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ON SOME EUCLIDEAN PROPERTIES OF MATRIX

ALGEBRAS

PIERRE LEZOWSKI

Abstract. Let R be a commutative ring and n ∈ Z>1. We study
some Euclidean properties of the algebra Mn (R) of n by n matrices
with coefficients in R. In particular, we prove that Mn (R) is a left
and right Euclidean ring if and only if R is a principal ideal ring. We
also study the Euclidean order type of Mn (R). If R is a K-Hermite
ring, then Mn (R) is (4n− 3)-stage left and right Euclidean. We obtain
shorter division chains when R is an elementary divisor ring, and even
shorter ones when R is a principal ideal ring. If we assume that R is an
integral domain, R is a Bézout ring if and only if Mn (R) is ω-stage left
and right Euclidean.

1. Introduction

In this paper, all rings are nonzero, with unity, but not necessarily com-
mutative. An integral domain is a commutative ring with no nontrivial zero
divisor. A principal ideal ring (or PIR for short) is a commutative ring in
which every ideal is principal. A principal ideal domain (or PID for short)
is an integral domain which is a PIR. Given a ring A, we denote by A• the
set A \ {0} and by A× the units of A.

Given a ring A and integers n,m > 0, Mm,n (A) is the set of matrices of
elements of R with m rows and n columns; Mn (A) = Mn,n (A); GLn (A) is
the subset of Mn (A) of units of Mn (A).

Whenever R is commutative, Mn (R) is an algebra, and we are especially
interested in its Euclidean properties. In the classical sense, we say that a
ring A is right Euclidean if there exists some function ϕ : A −→ Z>0 such
that for all a, b ∈ A, b 6= 0, there exists q ∈ A such that

a = bq or ϕ(a− bq) < ϕ(b).

However, with this definition, A = Mn (Z) cannot be right Euclidean when
n ∈ Z>1(see [Kal85, Theorem 2]), so instead, we will use a broader defini-
tion, following Samuel [Sam71]. Let us denote by O the class of all ordinal
numbers.

Definition 1.1. Let A be a ring. We say that A is right Euclidean if there
exists a function ϕ : A• −→ O such that for all a, b ∈ A, b 6= 0, there exists
q ∈ A such that

(1) a = bq or ϕ(a− bq) < ϕ(b).
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Such a ϕ is then called a right Euclidean stathm (or a right Euclidean func-
tion).

Obviously, we may define similarly left Euclidean rings and left Euclidean
stathms by replacing bq with qb in (1). With this definition, Brungs proved
the following property.

Proposition 1.2 ([Bru73, Theorem 1]). If A is a (not necessarily commu-
tative) left Euclidean ring without nontrivial zero divisors, then Mn (A) is a
left Euclidean ring for any n ∈ Z≥1.

We will establish the following result.

Theorem 4.1. Let R be a commutative ring and n ∈ Z>1. Then Mn (R) is
right and left Euclidean if and only if R is a principal ideal ring.

To prove it, we will use some technical tools and notations, introduced in
Section 2, and proceed in two steps. We will rely on the fact that a PIR is a
K-Hermite ring, that is to say that every matrix admits triangular reduction,
and even an elementary divisor ring, that is to say that every matrix admits
diagonal reduction1. First, we will prove Theorem 4.1 over PIDs in Section 3,
which will allow us to extend it to PIRs in Section 4.

We will see in Section 5 under which conditions we can compute a quotient
of the right Euclidean division (1) for the stathm that we build. As an
application, we will see that we can compute continued fractions in a matrix
algebra over a PID.

In Definition 1.1, the range of the Euclidean stathm may be arbitrary,
but for a given right Euclidean ring A, we can try to find a right Euclidean
stathm whose range is as “small” as possible. This is formalized by the notion
of Euclidean order type of A. Section 6 will be devoted to the study of the
Euclidean order type of Mn (R) when R is a PIR.

Finally, we will study another generalization of the Euclidean property in
Section 7. Instead of allowing ordinals in the range of the stathm, we still
consider ϕ : A• −→ Z>0, but we allow several divisions on the right: starting
from the pair (a, b), we continue with a pair (b, a − bq) for some q ∈ A, and
so forth2. After k divisions, we want the remainder rk to satisfy

(2) rk = 0 or ϕ(rk) < ϕ(b).

If for all pair of elements of A, we can obtain a k-stage division chain with
the k-th remainder rk satisfying (2), we say that A is k-stage right Euclidean.
If rk = 0, we say that the division chain is terminating. If for all a, b ∈ A,
b 6= 0, there exists a terminating division chain starting from (a, b), we say
that A is ω-stage right Euclidean. A right Euclidean ring is necessarily ω-
stage right Euclidean, but the converse is false in general since such a ring
may have non-principal ideals. Alahmadi, Jain, Lam, and Leroy proved the
following result about the ω-stage right Euclidean properties of matrix rings.

Proposition 1.3 ([AJLL14, Theorem 14]). If A is a (not necessarily com-
mutative) ω-stage right Euclidean ring, then so is Mn (A) for any n ∈ Z≥1.

1See Section 2 for precise definitions.
2See Section 7 for precise definitions.
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An immediate consequence of Theorem 4.1 is that Mn (R) is ω-stage right
Euclidean if R is a PIR and n ∈ Z>1. But we will show the following more
precise result in Section 7.

Theorem 7.3. Let R be a commutative ring and n ∈ Z>1. Then we have
the following properties.

(1) If R is a K-Hermite ring, then for every pair (A,B) ∈ Mn (R) ×
Mn (R)•, there exists a (4n − 3)-stage terminating division chain in
Mn (R) starting from (A,B). In particular, Mn (R) is ω-stage left
and right Euclidean.

(2) If R is an elementary divisor ring (e.g. if R is a PIR), then for
every pair (A,B) ∈ Mn (R)×Mn (R)•, there exists a (2n − 1)-stage
terminating division chain in Mn (R) starting from (A,B).

(3) If R is a PIR, then Mn (R) is 2-stage right and left Euclidean.

Therefore, when R is an integral domain, we can characterize when Mn (R)
is ω-stage right and left Euclidean.

Corollary 7.4. Let R be an integral domain and n ∈ Z>1. Then Mn (R) is
ω-stage left and right Euclidean if and only if R is a Bézout ring, that is to
say for all a, b ∈ R, there exists d ∈ R such that aR+ bR = dR.

2. Generalities and first remarks

2.1. Notation and terminology. Consider a ring A, a commutative ring
R, and m, n, p ∈ Z≥1. In R, we say that a divides b, denoted by a|b, if
bR ⊆ aR. Most of the definitions and the results in this paragraph are due
to Kaplansky [Kap49]3.

We denote by diag(b1, . . . , bn)m,p the matrix in Mm,p (A) with diagonal
coefficients b1, . . . , bn. For short, diag(b1, . . . , bn) = diag(b1, . . . , bn)n,n. We
write 1n for the identity matrix of size n, 0m,n for the zero matrix with m
rows and n columns, 0n = 0n,n.

A ring A is a right Bézout ring if for all a, b ∈ A, aA + bA = dA, for
some d ∈ A. Such a d is called a greatest common left divisor of a and b, or
gcld for short. We define similarly left Bézout rings and gcrds (i.e. greatest
common right divisors).

The stable rank of a ring A is the infimum of the positive integers n such
that for all a0, . . . , an ∈ A,

a0A+ · · ·+ anA = A =⇒ ∃b1, . . . , bn ∈ A,

(a1 + b1a0)A+ · · ·+ (an + bna0)A = A.
(3)

We denote it by srA. If srA = l, then (3) holds for any n ≥ l [Vas71,
Theorem 1]. The stable rank can be defined as in (3) using left ideals instead
of right ideals; the value srA coincides [Vas71, Theorem 2]. The stable rank
of A and matrix rings over A are connected [Vas71, Theorem 3]:

srMn (A) = 1 +

⌈
srA− 1

n

⌉

.

In the formula above, ⌈x⌉ is the least integer exceeding x. In particular,
Mn (A) has stable rank 1 if and only if A has stable rank 1.

3We call “K-Hermite” what he calls “Hermite” to follow the current trend.
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We say that A is a right K-Hermite ring if for all a, b ∈ A, there exists
Q ∈ GL2 (A) and d ∈ A such that

(
a b

)
Q =

(
d 0

)
. Any right K-Hermite

ring is a right Bézout ring. Besides, if A is a right K-Hermite ring, then for
all M ∈ Mn (A), there exists T ∈ GLn (A) such that AT is lower triangular.

A left K-Hermite ring satisfies the following condition: for all a, b ∈ A,

there exists Q ∈ GL2 (A) and d ∈ A such that Q

(
a
b

)

=

(
d
0

)

. A K-Hermite

ring is a right and left K-Hermite ring. If A is a K-Hermite ring, then Mn (A)
is a right K-Hermite ring ([Kap49, Theorem 3.6]). If A is a K-Hermite ring
with no nontrivial zero divisors, then for A, B ∈ Mn (A), the gcld of A and
B is unique up to multiplication by an element of GLn (A) on the right (see
[Kap49, Theorem 3.8]). In commutative K-Hermite rings, we can simplify
by a (good choice of a) gcd, and it is actually a characterization of these
rings.

Lemma 2.1 ([GH56, Theorem 3]). Let R be a commutative ring. Then R

is a K-Hermite ring if and only if for all a, b ∈ R, there exist a′, b′, d ∈ R

such that a = da′, b = db′, and

a′R+ b′R = R.

We can clearly extend it to three elements, and we will especially use it
in this form: Let R be a commutative K-Hermite ring, a, b, c ∈ R. Then
there exist a′, b′, c′, d ∈ R such that a = da′, b = db′, c = dc′ and

a′R+ b′R+ c′R = R.

Given A, B ∈ Mm,p (R), we say that A and B are equivalent, which is
denoted by A ∼ B if there exist X ∈ GLp (R), Y ∈ GLm (R) such that B =
Y AX. We say that R is an elementary divisor ring4 if for any m, p ∈ Z≥1,
any A ∈ Mm,p (R) is equivalent to a diagonal matrix diag(b1, b2, . . . , bn)m,p,
where b1|b2| . . . |bn. In this case, b1 divides every coefficient of the matrix
A. Any elementary divisor ring is a K-Hermite ring. The following property
will be a crucial tool.

Lemma 2.2 ([MM82, Proposition 8]). Let A be a right K-Hermite ring.
Then the stable rank of A satisfies srA ≤ 2.

If R is a PID, then it is an elementary divisor ring, so a K-Hermite ring.
You can refer to [Jac85, Section 3.7] for details. The reductions of matrices
with coefficients in R into triangular or diagonal ones can be computed,
provided that for any a, b ∈ R, we know how to compute λ, µ, d ∈ R such
that {

aR+ bR = dR,

aλ+ bµ = d.

Besides, recall that for any M ∈ Mn (R), there exist (bi)1≤i≤n ∈ Rn such
that b1|b2| . . . |bn and

M ∼ diag(b1, . . . , bn).

In this case, the elements (bi)1≤i≤n are unique up to multiplication by a unit
of R and are called the invariant factors of M . Such a reduction is called the

4Kaplansky’s definition is not limited to a commutative context, but we will not need
such a generality.



