 0 p121 g2 — g1)
OW + B(W)0,W =S, B(W)= 0 u p2z2 |+ S=1| —Ag2—g1)
(1/p)0m, P (1/p)0m, P u 0

The matrix B(W) possesses three disctinct eigenvalues: \y = u—c*, Ao = u, A3 = u+c*, where ¢* is defined
by

1 ()
plc)? 2 Macy

«

This ensures the strict hyperbolicity of the M-equilibrium system (3).

C. Limit System x = +0c0, A = 00 (MT-equilibrium)

The condition k = +00, A = +00 (MT-equilibrium) is formally equivalent to determine my, mo and z, for a

given p, such that
m m m m
Py (—1) =P 2, g1 (—1) = g2 z ), p=mi+ ma. 4)
z 1—=2 z 1—2

System (4) is equivalent to find p; > 0, p2 > 0 and z € (0, 1) such that for a given p > 0

Pi(p1) = Pa(p2), g1(p1) = g2(p2), p=2zp1+ (1 —2)p2. (5)

Let us note that the above system does no longer depend on mj, ms and z, but solely on the parameter
p. Unfortunately, on the contrary of system (2), nor existence nor unicity for the solution of (5) is ensured.
However, this issue seems natural. Indeed, it expresses the fact that it is not possible to prescribe a mass
transfer mechanism between two fluids with two arbitrary EOS. A certain degree of compatibility between
both fluids EOS is required in order to define correctly the thermodynamical equilibrium. This matter can
be illustrated in the case of stiffened gas EOS. For such fluids we have

Pa :aapa_Pgoa Ja :ba+aa10g(pa)7
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where the constants a, and b, are related to the constant flow temperature T as follows
a0 (T) = (Yo — V)ep, T, ba(T) = qo + (’yacva — ¢, + (Yo — 1)ey, log [(’ya — l)cva] — ¢y, log T)T,

the parameters v, > 1, PS° > 0, ¢, > 0, g4 and ¢/, being constant for each fluid a = 1, 2. In this particular
case we have the following solvability condition

Proposition 2. For given my, ma and z, pi and p3 solutions of (5) verify

* *\ai/a b —b * o o *\ai/a b —b
ps = (p7)™/* exp <1a—22) and  arp] + (PP — B3°) — az(p})™/“* exp (la—22> =0 (6)

If (a1 — ag2)(P5° — Py°) > 0 then system (6) admits a unique solution, while if (a1 — a2)(Ps® — PP°) < 0 it
has two solutions or no solution.

Remark 1. For the specific case of perfect gas EOS, system (5) admits a unique explicit solution which

reads v .
* b1 — b ap | “r72 " by — bo ap '\ *1-e2
P1 =CXp | — — » P2 =CXp | — — .
a1 — a2 ag ap — ag ag

In the sequel we shall consider that the system (5) possesses at most a unique solution p > 0, p5 > 0
and z* € (0,1) for a given p > 0. Consequently p7 and p} have fixed values which only depend on the fluids
EOS definition and, supposing that pj < p3, z* depends on p as follows

P — P3

Zr=1 if p<pi, z if p7 < p < p3, z8=0 if p5 <p. (7)

Finally, the MT-equilibrium system is formally equivalent to
Op +div(pu) =0, Oipu+div(pu ® u+ P(p)ld) =0, (8)
where the pressure P is determined by
P(p)=Pi(p) ifz"=1, P(p)=z"Pi(p3) + (1 —2")P2(p3) ifz"€(0,1), Plp)=Pa(p) ifz"=0.

The pressure law p — P(p) is continuously differentiable except in points pi and p} where it is only contin-
uous. System (8) has a structure close to the isothermal Euler equation, however the system is only weakly
hyperbolic. Indeed, for p ¢ {p7, p5} it is possible to compute the Jacobian associated with the system. It
possesses two eigenvalues A\; = u + ¢ and \g = u — ¢, where ¢ = dP/dp. While ¢ > 0 for p ¢ [p}, p3], in the
case p € (p}, p3), we have ¢ = 0. In this case both eigenvalues collapse and the system looses its eigenvector
basis.

Remark 2. The MT-equilibrium system is endowed with a volumic specific free energy F which has the
following properties: p — F(p) is only weak-convex, pressure P is related to F' by P = pdF/dp — F and the
graph of F in the (p, F') is the convex hull of the function p — min[Fy(p), Fz(p)], where Fy, is the volumic
free energy of the fluid c.

Remark 3. The solution of the Riemann problem for the MT-equilibrium system may not be unique in the
class of entropic solutions. In this sense, the sytem is ill-posed.
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ITI. Numerical Treatment

From now on, we shall suppose that both fluids are governed by a stiffened gas EOS. Consider i € Z
and n € N, let Az > 0 and At > 0 be the space and time steps. Recalling that W = (p1 21, p222, pu)?,
we note W7 the finite volume approximate value of (1/Axz) f((;jll//;))f; W(x,t,)dz where t, = nAt. The

numerical strategy we adopt here is a two-step scheme which consists in a first convective step thanks to a
discretization of the relaxed system (1) without source terms

At
Az

n At
[Fi+1/2(W", Zn) — Fi_l/g(W", Zn):| = 0, Zlv +1/2 — Zn + —.FIZ‘(‘A]””7 Zn) = 0, (9)

W’(L+1/2 _W"
i 4 + i Az

followed by a projection (or relaxation) step onto the equilibrium states
(W”‘H, Zn+1) _ H(Wn+1/2, Zn+1/2).

The convection step (9) is achieved in similar lines as Chanteperdrix® and Allaire? using here a Roe-type
linearization for F;; /o and an upwind scheme for H;(W™,2"). For the relaxation step, we propose two
variants depending on the chosen equilibrium states set.

A. Relaxation Towards The M-Equilibrium (M-scheme)

For the M-equilibrium, we suppose A to be a finite but very large parameter. We formally set £ = 400 which
imposes that the equilibrium value z* is retrieved by solving equation (2). With the stiffened gas assumption
we have

2
—(agmg—alml—PQOO—FPfo)—!—\/(agmg—&lml—Pfo—FPfo) +4a1a9mime

. p
= — — 1
: 1 + 6’ ﬁ 2a2m2 ( 0)
Using a splitting operator method, we integrate for ¢ € [0, A¢] the following ODE system
Oums = A2(p2) = gslpn)]. Do =0, Alpw) =0, (W,2)(0) = (W, )72 ()

For stability purpose, instead of a direct numerical integration of system (11) we seek for an approximate ODE
system that allows explicit integration. In order to do so we scale the parameter A by setting A = mimaA,
where A is a supposedly large constant parameter. Then, we also freeze the (g2 — ¢1) term in its value
(g2 — g1)" /2 evaluated at (W, z)"*+1/2. We obtain the simplified ODE system

Bi(m1) = Ama(pP % —ma)(ge — g)I T2 =0, Bi(pu) = 0. (12)

This system can be solved explicitely
1/2 PnH/Q Y 1/2 1/2 -1 1/2 1/2
ma(t) = Pn+ / ([(STW -1 exp[)\P?Jr / (92 — 91)?+ / t+ 1) , p(t) = P;H /2 and u(t) = U;H 2,

%
my

Let us notice that the above expression ensures m1(t) > 0. We can now complete the source term integration
step by setting

P = =T g s, ma)i = i ()

Finally we update z by remapping z onto the M-equilibrium states by using expression (10) with W7 +1,
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B. Relaxation Towards The MT-Equilibrium (MT-scheme)

We suppose the equilibrium values p; and p3 known either explicitly for the case of perfect gases (see remark
1), either by solving (6) with an iterative algorithm for the case of stiffened gas.

The intermediary solution (W,z)"*1/2 obtained after the convective step (9) is projected onto MT-
equilibrium states using relation (7). This leads to

. +1/2 1 1 +1/2 1
if p 12 < pj gt =1, (mOPtt = p 2 (ma) ! =0,
n+1/2
T n+1/2 * n+l _ P —p; nt+l _ x _n+l nt+l _ ki _ pntl
i py < p; < P2 Zp = o —pp (ma); ™ = piz]"", (m2);™ = p5( z),
1 2
if p3 < p;H—l/Q Z;L—H =0, (ml)?—H =0, (mg)zz—kl _ P?—H/Q,
and pitl = prtl/2 gl 2,

IV. Numerical Results

A. A One Dimensional Isothermal Phase Change Test

We consider a 1 m long domain containing liquid and vapor initially separated by an interface located at
x = 0.5 m. We suppose that both phases are perfect gas (characteristics parameters are given in table 1).
The temperature is fixed at 7" = 100 K. The fluids are supposed to be initially at rest, the densities are
chosen so that pressure is constant in the whole domain: p = p} ~ 6.05921 x 10~% kg.m ™3 at the left of the
interface and p = pj ~ 33.21726 x 10~* kg.m =3 at the right.