ON SOME EUCLIDEAN PROPERTIES OF MATRIX ALGEBRAS 5

Smith normal form of M . The largest integer r such that br 6= 0 is the rank
rk(M) of M . It corresponds to the classical notion of rank in vector spaces,
because R can be embedded into its field of fractions. In particular, a matrix
M ∈ Mn (R) has rank n if and only if detM 6= 0, and more generally, the
rank is equal to the maximal order of a nonzero minor.

Smith normal form has some further properties.

Lemma 2.3. Let R be a PID and n ∈ Z≥1.

(a) Let M ∈ Mn (R)• and let b1, b2, . . . , br ∈ R be the invariant factors

of M . For any 1 ≤ l ≤ r,
∏l

i=1 bi is a gcd of the l × l minors of M .
In particular, b1 is a gcd of the coefficients of M .

(b) Let M =
(
a b
c d

)
∈ M2 (R). If the greatest common divisor of a, b, c, d

is 1, then
M ∼ diag(1, ad− bc).

Proof. Item (a) is a reformulation of [Jac85, Theorem 3.9]. For (b), write
M ∼ diag(b1, b2), for elements b1|b2 in R. Thanks to (a), we can take
b1 = 1. Besides, detM and b1b2 coincide up to multiplication by a unit,
which completes the proof. �

2.2. Basic remarks. In Definition 1.1, we have distinguished right and left
Euclidean rings, but such a care will be useless in our context.

Proposition 2.4. Let R be a commutative ring and n ∈ Z>1. Then Mn (R)
is right Euclidean if and only if it is left Euclidean.

Proof. Let f be any function Mn (R)• −→ O. We define

fT :

{
Mn (R)• −→ O
M 7−→ f(MT)

.

Then for any A,B,Q ∈ Mn (R),
(

A = BQ⇐⇒ AT = QTBT

)

and fT(A−BQ) = f(AT −QTBT).

Hence, f is a right Euclidean stathm if and only f is a left Euclidean stathm.
�

Therefore, to prove Theorem 4.1, we will only need to deal with right
Euclidean stathms.

Proposition 2.5. Let R be a commutative ring and n ∈ Z≥1. If every right
ideal of Mn (R) is principal, then R is a principal ideal ring.

Proof. This is certainly very classical, but we include the proof to emphasize
its simplicity. Let I be an ideal of R. We define

I = {(ai,j)1≤i,j≤n ∈ Mn (R) , for any 1 ≤ j ≤ n, a1,j ∈ I} .
It is clear that I is a right ideal of Mn (R). Let us consider detI =
{detM, M ∈ I}. Then, the fact that I is an ideal and Leibniz formula
for determinants imply that detI ⊆ I. Besides, for any a ∈ I, define

A = diag(a, 1, . . . , 1) ∈ Mn (R) .

Then A ∈ I and a = detA ∈ detI. Therefore, we also have I ⊆ det I, which
proves that detI = I.
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But there exists α ∈ Mn (R) such that I = αMn (R). Then I = det I =
(detα)R, which completes the proof. �

Remark 2.6. If we do not assume R to be commutative, this property is false
in general: consider the Weyl algebra A1 in characteristic 0. Then A1 admits
non-principal right ideals, but for any n ≥ 2, every right ideal of Mn (A1) is
principal, see [MR01, 7.11.7 and 7.11.8, p. 293].

2.3. Length in a PID. Let R be a PID and x ∈ R•. Since R is a unique
factorization domain, x may be decomposed into a finite product of prime
elements

x = u

n∏

i=1

pi
ei ,

where n ∈ Z≥0, u ∈ R×, for any 1 ≤ i ≤ n, pi ∈ R is prime and ei ∈ Z>0.
The decomposition is unique up to multiplication by units and order. We
set ℓ(x) =

∑n
i=1 ei, which defines a function

ℓ :

{
R• −→ Z≥0

x 7−→ ℓ(x)
.

Remark that ℓ is invariant under multiplication by a unit. Besides, if a, b
are elements of R such that a divides b and b 6= 0, then ℓ(a) ≤ ℓ(b) and the
equality holds if and only if a and b are associate, that is to say there exists
u ∈ R× such that b = au.

2.4. Explicit stable rank 2 in a PID. The following classical lemma will
be very useful. It can be seen as an easy consequence of Lemma 2.2, but we
give its proof to see how explicit it is; this will prove useful for Section 5.

Lemma 2.7. Let R be a PID. Then srR ≤ 2. More precisely, for any
a, b, c ∈ R which are not all equal to 0, there exist z, t ∈ R, such that
gcd(a+ cz, b+ ct) = gcd(a, b, c), which is nonzero and divides c.

Proof. We will proceed in two steps.
(a) First, consider a, b, c ∈ R such that b 6= 0 and gcd(a, b, c) = 1, we will
prove that there exists z ∈ R such that gcd(a + cz, b) = 1. If a and b are
coprime, we can take z = 0. If not, write a decomposition of b 6= 0 as follows:

(4) b =

l∏

i=1

dαi

i z,

where l ∈ Z>0, (di)1≤i≤l is a family of distinct and non-associated primes in
R, for any 1 ≤ i ≤ l, αi ∈ Z>0, di divides a, but di does not divide z. Take
a prime p ∈ R such that p divides b. If p divides a, then p is associated to
some di, for 1 ≤ i ≤ l, and p does not divide z. Therefore, if p divides a+cz,
then it necessarily divides a+ cz − a = cz, so it divides c. Then p divides a,
b, and c, which are coprime. This is impossible, so p does not divide a+ cz.
If p does not divide a, then p divides z. Thus, p does not divide a + cz in
this case either. Consequently, gcd(a+ cz, b) = 1.

(b) Now, we consider a, b, c ∈ R which are not all equal to 0. If c = 0,
take z = t = 0. From now on, assume that c 6= 0. Take t ∈ {0, 1} such
that b + ct 6= 0. Set d = gcd(a, b, c), consider a′ = a

d , b′ = b+tc
d , c′ = c

d
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and apply (a): there exists z ∈ R such that gcd(a′ + c′z, b′) = 1. Then
gcd(a+ cz, b+ ct) = d. �

Remark 2.8. In the proof above, we can compute z in (4) without actually
computing a decomposition of b into a product of primes, it is enough to
compute some gcds.

Proof. For a, b ∈ R, b 6= 0, we want to find a pair (d, z) ∈ R2 such that
b = dz, gcd(d, z) = 1, and for any prime p dividing b, p divides a if and only
if p divides d.

We build inductively a pair (dm, zm) of elements of R. Write d1 = gcd(b, a)
and b = d1z1 for some z1 ∈ R. If d1 and z1 are coprime, then m = 1 and
we are done. If not, assume that we have (di, zi) such that b = dizi. If
gcd(di, zi), we are done, set m = i. If not, set di+1 = di gcd(di, zi) and write
z = di+1zi+1.

As at each step di is a divisor of b and a strict divisor of di+1, we are done
in a finite number of steps: we obtain

z = dmzm,

where gcd(dm, zm) = 1. Besides, it is straightforward that gcd(b, a) = d1
divides dm. Notice that for any i ≥ 1, di+1 = di gcd(di, zi), so any prime
divisor of di+1 is a prime divisor of di. Consequently, any prime divisor of
dm is a prime divisor of d1 = gcd(b, a).

Take a prime p dividing b. If p divides a, then it divides gcd(b, a), so p
divides dm. Conversely, if p divides dm, then it divides d1 = gcd(b, a), so p
divides a.

Hence the pair (d, z) = (dm, zm) is convenient. �

2.5. Conventions and notations for ordinals. We follow the notation
used by Clark [Cla15], that is to say we denote by ω the least infinite ordinal,
and for ordinal arithmetic, we fix the ordinal addition so that ω + 1 > ω =
1+ω, and for the multiplication 2ω = ω+ω > ω2 = ω. For short, for r ∈ Z>0,
ai, bi ∈ O, 1 ≤ i ≤ r, we write

∑r
i=1 aiω

bi = a1ω
b1 + a2ω

b2 + · · · + arω
br .

We denote by ⊕ the Hessenberg sum of ordinals, that is to say for k ∈ Z>0,
(ai)0≤i≤k , (bi)0≤i≤k finite sequences of nonnegative integers,

(
k∑

i=0

aiω
k−i

)

⊕
(

k∑

i=0

biω
k−i

)

=

(
k∑

i=0

(ai + bi)ω
k−i

)

.

For n ∈ Z>0, α ∈ O, we write n⊗ α = α⊕ α⊕ · · · ⊕ α
︸ ︷︷ ︸

n times

.

Consider a right Euclidean ring A. In Definition 1.1, the right Euclidean
stathm ϕ is not defined at 0. Following Clark, we define ϕ(0) to be the
smallest α ∈ O such that for all a ∈ A•,

(5) ϕ(a) < α.

Now, we associate to A the following ordinal number, called (right) Euclidean
order type:

e(A) = inf{ϕ(0), ϕ : A −→ O, ϕ right Euclidean stathm}.
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In other words, e(A) = θ(0), where θ is the smallest right Euclidean stathm
for A, as defined by Samuel [Sam71] (or “bottom Euclidean function”, with
Clark’s terminology): it is the function defined by

θ :

{
A• −→ O
x 7−→ inf {φ(x), φ : A• −→ O, φ right Euclidean stathm} ;

it is a right Euclidean stathm.

Remark 2.9. Let R be a commutative ring, n ∈ Z≥1 so that Mn (R) is right
Euclidean. Let θ be the smallest right Euclidean stathm for Mn (R). Then
for any m,m′ ∈ Mn (R) such that m ∼ m′, we have θ(m) = θ(m′). In
particular, if R is an elementary divisor ring, θT = θ and θ is the smallest
left Euclidean stathm for Mn (R). For this reason, we will write Euclidean
order type instead of right Euclidean order type in what follows.

Proof. It follows immediately from the fact that the function

θ̃ :

{
Mn (R)• −→ O

m 7−→ inf{θ(m′), m′ ∼ m}
is a right Euclidean stathm verifying θ̃ ≤ θ. Therefore, θ̃ = θ. �

Lemma 2.10. Let A be a right Euclidean ring and θ : A• −→ O be the
smallest right Euclidean stathm. Take x ∈ A• and S ⊆ A \ xA such that
S ∪ {0} is a system of representatives of A/xA. Then

θ(x) ≤ sup
y∈S

inf
a∈A

θ(y + xa) + 1.

Proof. This is a consequence of Motzkin’s construction. For α ∈ O, define
Aα = {z ∈ A, θ(z) ≤ α} and A0

α = ∪β<αAβ. Then we have (see [Sam71] or

[Cla15]5)

Aα =
{
b ∈ A, the composite map A0

α ∪ {0} −֒→ A −։ A/xA is onto
}
.

Fix α = supy∈S infa∈A θ(y+xa)+1, we will prove that x ∈ Aα. Let ŷ+xA ∈
A/xA\{xA}, there exists y ∈ S such that ŷ+xA = y+xA. By definition of
α, there exists a ∈ A such that θ(y + xa) < α, therefore y + xa ∈ A0

α, which
concludes the proof as y + xa+ xA = ŷ + xA. �

3. A left and right Euclidean stathm for matrix algebras

over a PID

3.1. Statement and first remarks. The purpose of this section will be to
establish the following result.

Theorem 3.1. Let R be a PID and n ∈ Z>1. Then Mn (R) is a left and
right Euclidean ring.

Let R be a PID and n ∈ Z>1. We define

ρn :







Mn (R)• −→ O
M 7−→ ∑rkM

i=1 ℓ(bi)ω
rkM−i if

b1, b2, . . . , brkM are the invariant factors of M.

5They deal with the commutative case but never use the commutativity hypothesis in
this context.
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The function ρn is well-defined because the function ℓ is invariant under
multiplication by a unit. Now define

ϕn :

{
Mn (R)• −→ O
M 7−→ (n− rkM)ωn + ρn(M).

Notice that if A, B ∈ Mn (R)• satisfy A ∼ B, then ρn(A) = ρn(B) and
ϕn(A) = ϕn(B).

Proposition 3.2. The function ϕn is a right and left Euclidean stathm.

The remainder of this section will be devoted to the proof of Proposi-
tion 3.2. This will imply Theorem 3.1.

Remark 3.3. For any n > 1, ϕT
n = ϕn, so the proof of Proposition 2.4 implies

that ϕn is a left Euclidean stathm if and only if it is a right Euclidean stathm.

Remark. The Euclidean stathm is in no way unique. For instance, the fol-
lowing function is a left and right Euclidean stathm:

ψ2 :







M2 (Z)
• −→ O

M 7−→







|detM | if detm 6= 0,

ω + |α| if M ∼
(
α 0
0 0

)

.

See Proposition 6.5 for a more general construction.

3.2. Case of size 2 matrices. To prove Proposition 3.2, we will first deal
with 2 by 2 matrices.

Lemma 3.4. Let A =
(
a 0
b c

)
, B = diag(b1, b2) ∈ M2 (R), where b1 divides

b2 6= 0. If b1 divides a, b and c, but b2 does not divide b or b2 does not divide
c, then there exists Q ∈ M2 (R) such that

A−BQ ∼ diag(b1, e),

where e ∈ R• is such that b1|e and e is a strict divisor of b2.

Proof of Lemma 3.4. Set e = gcd(b, c, b2) 6= 0, which is a multiple of b1 and
a strict divisor of b2. Lemma 2.7 implies that there exists z, t ∈ R such that

gcd (c+ b2z, b+ b2t) = e.

Therefore, there exist λ, µ ∈ R which are coprime and satisfy

(6) λ(b+ b2t) + µ(c+ b2z) = e.

Set Q =
(

a/b1−µ λ
−t −z

)

. Then

A−BQ =

(
µb1 −λb1

b+ b2t c+ b2z

)

.

Since λ and µ are coprime, the gcd of the coefficients of A−BQ is b1. Besides,
(6) implies that det(A−BQ) = b1e. As a result, thanks to Lemma 2.3(b),

A−BQ ∼ diag(b1, e).

�
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Lemma 3.5. Let A ∈ M2 (R) and B = diag(b1, b2) ∈ M2 (R), where b1|b2
and b2 6= 0. Then there exists Q ∈ M2 (R) such that

A = BQ or (rk(A−BQ) = 2 and ρ2(A−BQ) < ρ2(B)) .

Proof of Lemma 3.5. Take T ∈ GL2 (R) such that AT =
(
a 0
b c

)
. We distin-

guish two cases.
a. Assume that b1 does not divide a, b or c. Fix λ, µ ∈ {0, 1} such that

Qλ,µ =
(

λ −1
0 µ

)

satisfies

det(AT −BQλ,µ) =

∣
∣
∣
∣

a− b1λ b1
b c

∣
∣
∣
∣
− µb2(a− b1λ) 6= 0.

Therefore, AT −BQλ,µ ∼ diag(α, β) for α|β ∈ R, β 6= 0. But

(7) AT −BQλ,µ =

(
a− b1λ b1

b c− µb2

)

,

so, thanks to Lemma 2.3(a),

α = gcd(a− b1λ, b1, b, c− µb2) = gcd(a, b1, b, c),

since b1 divides b2. Then α is a strict divisor of b1. In particular, ℓ(α) < ℓ(b1).
Consequently, by setting Q = Qλ,µT

−1, we have rk(A−BQ) = 2 and

ρ2(A−BQ) = ℓ(α)ω + ℓ(β) < ℓ(b1)ω + ℓ(b2) = ρ2(B).

b. If b1 divides a, b, and c, we have two sub-cases. Either b2 divides b and
c and then Q = (B−1AT )T−1 ∈ M2 (R) satisfies A = BQ, or b2 does not
divide b or c, and then we apply Lemma 3.4 to find Q ∈ M2 (R) such that

A−BQ ∼ diag(b1, e),

where e ∈ R• is such that b1|e and e is a strict divisor of b2. Then

ρ2(A−BQ) = ℓ(b1)ω + ℓ(e) < ℓ(b1)ω + ℓ(b2) = ρ2(B).

�

3.3. Case of size n full-rank matrices. Now, we extend Lemma 3.5 to n
by n matrices, where n ∈ Z>1.

Lemma 3.6. Let n ∈ Z>1, A ∈ Mn (R), and B = diag(b1, . . . , bn) ∈
Mn (R), where

b1|b2| . . . |bn 6= 0.

Then there exists Q ∈ Mn (R) such that

A = BQ or (rk(A−BQ) = n and ρn(A−BQ) < ρn(B)) .

Proof of Lemma 3.6. We prove it by induction on n ≥ 2. The case n = 2
is Lemma 3.5. Set n ≥ 3 and assume that Lemma 3.6 holds for all strictly
smaller dimensions.

Take A ∈ Mn (R). Consider T ∈ GLn (R) such that AT = (ai,j)1≤i,j≤n is
lower triangular.
1st step. Assume that there exist 1 ≤ i0, j0 ≤ n such that b1 does not divide
ai0,j0. For any 1 ≤ i ≤ n, take µi ∈ {0, 1} such that ai,i − µibi 6= 0. Then
take λ ∈ {0, 1} such that

(a1,1 − µ1b1)(a2,2 − µ2b2)− b1(a2,1 − λb2) 6= 0.
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Now consider

Q′ =





µ1 −1
λ µ2

02,n−2

0n−2,2 diag(µ3, . . . , µn)



 ∈ Mn (R) ,

then AT − BQ′ has rank n, its invariant factors are b′1| . . . |b′n 6= 0, and b′1
divides all coefficients of AT − BQ′ (cf. Lemma 2.3(a)). In particular, b′1
divides b1 and ai0,j0 , so it is a strict divisor of b1. Therefore, ℓ(b′1) < ℓ(b1).
Taking Q = Q′T−1, we find rk(A−BQ) = n and

ρn(A−BQ) = ρn(AT −BQ′) =
n∑

i=1

ωn−iℓ(b′i) <
n∑

i=1

ωn−iℓ(bi) = ρn(B).

2nd step. From now on, we assume that b1 divides all coefficients of AT .
Take A′ ∈ Mn−1 (R) such that

AT −B

(a1,1
b1

− 1 01,n−1

0n−1,1 0n−1

)

=








b1 01,n−1

a2,1
...

an,1

A′







.

Set B′ = diag(b2, . . . , bn). By the induction hypothesis, there exists Q′ ∈
Mn−1 (R) such that R′ = A′ −B′Q′ satisfies

R′ = 0n−1 or
(
rkR′ = n− 1 and ρn−1(R

′) < ρn−1(B
′)
)
.

1. Assume that R′ 6= 0n−1. Its invariant factors (b′2, . . . , b
′
n) are all divisible

by b1, as all coefficients of A′ and B′ are divisible by b1 (see Lemma 2.3(a)).
There exist X,Y ∈ GLn−1 (R) such that Y R′X = diag(b′2, . . . , b

′
n). Then








b1 01,n−1

a2,1
...

an,1

A′








−B

(
0 01,n−1

0n−1,1 Q′

)

=

(
1 01,n−1

0n−1,1 Y

)−1








b1 01,n−1

a2,1
...

an,1

Y R′X








(
1 01,n−1

0n−1,1 X

)−1

∼diag(b1, b
′
2, . . . , b

′
n).

Thus, there exists Q′′ ∈ Mn (R) such that AT −BQ′′ ∼ diag(b1, b
′
2, . . . , b

′
n).

Taking Q = Q′′T−1 ∈ Mn (R), we obtain

A−BQ ∼ diag(b1, b
′
2, . . . , b

′
n).

Since b1|b′2| . . . |b′n 6= 0, rk(A − BQ) = n and they are the invariant factors
of A−BQ. Hence

ρn(A−BQ) = ℓ(b1)ω
n−1 + ρn−1(R

′) < ℓ(b1)ω
n−1 + ρn−1(B

′) = ρn(B).
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2. Assume now that R′ = 0n−1. We distinguish two subcases.
2.a. First, assume that for all l > 1, bl divides al,1, then








b1 01,n−1

a2,1
...

an,1

A′








−B








1 01,n−1

a2,1/b2
...

an,1/bn

Q′








= 0n.

Therefore, there exists Q′′ ∈ Mn (R) such that AT − BQ′′ = 0n. Take
Q = Q′′T−1, then

A−BQ = 0n.

2.b. Now assume that there exists l > 1 such that bl does not divide al,1.
Define

A′′ =








b1 01,n−1

a2,1
...

an,1

A′








−B

(
1 01,n−1

0n−1,1 Q′

)

+B

=








b1 01,n−1

a2,1
...

an,1

diag(b2, . . . , bn)







.

Take l > 1 to be the smallest integer such that there exists m ≥ l such that
bl does not divide am,1.
2.b.i. If l < n, take ǫ ∈ {0, 1} to be chosen later to define

Q′′
ǫ =












1
a2,1/b2

...
al−1,1/bl−1

ǫ

0l,l−2

−1 0

0l−2,2

1 −1

0l,n−l−1

0n−l,n












∈ Mn (R) .

Exchanging the first and l-th columns of A′′ −BQ′′
ǫ , we obtain

A′′ −BQ′′
ǫ ∼

(
diag(b1, . . . , bl−1) 0l−1,n−l+1

0n−l+1,l−1 A′′′
ǫ

)

,

where

A′′′
ǫ =








al,1 − blǫ bl 01,n−l−1

al+1,1
...

an,1

diag(bl+1, . . . , bn)








∈ Mn−l+1 (R) .

We have detA′′′
ǫ = detA′′′

0 − ǫblbl+1 · · · bn. As blbl+1 · · · bn 6= 0, we can choose
ǫ ∈ {0, 1} such that detA′′′

ǫ 6= 0. Then rkA′′′
ǫ = n − l + 1, and the invariant

factors of A′′′
ǫ are b′l| . . . |b′n 6= 0. Furthermore, bl−1 divides all coefficients of

A′′′
ǫ , so thanks to Lemma 2.3(a), bl−1 divides b′l. It follows that the invariant

factors of A′′ −BQ′′
ǫ are (b1, . . . , bl−1, b

′
l, . . . , b

′
n). Besides, there exists m ≥ l

such that bl does not divide am,1. As b′l divides bl and am,1, it is a strict
divisor of bl. Consequently, ℓ(b′l) < ℓ(bl). As there exists Q ∈ Mn (R) such
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that AT−BQT = A′′−BQ′′
ǫ , we have A−BQ ∼ diag(b1, . . . , bl−1, b

′
l, . . . , b

′
n),

which implies rk(A−BQ) = n and

ρn(A−BQ) =

l−1∑

i=1

ℓ(bi)ω
n−i +

n∑

i=l

ℓ(b′i)ω
n−i <

n∑

i=1

ℓ(bi)ω
n−i = ρn(B).