We suppose that the left boundary is a piston which moves towards left at constant speed u, =
—100 m.s~!. The right boundary is a reflecting wall. The piston motion will generate an accoustic wave
travelling from left to right that will reach the interface. This will perturb the thermodynamical equilbrium
of the interface and trigger the system relaxation. A phase change process occurs.

‘ left ‘ right ‘
Cy (Jkg 'K~ | 1816 | 1040
v=0Cp/C, | 2.35 | 1.43

Table 1. Fluids parameters for the one dimensional piston test.

We use here the MT-scheme with different space steps. Figure 1 displays the profiles of z, pressure P and
velocity w at instants t = 6.66 ms and ¢ = 20 ms. The solid lines represent the approximate solution with
5000 cells, the x symbol lines represent the solution with 1000 cells and the 57 symbol lines represent the
solution with 100 cells. This allows to check the good convergence behaviour of the solution when the space
step goes to zero. Let us note that some small pressure oscillations appear for the rough mesh, nevertheless
their amplitude decrease while refining the space step.

We now turn to the convergence of the solution obtained with the M-scheme for large values of A to MT-
scheme appromixate solution. Figure 2 shows the profiles computed with both M-scheme and MT-schemes
for the variable z and the pressure in the case of the piston test. We use a A values ranging from 10 to 10°.
While for low values of A the solutions are quite different, we see that as expected for A — oo they tend to
the same profile. Le us consider the MT-scheme computed solution V}ff as reference approximate solution.

Let V% be the solution obtained with the M-scheme. We use here a fixed 500 cells mesh. Figure 3 displays

the graph of the function In(\) — In (||V§ff - Vi‘”p). We numerically check that for A — oo we have
IV = Vi = 0 (1/3)
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Figure 1. Profiles of z, the pressure of the velocity obtained with the MT-scheme. The solid lines represent
the approximate solution with 5000 cells, the x symbol lines represent the solution with 1000 cells and the 7

symbol lines represent the solution with 100 cells.
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Figure 2. Profiles of z and the pressure at t = 20 ms obtained with the MT-scheme (solid lines) and the
M-scheme (7 symbol) for ) ranging from 10 to 10°.
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Figure 3. Convergence behavior for A — +o0o of the M-equilibrium scheme. The left and right graphs represent

respectively In(}) — In (||z,rlef — Z}S{”U) and In(\) — In (||P,§ef - P,/;\||L1> at ¢t = 20 ms.

B. Compression of a Gas Bubble

We consider 1 m long square domain discretized over a 100 x 100 cells mesh. A gas bubble is surrounded by
liquid in the center of the domain. The radius of the gas bubble is initially » = 25 cm. The EOS used are
stiffened gas type whose coefficients are given in table 2. The temperature is set to T' = 600 K. The densities
of vapor and liquid are obtained by solving the equation (5), which results the following approximate values
p = p} ~ 35.56506 kg.m 3 for the vapor and p = pj ~ 686.24091 kg.m~3 for the liquid.

| | c, Ukg LK | y=c,/c, | P~ (Pa) | ¢ (kJkg™)) | ¢ (KJkg LK) |
vapor (bubble) 1040.14 1.43 0 2030.255 —23.31
liquid 1816.2 2.35 10° —1167.056 0

Table 2. Fluids parameters for the two dimensional bubble compression.

We suppose again the left boundary to be a piston which moves towards left at constant speed u, =
—100 m.s~!. The other boundaries are reflecting wall. The figure 4 shows the z profile obtained with the
MT-scheme (on the bottom) and the z profile obtained with the homogeneous system (on the top) at various
instants. We notice that with the MT-scheme phase change occurs and the vapor bubble liquefies while for
the homogenous off-equilibrium system (1) the bubble is just compressed.

V. Conclusion

We have presented in this paper two variants of a convection-relaxation numerical method for computing
phase change phenomena within the framework of a simple two-phase compressible isothermal flows model.
The mass transfer effects are treated either by a source term integration step, either by an equilibrium
states projection step. Numerical tests have been presented which show the ability of the method to capture
solutions involving dynamical phase change processes remaining close to the thermodynamical equilibrium.
As the equilibrium system is not strictly hyperbolic, stability and convergence behavior of the approximate
solutions are a critical issue. Nevertheless, both space convergence and source term integration in the
instantaneous relaxation limit and have been successfully challenged in the numerical tests.
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t = 0.54 ms t =1.08 ms

Figure 4. z profile obtained with the MT-scheme on the bottom and z profile obtained with the homogeneous
system on the top; ¢t is varies from ¢t =0 s to ¢t = 1.08 ms.
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