2.b.ii. If l = n, set g = gcd
(

bn
bn−1

, an
bn−1

)

and take λ, µ ∈ R coprime such

that

λ
bn
bn−1

+ µ
an
bn−1

= g.

Fix

Q′′ =












1
a2,1/b2

...
an−2,1/bn−2

an−1,1/bn−1 + λ
0

0n,n−3

0 −1

0n−3,2

1− µ 0
−1 1












∈ Mn (R) .

By exchanging the first and last columns of A′′ −BQ′′, we obtain

A′′ −BQ′′ ∼
(
diag(b1, . . . , bn−2 0n−2,2

02,n−2 A′′′

)

,

where

A′′′ =

(
µbn−1 −λbn−1

bn an,1

)

∈ M2 (R) .

Thanks to Lemma 2.3(b), the invariant factors of A′′′ are (bn−1, bn−1 · g).
As there exists some Q ∈ Mn (R) such that AT − BQ ∼ A′′ − BQ′′, the
invariant factors of A − BQ are (b1, . . . , bn−1, bn−1 · g) too. In particular,
rk(A−BQ) = n. Furthermore, bn−1g is the gcd of an and bn, so it is a strict
divisor of bn. Then ℓ(bn−1 · g) < ℓ(bn). Consequently,

ρn(A−BQ) =

n−1∑

i=1

ℓ(bi)ω
n−i + ℓ(bn−1 · g) <

n∑

i=1

ℓ(bi)ω
n−i = ρn(B).

That completes the proof of Lemma 3.6. �

3.4. Case of matrices with rank 1.

Lemma 3.7. Let n > 1, A = diag(a, 0, . . . , 0), B = diag(b, 0, . . . , 0) ∈
Mn (R), where b 6= 0. Then there exists Q ∈ Mn (R) such that

A = BQ or ϕn(A−BQ) < ϕn(B).

Proof of Lemma 3.7. If b divides a, set Q = diag(a/b, 0, . . . , 0) ∈ Mn (R).
Then A = BQ.

Now, assume that b does not divide a. Then e = gcd(a, b) is a strict divisor
of b and ℓ(e) < ℓ(b). Set Q = (qi,j)1≤i,j≤n where q1,2 = 1 and all other
coefficients are equal to 0. Then A−BQ ∼ diag(e, 0, . . . , 0). Consequently,

ϕn(A−BQ) = (n− 1)ωn + ℓ(e) < (n− 1)ωn + ℓ(b) = ϕn(B).

�

Now, we have all the tools required to prove Proposition 3.2.
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3.5. Proof of Proposition 3.2. Recall that R is a PID and n ∈ Z>1.
Thanks to Remark 3.3, if suffices to prove that ϕn is a right Euclidean
stathm. Let A,B ∈ Mn (R), B 6= 0. We want to find Q ∈ Mn (R) such that
A = BQ or ϕn(A−BQ) < ϕn(B).

Set r = rkB. We take X,Y, T ∈ GLn (R), and b1|b2| . . . |br ∈ R• such
that

Y BX = diag(b1, . . . , br, 0, . . . , 0) ∈ Mn (R) ,

and Y AT = (ai,j)1≤i,j≤n is lower triangular.
1. If r = n, then, thanks to Lemma 3.6, there exists Q′ ∈ Mn (R) such that
Y AT = Y BXQ′, or rk(Y AT − Y BXQ′) = n and ρn(Y AT − Y BXQ′) <
ρn(Y BX). Setting Q = XQ′, we have as required

A = BQ or ϕn(A−BQ) < ϕn(B).

2. From now on, we assume that r < n. For any 1 ≤ i ≤ r, there exists
µi ∈ {0, 1} such that ai,i − biµi 6= 0. Write D = diag(µ1, . . . , µr, 0, . . . , 0) ∈
Mn (R) and then

Y AT − Y BXD =

(
A1 0r,n−r

A2 A3

)

where A1 ∈ Mr (R) is lower triangular, A2 ∈ Mn−r,r (R), A3 ∈ Mn−r (R).
By construction, rkA1 = r.

Notation. Let M =

(
M (1) M (2)

M (3) M (4)

)

, where 1 ≤ r < n, M (1) ∈ Mr (R),

M (k) =
(

m
(k)
i,j

)

. for 1 ≤ k ≤ 4. Take 1 ≤ i0, j0 ≤ n − r, we write

Extrr(M ; i0, j0) for the matrix

Extrr(M ; i0, j0) =

(

M (1) v

w m
(4)
i0,j0

)

∈ Mr+1 (R) ,

where v = (m
(2)
i,j0

)1≤i≤r ∈ Mr,1 (R), w = (m
(3)
i0,j

)1≤j≤r ∈ M1,r (R).

If A3 = (a
(3)
i,j ) 6= 0r, then there exist coordinates 1 ≤ i0, j0 ≤ n − r such

that a
(3)
i0,j0

6= 0. But Extrr(Y AT − Y BXD; i0, j0) is lower triangular and all
its diagonal coefficients are nonzero. Therefore,

rk(Y AT − Y BXD) ≥ rkExtrr(A; i0, j0) > r.

Consequently, by setting Q = XDT−1, we obtain rk(A−BQ) > rk(B) > 0,
which implies

ϕn(A−BQ) < ϕn(B).

From now on, we assume that A3 = 0r. If A2 = (a
(2)
i,j ) 6= 0n−r,r, there exist

some 1 ≤ i0 ≤ n − r and 1 ≤ j0 ≤ r such that a
(2)
i0,j0

6= 0. Take such a

coefficient with the greatest column index j0. Set v = (vj)1≤j≤r ∈ Mr,1 (R)
such that vj0 = −1 and all other coefficients are equal to 0. Then define

Q′ =

(
diag(µ1, . . . , µr) v 0r,n−r−1

0n−r,n

)

∈ Mn (R) ,

so that the matrix Extrr(Y AT − Y BXQ′; i0, 1) has rank r + 1. Indeed, by
exchanging the j0-th and the (r+1)-th row of Extrr(Y AT−Y BXQ′; i0, 1), we
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obtain a lower triangular matrix whose diagonal coefficients are all nonzero.
In particular,

rk(Y AT − Y BXQ′) ≥ rkExtrr(Y AT − Y BXQ′; i0, 1) > r.

It follows that rk(A−BQ) > r = rkB, for Q = XQ′T−1, which implies

ϕn(A−BQ) < ϕn(B).

3. Now we can assume that A2 = 0n−r,r and A3 = 0r. If r = 1, then we
can apply Lemma 3.7 to find Q′ ∈ Mn (R) such that Y AT = Y BXQ′ or
ϕn(Y AT − Y BXQ′) < ϕn(Y BX). Set Q = XQ′T−1, then

A = BQ or ϕn(A−BQ) < ϕn(B).

It remains to consider r > 1. We set B1 = diag(b1, . . . , br) ∈ Mr (R). Thanks
to Lemma 3.6, there exists Q1 ∈ Mr (R) such that for R1 = A1 −B1Q1, we
have

R1 = 0r or (rkR1 = r and ρr(R1) < ρr(B1)) .

In any case, set

Q = X

[(
Q1 0r,n−r

0n−r,r 0n−r

)

+D

]

T−1,

then

A−BQ = Y −1

(
R1 0r,n−r

0n−r,r 0n−r

)

T−1.

If R1 = 0r, then A = BQ. If R1 6= 0r, then rkR1 = r, so

ϕn(A−BQ) = (n− r)ωn + ρr(R1) < (n− r)ωn + ρr(B1) = ϕn(B).

�

4. The Euclidean property for matrix algebras over a PIR

The aim of this section will be to prove the following property.

Theorem 4.1. Let R be a commutative ring and n ∈ Z>1. Then Mn (R) is
right and left Euclidean if and only if R is a principal ideal ring.

4.1. Some general properties of Euclidean and principal ideal rings.

A PIR R is said to be special if R has a unique prime ideal and this ideal is
nilpotent. To infer Theorem 4.1 from Theorem 3.1, we will use the following
property due to Samuel and Zariski.

Proposition 4.2 ([ZS75, Theorem 33, p. 245]). Let R be a PIR, then it can

be written as a direct product R =
∏l

i=1 Ri, where each Ri is a PID or a
special PIR.

Special PIRs can be easily dealt with.

Lemma 4.3. Let S be a special PIR. Then for any n ∈ Z≥1, Mn (S) is
Euclidean, and e(Mn (S)) < ω.
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Proof. Let p be the prime ideal of S. Take m ∈ Z>0 such that pm = 0. We

prove that the function ψn :

{
Mn (S)• −→ {0, 1, . . . ,m− 1}
M 7−→ vp ◦ det(M)

is a right

Euclidean stathm.
We know that S is the homomorphic image of a PID R (see [Hun68]).

Consider a surjective homomorphism π : R −→ S, which we extend to a
surjective homomorphism π : Mn (R) −→ Mn (S).

Take A, B ∈ Mn (S), B 6= 0n. There exist Â, B̂ ∈ Mn (R) such that

π(Â) = A and π(B̂) = B. Besides, there exist D̂, Â′, B̂′ ∈ Mn (R) such that

Â = D̂Â′, B̂ = D̂B̂′, and Â′Mn (R) + B̂′Mn (R) = Mn (R). Set D = π(D̂),

A′ = π(Â′), and B′ = π(B̂′). Then we have

A = DA′, B = DB′, and A′Mn (S) +B′Mn (S) = Mn (S) .

But srS = 1, so srMn (S) = 1, and there exists Q′ ∈ Mn (S) such that
U = A′ −B′Q′ ∈ GLn (S).

If vp ◦ det(B′) > 0, set Q = Q′, then

vp ◦ det(A−BQ) = vp ◦ det(DU) = vp ◦ detD < vp ◦ det(DB′) = vp ◦ detB.

If vp ◦det(B′) = 0, then B′ ∈ GLn (S). Set Q = B′−1A′, we have A−BQ =
0n. �

Lemma 4.4. Let l ∈ Z≥1 and Ai, 1 ≤ i ≤ l be right Euclidean rings. Then

the product ring
∏l

i=1 Ai is a right Euclidean ring.

Proof. You can refer to [Sam71, Proposition 6] or [Cla15, Theorem 3.13],
where the commutativity hypothesis is not used. We give some details to
get some insight into Remark 4.5. Note that an immediate induction shows
that it is enough to consider the product of two right Euclidean rings A1 and
A2. In that case, we consider two right Euclidean stathms ϕi : A

•
i −→ O,

extended at 0 as in (5), for i = 1, 2, and we can prove that

ϕ :

{
(A1 × A2)

• −→ O
(r1, r2) 7−→ ϕ1(r1)⊕ ϕ2(r2)

is a right Euclidean stathm. �

In fact, we also have the following property.

Remark 4.5 ([Cla15, Theorem 3.406]). With the above hypotheses,

l∑

i=1

e(Ai) ≤ e

(
l∏

i=1

Ai

)

≤
l⊕

i=1

e(Ai).

The upper bound, which is easily implied by the proof of Lemma 4.4 above,
has the following consequence: if for any i, Ai is right Euclidean and e(Ai) <

ω), then
∏l

i=1Ai is also right Euclidean and e
(
∏l

i=1 Ai

)

< ω.

6As in Footnote 5, Clark sets himself in a commutative context, but this property does
not rely on the commutative hypothesis.
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4.2. Proof of Theorem 4.1. Let R be a commutative ring and n ∈ Z>1.
If Mn (R) is right Euclidean, then every right ideal of Mn (R) is principal.
Therefore, thanks to Proposition 2.5, R is a PIR.

Conversely, assume that R is a PIR. Thanks to Proposition 4.2, R can be

written as R =
∏l

i=1Ri, such that for any 1 ≤ i ≤ l, Ri is either a PID or

a special PIR. But now, Mn (R) is isomorphic to
∏l

i=1 Mn (Ri). Thanks to
Theorem 3.1 and Lemma 4.3, for any 1 ≤ i ≤ l, Mn (Ri) is Euclidean. Using

Lemma 4.4, we can conclude that
∏l

i=1 Mn (Ri) is Euclidean. �

5. Effectivity

5.1. General result. The fact that a ring A is right Euclidean for some
right Euclidean stathm ϕ : A• −→ O does not mean that we know how to
compute a quotient (or equivalently a remainder) for each pair (a, b) ∈ A×A•,
that is to say an element q ∈ A such that

a = bq or ϕ(a− bq) < ϕ(b).

Nevertheless, in the case when A = Mn (R), with a further condition on
R, we can effectively compute it. More precisely, we have the following
property.

Proposition 5.1. Let n > 1 and R be a PID. The following statements are
equivalent.

(a) For any a, b ∈ R, we can compute d = gcd(a, b), and elements u,
v ∈ R such that au+ bv = d.

(b) For any A, B ∈ Mn (R), we can compute some Q ∈ Mn (R) such
that ϕn(A−BQ) < ϕn(B).

Proof. Assuming (a), a careful reading of the proof in Section 3 shows that
we may compute (b). Indeed, all constructions rely on gcds (see Remark 2.8),
and reduction of matrices into echelon form or Smith normal form. These
reductions can be explicitly computed assuming (a).

Conversely, take a, b ∈ R. Set A = diag(1, . . . , 1, a) ∈ Mn (R) and B =
diag(1, . . . , 1, b) ∈ Mn (R). As we can compute quotients (and remainders)
of Euclidean divisions in Mn (R), we can apply the Euclidean algorithm to
A and B:

Algorithm 5.2. Input: A,B ∈ Mn (R).
Set D = A, U = 1n, V = 0n, D1 = B, U1 = 0n, V1 = 1n.

(i) If D1 = 0n, return [U, V,D].
(ii) Compute Q,R ∈ Mn (R) such that D = D1Q+R. Set

(D,U, V,D1, U1, V1) = (D1, U1, V1, R, U − U1Q,V − V1Q)

and go to Step (i).

We obtain U , V ∈ Mn (R) such that

(8) AU +BV = D,

where D is a gcld of A and B in Mn (R). But a gcld of A and B is
diag(1, . . . , 1, d) where d is a gcd of a and b. Therefore, there exists T ∈
GLn (R) such that D = diag(1, . . . , 1, d)T . In particular, detD = dε for
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some ǫ ∈ R×. We replace d by dε such that detD = d. Then, denoting by
C the cofactor matrix of D, (8) implies that

AUCT +BV CT = dIn.

Identifying the coefficients in position (n, n), we obtain au+ bv = d. �

5.2. Computation of gcd of matrices, an example. It is straightfor-
ward to remark that Algorithm 5.2 above will return a gcld of A and B in a
finite number of steps. We can similarly compute gcrds.

The following example illustrates such computations, and the fact that
gcrd and gcld may be unconnected.

Example 5.3. In M3 (Z), consider the matrices

A =





−1 1 0
2 −2 0
−1 −1 2



 and B =





−1 −1 −1
2 2 2
2 1 0



 .

Then A = B





−2 0 2
3 −1 −2
0 0 0



, therefore a gcld for A and B is B, which has

rank 2. Besides,

A =





0 0 0
0 0 −1
0 0 0



B +





−1 1 0
4 −1 0
−1 −1 2



 ,

B =





2 1 1
−7 −3 −4
0 0 0









−1 1 0
4 −1 0
−1 −1 2



+





−2 −1 −3
3 2 10
2 1 0



 ,





−1 1 0
4 −1 0
−1 −1 2



 =





10 3 5
−20 −6 −9
−4 −1 −3









−2 −1 −3
3 2 10
2 1 0



 .

Consequently, a gcrd of A and B is





−2 −1 −3
3 2 10
2 1 0



, which has rank 3.

Remark 5.4. In a PID R, under the effectivity conditions of Proposition 5.1,
there is a more direct way to compute gclds and gcrds of matrices in Mn (R).
Indeed, given A,B ∈ Mn (R), we can proceed as follows. Consider the matrix
(
A B

)
∈ Mn,2n (R) and compute R ∈ Mn (R), U ∈ GL2n (R) such that

(
A B

)
U =

(
0n R

)
.

Then R is a gcld of A and B.
Likewise, we can compute V ∈ GL2n (R), S ∈ Mn (R) such that

(
AT BT

)
V =

(
0n S

)
,

then ST is a gcrd of A and B.
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5.3. Continued fractions. Let R be an integral domain, set F to be the
field of fractions of R. For k ∈ Z>0 and given Q1, . . . , Qk ∈ Mn (R), we
define the continued fraction [Q1, . . . , Qk] as follows:

[Q1] = Q1,

[Q1, Q2, . . . , Qk] = Q1 + [Q2, . . . , Qk]
−1, if [Q2, . . . , Qk] ∈ GLn (F).

Remark that [Q1, . . . , Qk] is defined if and only if Qk ∈ GLn (F), [Qk−1, Qk] ∈
GLn (F), . . . , and [Q2, . . . , Qk] ∈ GLn (F).

It is clear that any continued fraction [Q1, . . . , Qk] is an element of Mn (F),
actually the converse holds in a PID.

Proposition 5.5. Let R be a PID and n ∈ Z>1, set F to be the field
of fractions of R. Then for any X ∈ Mn (F), there exist k ∈ Z>0 and
Q1, . . . , Qk ∈ Mn (R) such that X = [Q1, . . . , Qk].

Remark. This result is false for n = 1, take for instance R = Z
[
1+

√
−19
2

]

,

see [Coo76, Proposition 1 and Example p. 139]. Besides, we will obtain a
more precise result (Corollary 7.14).

Proof of Proposition 5.5. If X = 0n, then X = [0n]. From now on, assume
X 6= 0n. Each coefficient of X can be written as

ai,j
bi,j

, with ai,j, bi,j ∈ R. Take

b to be a lowest common multiple of the family of denominators {bi,j, 1 ≤
i, j ≤ n}. Then set B = b · 1n ∈ Mn (R), A = BX ∈ Mn (R).

Mn (R) is a Euclidean ring with respect to the Euclidean stathm ϕn,
B 6= 0n, so by repeating divisions, we find k ∈ Z>0, Q1, . . . , Qk, R1, . . . , Rk ∈
Mn (R) such that we have the following division chain:







A−BQ1 = R1,

B −R1Q2 = R2,

...

Rk−2 −Rk−1Qk = Rk,

(9)

with Rk = 0n, for all 1 ≤ i < k, Ri 6= 0, and

ϕn(Rk−1) < ϕn(Rk−2) < · · · < ϕn(R1) < ϕn(B).
(10)

But B has rank n, so (10) implies that for all 1 ≤ i < k, Ri has also rank n,
i.e.

(11) Rk = 0 and Ri ∈ GLn (F) , for all 1 ≤ i < k.

We prove by induction on k that for any division chain satisfying conditions
(9) and (11), we have

A = B[Q1, . . . , Qk].

If k = 1, then A = B[Q1]. If k > 1, then Q2, . . . , Qk, R2, . . . , Rk provide
a division chain satisfying conditions (9) and (11) starting from B,R1. So,
by induction hypothesis, B = R1[Q2, . . . , Qk]. But R1, B ∈ GLn (F), so
[Q2, . . . , Qk] ∈ GLn (F) and R1 = B[Q2, . . . , Qk]

−1. Then R1 = A − BQ1,
therefore A = B(Q1 + [Q2, . . . , Qk]

−1), and we obtain A = B[Q1, . . . , Qk] as
expected.

If follows that X = B−1A = [Q1, . . . , Qk], which completes the proof. �
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If we suppose that the effectivity conditions of Proposition 5.1 hold, then
every step in the proof above is explicit.

Example 5.6. Take R = Q[x], consider X =

(
1/x 0

2/(x+ 3) 3

)

∈ M2 (Q(x)).

Then write B = x(x + 3) · 12, A =

(
x+ 3 0
2x 3x(x+ 3)

)

. We have the

following division chain






A−BQ1 =

(
x+ 3 x2 + 3x
2x 3x2 + 9x

)

,

B −
(
x+ 3 x2 + 3x
2x 3x2 + 9x

)

Q2 =

(
−x3

3 − x2 + x+ 3 x3

6 + x2 + x− 3
2

−2x3

3 − 2x2 + 2x x3

3 + 2x2 + 2x

)

,

(
x+ 3 x2 + 3x
2x 3x2 + 9x

)

−
(

−x3

3 − x2 + x+ 3 x3

6 + x2 + x− 3
2

−2x3

3 − 2x2 + 2x x3

3 + 2x2 + 2x

)

Q3 = 02,

where Q1 =

(
0 −1
0 0

)

, Q2 =

(
x2

2 + x− 1 −x2

6 − x
2 + 1

2
0 0

)

,

Q3 =

(
x
3 + 1 −x3

18 − x2

3 − x
3 + 3

2
2x
3

−x3

9 − x2

3 + x
3 + 3

)

.

Therefore, X = [Q1, Q2, Q3]. It may seem that such a short continued
fraction decomposition was obtained by sheer luck, but Remark 7.12 will
explain this behavior.

6. Euclidean order type of matrix algebras

Let R be a PID and n ∈ Z>1. The Euclidean stathm ϕn built for the
proof of Theorem 3.1 satisfies ϕn(0) ≤ (n− 1)ωn + ω. Therefore, we have

(12) e(Mn (R)) ≤ (n− 1)ωn + ω.

The purpose of this section will be to obtain other information on the Eu-
clidean order type e(Mn (R)).

6.1. Lower bound on the Euclidean order type of matrix algebras.

Let R be a PID and n ∈ Z>1. If R is not a field, we know that e(Mn (R)) > ω
(see [Kal85, Theorem 2]), but we can improve this lower bound.

Proposition 6.1. Let R be a PID which is not a field, and n ∈ Z>1. Take
any right Euclidean stathm χ : Mn (R)• −→ O. Then, for any α ∈ Z>0,
there exists Mα ∈ Mn (R) such that χ(Mα) ≥ (n − 1)ω + α. In particular,
e(Mn (R)) ≥ nω.

Proof. Fix some r ∈ R, which is neither 0 nor a unit. Such an element exists
because R is not a field. Take 1 ≤ i0 ≤ n. For α ∈ Z≥0, r

α+1R ( rαR,
which allows us to define the nonempty set

Ei0
α =

{

(mi,j)1≤i,j≤n ∈ Mn (R) ,
for any 1 ≤ i < i0, 1 ≤ j ≤ n,
mi,j = 0, and mi0,j ∈ rαR \ rα+1R

}

.

For any i0 and α, there exists some Ti0,α ∈ Ei0
α such that

χ(Ti0,α) = min
{
χ(X),X ∈ Ei0

α

}
.
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Fix i0 and take α, β ∈ Z≥0 such that α < β. As Ti0,β 6= 0n, there exists
Q ∈ Mn (R) such that

χ(Ti0,α − Ti0,βQ) < χ(Ti0,β).

But Ti0,α − Ti0,βQ ∈ Ei0
α , therefore

χ(Ti0,α) ≤ χ(Ti0,α − Ti0,βQ) < χ(Ti0,β).

Thus, (χ(Ti0,α))α∈Z≥0
is a strictly increasing sequence.

Take now α ∈ Z≥0 and take 1 ≤ i0 < n. As Ti0+1,0 6= 0n, there exists
Q′ ∈ Mn (R) such that

χ(Ti0,α − Ti0+1,0Q
′) < χ(Ti0+1,0).

But Ti0,α − Ti0+1,0Q
′ ∈ Ei0

α , therefore

χ(Ti0,α) ≤ χ(Ti0,α − Ti0+1,0Q
′) < χ(Ti0+1,0).

In other words, χ(Ti0+1,0) is an upper-bound to (χ(Ti0,α))α∈Z≥0
.

A straightforward induction on i0 proves that for any 1 ≤ i0 ≤ n and for
any α ∈ Z≥0,

χ(Ti0,α) ≥ (i0 − 1)ω + α.

Taking Mα = Tn,α grants the result. �

Remark 6.2. (1) The proof of Proposition 6.1 above relies on the exis-
tence of r which is neither a unit, nor a zero divisor. Therefore,
the conclusion of Proposition 6.1 holds for any commutative ring R

which is not equal to its total quotient ring.
(2) The proof of Proposition 6.1 above is still valid if R is a (not nec-

essarily commutative) ring with no nontrivial zero divisors which is
not a skew field.

(3) If F is a (skew) field, then for any n ∈ Z≥1, the function

χn :

{
Mn (F)

• −→ {0, 1, . . . , n}
M 7−→ n+ 1− rkM

is a left and right Euclidean stathm7, so e (Mn (F)) < ω.
(4) If R is a special PIR (e.g. R = Z/4Z, R = R[X]/(X2 + 1)3), then

for any n > 1, e (Mn (R)) < ω (see Lemma 4.3).

Proposition 6.3. Let R be a commutative ring and n ∈ Z>1. Then Mn (R)
is right Euclidean and satisfies e (Mn (R)) < ω if and only if R is a direct
product of fields and of special PIRs.

Proof. Assume that R =
∏l

i=1Ri where for any i, Ri is a field or a special
PIR. For any 1 ≤ i ≤ l, e (Mn (Ri)) < ω (see Remark 6.2(3) and Lemma 4.3).
So, thanks to Remark 4.5, e (Mn (R)) < ω.

Conversely, assume that Mn (R) admits the right Euclidean stathm ϕ :
{

Mn (R)• −→ O
M 7−→ ϕ(M)

. First remark that R is a PIR thanks to Propo-

sition 2.5. Then, we apply Proposition 4.2, so that R can be written as a

product R =
∏l

i=1Ri ×
∏m

i=1 Si, where for any i, Ri is a PID and Si is

7When R = F is a field, ℓ takes only the values 0 and 1 and the invariant factors are
trivial: Smith normal form is uniquely determined by the rank. In the noncommutative
case, you can adapt the proof or see [Bru73, Corollary to Theorem 1].
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a special PIR. If there exists some 1 ≤ i0 ≤ l such that Ri0 is not a field,
then define the ring S such that R = Ri0 ×S, and we can prove that the
following function

ψ :

{
Mn (Ri0)

• −→ O
M 7−→ infS∈Mn(S) ϕ(M,S)

is a right Euclidean stathm. It follows that e (Mn (Ri0)) ≤ e (Mn (R)). If
e (Mn (R)) < nω, it contradicts Proposition 6.1. �

Let us notice that we have proved that for any n ∈ Z>1, there exists no
commutative ring R such that ω ≤ e (Mn (R)) < nω.

6.2. General bounds for the Euclidean order type of matrix alge-

bras. We combine the above results to obtain.

Proposition 6.4. Let R be a PIR, n ∈ Z>1, and l,m ∈ Z≥0 such that

R =
∏l

i=1 Ri ×
∏m

i=1 Si, where for each i, Ri is a PID but not a field, and
Si is a special PIR or a field. Then Mn (R) is right Euclidean and

lnω ≤ e (Mn (R)) < l(n− 1)ωn + (l + 1)ω.

Proof. Just apply Equation (12), Remark 4.5 and Proposition 6.1. �

Notice that the bounds still hold for l = 0, but the upper bound is false
in general for n = 1 (even with the assumption that R is Euclidean).

6.3. Euclidean order type of matrix algebras over Euclidean rings.

We will build another Euclidean stathm, which provides another upper
bound on e(Mn (R)).

Proposition 6.5. Let R be a integral domain which is Euclidean and n ∈
Z≥1. Then Mn (R) is a Euclidean ring and e(Mn (R)) ≤ n⊗ e(R).

Proof. Let ϕ : R• −→ O be a Euclidean stathm. If required, we replace

ϕ by ϕ̂ :

{
R• −→ O
r 7−→ inf{ϕ(ru), u ∈ R×} so that ϕ is invariant under

multiplication by units. Then, for any n ≥ 1, the following function is well-
defined:

ψn :







Mn (R)• −→ O
M 7−→ [(n− rkM)⊗ ϕ(0)] ⊕ ϕ

(
∏rkM

i=1 bi

)

if

b1, b2, . . . , brkM are the invariant factors of M.

We will prove by induction on n ≥ 1 that ψn is a Euclidean stathm. Since
ψn(0) ≤ n⊗ ϕ(0), this will imply that e(Mn (R)) ≤ n⊗ e(R).

First, ψ1 = ϕ is a Euclidean stathm. Fix now n > 1, and assume that
for all 1 ≤ l < n, ψl is a Euclidean stathm. Consider A,B ∈ Mn (R),
B 6= 0. Write r = rkB ≥ 1. Take X,Y ∈ GLn (R) such that Y BX =
diag(b1, . . . , br, 0, . . . , 0), such that b1|b2| . . . |br 6= 0. Set Y A = (ai,j)1≤i,j≤n.

Assume that r < n. If there exists 1 ≤ i, j ≤ n such that i > r or
j > r, then we saw in the proof of Proposition 3.2, in Section 3.5 that
there exists Q ∈ Mn (R) such that rk (A−BQ) > rkB. Therefore, ψn(A−
BQ) < ψn(B). Consequently, we may assume that for all 1 ≤ i, j ≤ n,
such that i > r or j > r, we have ai,j = 0. Let A′ = (ai,j)1≤i,j≤r, B

′ =
diag(b1, . . . , br) ∈ Mr (R). By the induction hypothesis, there exists Q′ ∈
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Mr (R) such that A′ = B′Q′ or ψr(A
′ − B′Q′) < ψr(B

′). Set Q ∈ Mn (R)

such that XQ =

(
Q′ 0r,n−r

0n−r,r 0n−r

)

, we obtain

A = BQ or ψn(A−BQ) < ψn(B).

Now, we can assume that r = n. Take T ∈ GLn (R) such that Y AT is

lower triangular and write Y AT =








a1 01,n−1

a2
...
an

A′








, where A′ = (a′i,j)1≤i,j<n ∈

Mn−1 (R). Now we perform the Euclidean division of a1
∏n

i=2 bi by
∏n

i=1 bi:
there exists λ ∈ R such that

a1 = λb1 or ϕ

(

(a1 − λb1)

n∏

i=2

bi

)

< ϕ

(
n∏

i=1

bi

)

= ψn(B).

Define λ⋆ = λ if a1 6= λb1, and λ⋆ = λ−1 else. Set the lower triangular matrix
Â = diag(a1 − λ⋆b1, 1, . . . , 1) · A′ and B̂ = diag (b2(a1 − λ⋆b1), b3, . . . , bn) ∈
Mn−1 (R)•, with rk B̂ = n−1. By the induction hypothesis, we may perform

the Euclidean division of Â by B̂: there exists Q̂ ∈ Mn−1 (R) such that

Â = B̂Q̂ or ψn−1(Â− B̂Q̂) < ψn−1(B̂).

Assume first that Â 6= B̂Q̂. Then ψn−1(Â− B̂Q̂) < ϕ(0), so that Â− B̂Q̂
has rank n− 1. Besides,

ϕ(det(Â− B̂Q̂)) = ψn−1(Â− B̂Q̂) < ψn−1(B̂) = ϕ(det B̂) ≤ ψn(B).

But det(Â − B̂Q̂) = (a1 − λ⋆b1) det(A
′ − diag(b2, . . . , bn)Q̂), and setting

Q ∈ Mn (R) such that X−1QT =

(
λ⋆ 01,n−1

0n−1,1 Q̂

)

, we have

det(Y AT − Y BQT ) = (a1 − λ⋆b1) det(A
′ − diag(b2, . . . , bn)Q̂),

= det(Â− B̂Q̂) 6= 0.

Consequently,

ψn(A−BQ) = ϕ
(

(a1 − λ⋆b1) det(A
′ − diag(b2, . . . , bn)Q̂)

)

< ψn(B).

Suppose now that Â = B̂Q̂. Then we also have A′ = diag(b2, . . . , bn)Q̂.
We distinguish two cases. First, assume that a1 − b1λ 6= 0. Setting Q ∈
Mn (R) such that

X−1QT =

(
λ⋆ 01,n−1

0n−1,1 Q̂− 1n−1

)

,

we obtain det(Y AT − Y BQT ) = (a1 − λb1)
∏n

i=2 bi. Then

ψn(A−BQ) = ϕ(det(A−BQ)) < ψn(B).

Now, assume that a1 = b1λ, i.e. a1 − λ⋆b1 = b1, set Q′, T ′ ∈ Mn (R) such
that

T ′ =





1 1
0 1

02,n−2

0n−2,2 1n−2



 and X−1Q′T =

(
λ⋆ 1 01,n−2

0n−1,1 Q̂

)

,
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which allows us to define

Ã = Y ATT ′ − Y BQ′TT ′ =








b1 0
a2 a2
...

...
an an

0n,n−2







.

Then we apply what we did above to Ã and Y BX: either we find some
Q̂′ ∈ Mn−1 (R) such that








a2
a3
...
an

0n−1,n−2








= diag(b2, . . . , bn)Q̂
′,

or we find some Q′′ ∈ Mn (R) such that ψn(Ã− Y BXQ′′) < ψn(B).

In the first case, write q′ for the first column of Q̂′ and set

Q = Q′ +X

(
1 01,n−1

q′ Q̂′

)

T ′−1T−1.

Then A = BQ.
In the latter case, set Q = Q′ + XQ′′T ′−1T−1, then ψn(A − BQ) =

ψn(Ã− Y BXQ′′) < ψn(B). �

Combining the above result with Proposition 6.1, we obtain immediately
the following result.

Corollary 6.6. Let R be a integral domain which is Euclidean such that
e(R) = ω. Then for any n ∈ Z>0, e(Mn (R)) = nω.

Actually, Samuel ([Sam71]) proved that if R is a integral domain which is
Euclidean and for any x ∈ R•, R/Rx is finite, then e(R) ≤ ω. We have an
equality except when R is a field ([Fle71]).

Example. Let n ∈ Z≥1,

e (Mn (Z)) = e (Mn (Q[x])) = e (Mn (Z[i])) = nω.

6.4. Euclidean order type of matrix algebras over a PID with finite

residues. Imitating Samuel, we can prove Corollary 6.6 without assuming
R to be Euclidean.

Proposition 6.7. Let R be a PID. If for any x ∈ R•, R/xR is finite, then
for any n ∈ Z>1, Mn (R) is Euclidean and e(Mn (R)) ≤ nω. If besides R is
not a field, then e(Mn (R)) = nω.

Proof. Let us consider the smallest right Euclidean stathm θ : Mn (R)• −→
O. We prove by induction on 1 ≤ r ≤ n that

(13) if x1, . . . , xr ∈ R•, then θ(diag(x1, . . . , xr, 0, . . . , 0)) < (n− r + 1)ω.

For r = n, if such elements exist, consider x1, . . . , xn ∈ R• such that
D = diag(x1, . . . , xn) satisfies θ(D) ≥ ω and ϕn(D) minimal. Then for any
A ∈ Mn (R), there exists Q(A,D) ∈ Mn (R) such that ϕn(A−DQ(A,D)) <
ϕn(d). By definition of ϕn, we have rk(A − DQ(A,D)) = n, so A −
DQ(A,D) is equivalent to a full-rank diagonal matrix D′ ∈ Mn (R) such
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that ϕn(D
′) < ϕn(D). Therefore, θ(A − DQ(A,D)) = θ(D′) < ω. Let

S ⊆ Mn (R) \DMn (R) such that S ∪ {0} is a system of representatives of
Mn (R) /DMn (R), then Lemma 2.10 implies that

θ(D) ≤ sup
A∈S

θ(A−DQ(A,D)) + 1.

As S is finite, this implies that θ(D) < ω. This contradicts our hypothesis.
Therefore (13) holds for r = n. We will prove (13) for r = r0 − 1.

Now let us assume that we have some 1 < r0 ≤ n, such that for all r0 ≤ r ≤
n, (13) holds. Similarly, if such elements exist, consider x1, . . . , xr0−1 ∈ R•

such that D = diag(x1, . . . , xr0−1, 0, . . . , 0) satisfies θ(D) ≥ (n − r0 + 2)ω
and ϕn(D) minimal. Consider now A ∈ Mn (R). There exists T ∈ GLn (R)
such that A′ = AT is lower triangular. If A′ = (ai,j)1≤i,j≤n admits a nonzero
coefficient ai,j such that i ≥ r0 or j ≥ r0, we say that A′ ∈ S1. We saw in
the proof of Proposition 3.2 (on p. 14) that there exists Q′(A,D) ∈ Mn (R)
such that A′ −DQ′(A,D) has rank at least r0. Therefore, by the induction
hypothesis, θ(A′ −DQ′(A,D)) < (n− r0 + 1)ω.

If for all 1 ≤ i, j ≤ n, a′i,j 6= 0 implies i, j < r0, then we say that A′ ∈ S2.

There exists Q′(A,D) ∈ Mn (R) such that A′ = DQ′(A,D) or ϕn(A
′ −

DQ′(A,D)) < ϕn(d) and then rk(A′ −DQ′(A,D)) ≥ r0 − 1. Consequently,
θ(A′ −DQ′(A,D)) < (n− r0 + 2)ω.

Let S ⊆ Mn (R) \ DMn (R) such that S ∪ {0} is a system of repre-
sentatives of Mn (R) /DMn (R). Then, thanks to Lemma 2.10, we have
θ(D) ≤ supa∈S infQ∈Mn(R) θ(A + DQ) + 1. But for all A ∈ S, there exists
T ∈ GLn (R) such that AT ∈ S1 or AT ∈ S2, thus

θ(D) ≤ sup
A′∈S1∪S2
T∈GLn(R)

inf
Q∈Mn(R)

θ(A′T−1 +DQ) + 1.

But for all A′, Q ∈ Mn (R), T ∈ GLn (R), θ(A′T−1 +DQ) = θ(A′ +DQT )
(see Remark 2.9) and then
(14)

θ(D) ≤ sup

(

sup
A′∈S1

inf
Q∈Mn(R)

θ(A′ +DQ), sup
A′∈S2

inf
Q∈Mn(R)

θ(A′ +DQ)

)

+ 1.

For all A′ ∈ S1, we have

inf
Q∈Mn(R)

θ(A′ +DQ) ≤ θ(A′ +DQ′(A,D)) < (n− r0 + 1)ω.

Thus

(15) sup
A′∈S1

inf
Q∈Mn(R)

θ(A′ +DQ) < (n− r0 + 2)ω.

For all A′ ∈ S2, we have

inf
Q∈Mn(R)

θ(A′ +DQ) ≤ θ(A′ +DQ′(A,D)) < (n− r0 + 2)ω.

But there are only finitely many cosets A′+DMn (R) with A′ ∈ S2, therefore

(16) sup
A′∈S1

inf
Q∈Mn(R)

θ(A′ +DQ) < (n− r0 + 2)ω.

So, by combining (14), (15), and (16), we obtain θ(D) < (n − r0 + 2)ω as
expected.
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Finally, consider any A ∈ Mn (R)•. The matrix A is equivalent to some
diagonal matrix D. Thanks to (13), θ(D) < nω, and Remark 2.9 implies
that θ(A) = θ(D). We conclude that e(Mn (R)) = θ(0) ≤ nω.

If R is not a field, Proposition 6.1 proves that e(Mn (R)) ≥ nω. �

Example. Let n ∈ Z>1. Then

e

(

Mn

(

Z

[
1 +

√
−19

2

]))

= nω.

7. k-stage Euclidean properties

In this section, we will study the Euclidean properties of matrix algebras
for another generalization of the Euclidean notion, introduced by Cooke
[Coo76].

7.1. Definition and basic remarks. Let A be a ring. Let f : A −→ Z≥0

be a function such that for α ∈ A, f(α) = 0 if, and only if α = 0.
Given a pair (a, b) ∈ A × A•, and a positive integer k, we say that (a, b)

is a k-stage right Euclidean pair with respect to f if there exists a k-stage
division chain starting from (a, b), that is to say there exist (qi)1≤i≤k ∈ Ak

(the quotients) and (ri)1≤i≤k ∈ Ak (the remainders) such that

(17)







a− bq1 = r1,

b− r1q2 = r2,

r1 − r2q3 = r3,

...

rk−2 − rk−1qk = rk,

and f(rk) < f(b).
If rk = 0, we say that (1) is a terminating k-stage division chain starting

from (a, b).

Remark 7.1. Any division rk−2 − rk−1qk = rk can be turned into a 2-stage

division

{

rk−2 − rk−1(qk + 1) = −rk−1 + rk,

rk−1 − (−rk−1 + rk) · (−1) = rk.
Consequently,

• If (a, b) is a k-stage right Euclidean pair with respect to f , it is a
l-stage right Euclidean pair with respect to f for any l ≥ k.

• If (a, b) admits a k-stage terminating division chain, then for any
l ≥ k, the pair (a, b) admits admits a terminating l-stage division
chain.

Definition 7.2. We say that A is ω-stage right Euclidean if there exists a
function f : A −→ Z≥0 whose zero set is exactly {0} such that for every pair
(a, b) ∈ A× A•, there exists k ∈ Z>0 such that (a, b) is a k-stage Euclidean
pair with respect to f . If for all pairs, we can take k ≤ k0, we say that A is
a k0-stage right Euclidean ring. If for all pairs (a, b) ∈ A × A•, there exists
a k-stage terminating division chain starting from (a, b), we say that A is a
k-stage terminating right Euclidean ring.
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In light of Remark 7.1, to prove that A is k-stage right Euclidean, it is
enough to prove that every pair (a, b) ∈ A × A• is a l-stage right Euclidean
pair for some l ≤ k.

If A is right Euclidean, then the Euclidean algorithm provides division
chains and shows that A is ω-stage right Euclidean. However, the converse is
false in general, since an ω-stage right Euclidean ring may have non-principal
right ideals.

If A is ω-stage right Euclidean, then A is a right K-Hermite ring. But the

converse is false in general: R = Z
[
1+

√
−19
2

]

is a PID, but R is not ω-stage

Euclidean.
Let R be a commutative ring, we consider A = Mn (R). We can also

define k-stage left Euclidean pairs, by replacing bq1 by q1b and riqi+1 by
qi+1ri in (17), which leads to define ω-stage left Euclidean rings and k-stage
left Euclidean rings. But for (a, b) ∈ Mn (R), b 6= 0n, (a, b) is a k-stage
right Euclidean pair with respect to f if and only if (aT, bT) is a k-stage left
Euclidean pair with respect to fT. Consequently, Mn (R) is k-stage right
Euclidean if and only if it is k-stage left Euclidean, and likewise, Mn (R) is
ω-stage right Euclidean if and only if it is ω-stage left Euclidean.

Let us immediately indicate a corollary. Let R be a PIR and n ∈ Z>1.
Theorem 4.1 implies that Mn (R) is ω-stage right Euclidean, but we can
improve this property.

Theorem 7.3. Let R be a commutative ring and n ∈ Z>1. Then we have
the following properties.

(1) If R is a K-Hermite ring, then Mn (R) is (4n− 3)-stage terminating
right and left Euclidean.

(2) If R is an elementary divisor ring, then Mn (R) is (2n − 1)-stage
terminating right and left Euclidean.

(3) If R is a PIR, then Mn (R) is 2-stage right and left Euclidean.

If R is an integral domain, then Amitsur [Ami63, Theorem 1.4] proved that
R is Bézout if and only if R is K-Hermite. Consequently, Theorem 7.3(1)
implies the following result.

Corollary 7.4. Let R be an integral domain and n ∈ Z>1, then the following
statements are equivalent.

(1) R is Bézout.
(2) R is K-Hermite.
(3) Mn (R) is (4n − 3)-stage terminating right Euclidean.
(4) Mn (R) is ω-stage right Euclidean.
(5) Mn (R) is right Bézout.

Proof. We have (1) ⇐⇒ (2) because R is an integral domain; (2) =⇒ (3) is
Theorem 7.3(1); (3) =⇒ (4) and (4) =⇒ (5) are clear; let us explain (5) =⇒
(1).

Take a, b ∈ R. Consider the matrices

A = diag(1, . . . , 1, a) and B = diag(1, . . . , 1, b) ∈ Mn (R) .

Since Mn (R) is right Bézout, there exists D ∈ Mn (R) such that

(18) AMn (R) +BMn (R) = DMn (R) .
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Thanks to (18), there exists M , N ∈ Mn (R) such that A = DM , B = DN .
Therefore a = detA ∈ (detD)R, and b = detB ∈ (detD)R, which implies
aR+ bR ⊆ (detD)R.

But (18) also implies that there exist U , V ∈ Mn (R) such that AU+BV =
D. The elements of the last row of AU +BV are elements of aR+bR. Since
aR+ bR is an ideal of R, Leibniz formula shows that detD ∈ aR+ bR, and
we can conclude that aR+ bR = (detD)R. �

The remainder of this section will be devoted to the proof of Theorem 7.3.
Since R is commutative left and right Euclidean properties are equivalent,
so we will only be concerned with right Euclidean properties. We will first
deal with special PIRs, where the situation is even simpler.

7.2. 2-stage Euclidean property over a special PIR. If S is a special
PIR, then for any n ∈ Z≥1, Mn (S) is right Euclidean and e (Mn (S)) < ω,
but we can also find a terminating 2-stage division for any pair of elements
of Mn (S).

Proposition 7.5. Let S be a special PIR and n ∈ Z≥1. Then Mn (S) is
2-stage terminating left and right Euclidean.

Proof. Let A, B ∈ Mn (S), B 6= 0n. Thanks to [Hun68], there exist a
PID R and a surjective ring homomorphism π : R −→ S. We extend
π to a surjective ring homomorphism π : Mn (R) −→ Mn (S). Take A′,
B′ 6= 0n ∈ Mn (R) such that A = π(A′), B = π(B′).

Since R is a PID, it is a K-Hermite ring with no nontrivial zero divisors,
so there exists A′

1, B
′
1, and D′ ∈ Mn (R), such that A′ = D′A′

1, B
′ = D′B′

1
and A′

1Mn (R)+B′
1Mn (R) = Mn (R). By writing A1 = π(A′

1), B1 = π(B′
1),

D = π(D′) ∈ Mn (S), we obtain

(19) A = DA1, B = DB1, and A1Mn (S) +B1Mn (S) = Mn (S) .

But srS = 1, so srMn (S) = 1 too. Consequently, there exists a matrix
Q′ ∈ Mn (S) such that (A1 + B1Q

′)Mn (S) = Mn (S), i.e. A1 + B1Q
′ =

U ∈ GLn (S). This provides the following terminating 2-stage division for
(A,B):

{
A−B(−Q′) = DU,

B −DUU−1B1 = 0n.

�

Remark 7.6. The conclusion of Proposition 7.5 above still holds if we assume
S to be an integral domain, which is also a Bézout ring and has stable rank
1, because we can directly obtain (19) and the end of the proof can be applied
without changes.

For example, the ring of all algebraic integers R = Z satisfies this property.
As R is not a PID, this shows that the converse of Theorem 7.3(3) is false.

7.3. The K-Hermite case. For technical reasons, we will deal with non-
square matrices, starting with 2 rows.

Lemma 7.7. Let R be a commutative K-Hermite ring. Let m ∈ Z>1, A ∈
M2,m (R), B ∈ M2,m (R), then there exist Qi ∈ Mm (R), Ri ∈ M2,m (R),
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1 ≤ i ≤ 5, such that






A−BQ1 = R1,

B −R1Q2 = R2,

R1 −R2Q3 = R3,

R2 −R3Q4 = R4,

R3 −R4Q5 = 02,m.

Proof. Write A = (ai,j)1≤i≤2, 1≤j≤m. Since R is K-Hermite, there exists
some V ∈ GLm (R) such that BV is lower triangular. Denote by b ∈ R the
coefficient (1, 1) of BV . There exist d, b′, a′i ∈ R, 1 ≤ i ≤ m such that
b = db′, a1,i = da′i, and satisfying

a′1R+ · · · + a′mR+ b′R = R.

But srR ≤ m, so there exist xi ∈ R, 1 ≤ i ≤ m such that

(a′1 + b′x1)R+ · · · + (a′m + b′xm)R = R.

Therefore, there exist λi ∈ R, 1 ≤ i ≤ m, satisfying
∑m

i=1(a
′
i + b′xi)λi = b′.

Set R1 = A−BV

(
−x1 · · · −xm

0m−1,m

)

, whose first row is

(
a1,1 + bx1 · · · a1,m + bxm

)
.

Then we have the following “division chain”:

(20)







A−BV

(
−x1 · · · −xm

0m−1,m

)

= R1,

B −R1






λ1
...
λm

0m,m−1




V −1 =

(
01,m−1

R′
2

)

,

R1 −
(
01,m−1

R′
2

)

0n = R1.

Set R2 =

(
01,m−1

R′
2

)

and R3 = R1. Write R′
2 =

(
α1 · · · αm

)
∈ M1,m (R).

Since R is K-Hermite, there exists V1 ∈ GLm (R) such that

R3V1 =

(
b1 0
b2 c

02,m−2

)

Besides, there exist d, c′, α′
i ∈ R, 1 ≤ i ≤ m, such that c = dc′, αi = dα′

i,
and

α′
1R+ α′

2R+ · · · + α′
mR+ c′R = R.

But srR ≤ m, so there exist xi ∈ R, 1 ≤ i ≤ m satisfying

(α′
1 + c′x1)R+ (α′

2 + c′x2)R+ · · ·+ (α′
m + c′xm)R = R.

Thanks to [Kap49, Theorem 3.7], we can find an invertible matrix U ∈
GLm (R) whose second row is

(
α′
1 + c′x1 α′

2 + c′x2 · · · α′
m + c′xm

)
.
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Let us denote by
(
λ1 · · · λm

)
the first row of U . Set M =

(
b1 0
b2 d

)

. No-

tice that R2 = M

(
01,m

α′
1 · · · α′

m

)

, and R3V1 = M

(
1 0
0 c′

02,m−2

)

. Then

set R4 =M

(
λ1 · · · λm

α′
1 + c′x1 · · · α′

m + c′xm

)

, we obtain the following “division

chain”:

(21)







R2 −R3V1





−λ1 · · · −λm
−x1 · · · −xm

0m−2,m



 = R4,

R3 −R4U
−1





1 0
0 c′

02,m−2

0m−2,m



V −1
1 = 02,m.

Combining Equations (20) and (21) provides a 5-stage terminating division
chain. �

Now, we can exhibit a terminating division chain in the general case.

Proposition 7.8. Let R be a commutative K-Hermite ring. Then Mn (R)
is (4n− 3)-stage terminating right Euclidean.

Proof. We will prove a little more to facilitate the induction. Namely, we
will prove by induction on n ∈ Z>1 that for any m ≥ n, A ∈ Mn,m (R), B ∈
Mn,m (R), there exist matrices Qi ∈ Mm (R), Ri ∈ Mn,m (R), 1 ≤ i ≤ 4n−3
such that 





A−BQ1 = R1,

B −R1Q2 = R2,

R1 −R2Q3 = R3,

...

R4n−5 −R4n−4Q4n−3 = 0n,m.

For n = 2, it is Lemma 7.7. Take n > 2 and assume that the property holds
for n− 1. Fix m ≥ n. Denote by A′, B′ ∈ Mn−1,m (R) the (n− 1) first rows
of A and B. Then by the induction hypothesis, there exists a (4n− 7)-stage
terminating division chain starting from (A′, B′). Denoting by Qi ∈ Mm (R),
1 ≤ i ≤ 4n− 7 the quotients of this chain, we can apply them starting from
(A,B) and we construct Ri ∈ Mn,m (R), satisfying

R4n−7 =

(
0n−1,m

α1 · · · αm

)

.

We apply the trivial division R4n−8 −R4n−7 · 0m = R4n−8, so that R4n−6 =
R4n−8. Since R is K-Hermite, there exists V ∈ GLm (R) such that R4n−6V
is lower triangular. Denote by b the coefficient of R4n−6V with coordinates
(n, n).

There exist d, b′, α′
i ∈ R, 1 ≤ i ≤ m satisfying αi = dα′

i, b = db′, and

α′
1R+ · · · + α′

mR+ b′R = R.

Since srR ≤ m, there exists xi ∈ R, 1 ≤ i ≤ m such that

(α′
1 + b′x1)R+ · · · + (α′

m + b′xm)R = R.
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Take λi ∈ R, 1 ≤ i ≤ m such that
∑m

i=1(α
′
i + b′xi)λi = 1. Then set

R4n−5 =

(
0n−1,m

α1 + bx1 · · · αm + bxm

)

,

and R4n−4 = R4n−6 +

(

0n,n−1
0n−1,1

d− b
0n,m−n

)

V −1,

so that we obtain






R4n−7 −R4n−6V





0n−1,m

−x1 · · · −xm
0m−n,m



 = R4n−5,

R4n−6 −R4n−5




0m,n−1

λ1(b
′ − 1)
...

λm(b′ − 1)

0m,m−n




V −1 = R4n−4,

R4n−5 −R4n−4V





0n−1,m

α′
1 + b′x1 · · · α′

m + b′xm
0m−n,m



 = 0n,m.

�

7.4. The elementary divisor ring case. A commutative elementary di-
visor ring R is a K-Hermite ring, so we know already that for any n ∈ Z>1,
Mn (R) is (4n−3)-stage terminating right Euclidean, but we want to obtain
shorter terminating division chains. Let us first deal with a special case.

Lemma 7.9. Let R be an elementary divisor ring. Take A, B ∈ M2 (R).
Assume that B ∼ diag(b1, b2) and that b1 divides the coefficients of A. Then
there exists a 2-stage terminating division chain starting from (A,B).

Proof. Take X, Y ∈ GL2 (R) such that

Y A =

(
b1a b1b
c d

)

and Y BX = diag(b1, b2).

As R is a K-Hermite ring, thanks to Lemma 2.1, there exist c′, d′, b′2, e ∈ R

such that c = ec′, d = ed′, b2 = eb′2, and

c′R+ d′R+ b′2R = R.

But the stable rank of R is at most 2 (see Lemma 2.2), so there exist t,
z ∈ R such that

(c′ + b′2t)R+ (d′ + b′2z)R = R.

Hence there exist λ, µ ∈ R such that

(c′ + b′2t)λ+ (d′ + b′2z)µ = 1.

Now, we have the following 2-stage division chain:

(22)







A−BX

(
a− µ b+ λ
−t −z

)

= Y −1

(
b1µ −b1λ

c+ b2t d+ b2z

)

B − Y −1

(
b1µ −b1λ

c+ b2t d+ b2z

)(
d′ + b′2z λb′2

−(c′ + b′2t) µb′2

)

X−1 = 02.

�
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Proposition 7.10. Let R be a commutative ring.

(1) If R is an elementary divisor ring, then M2 (R) is 3-stage terminating
right Euclidean.

(2) If R is a PID, then M2 (R) is 2-stage right Euclidean.

Proof. Notice that R is an elementary divisor ring in any case. Take A,
B ∈ M2 (R), B 6= 02. There exist X, Y , T ∈ GL2 (R), a, b, c, b1|b2 ∈ R

such that

Y BX = diag(b1, b2), Y AT =

(
a 0
b c

)

.

(i) If b1 divides a, b, and c, then Lemma 7.9 implies the existence of a
2-stage terminating division starting from (A,B).

(ii) If b1 does not divide a, b or c, then set Q = X

(
0 −1
0 0

)

T−1, so that

(23) A−BQ = Y −1

(
a b1
b c

)

T−1,

To prove (1), simply notice that there is a 2-stage terminating divi-
sion chain starting from (B,A−BQ) thanks to case (i) above.

If R is a PID, then the first invariant factor of A−BQ is a strict
divisor of b1 (see Lemma 2.3(a)). Consequently, we have f(A−BQ) <
f(B) for the function

f :







M2 (R) −→ Z≥0

02 7−→ 0
M ∼ diag(b1, b2), b1|b2, b1 6= 0 7−→ ℓ(b1) + 1.

It proves that M2 (R) is 2-stage right Euclidean with respect to f .

�

Remark 7.11. Let R be an elementary divisor ring which is an integral do-
main. Then for any A, B ∈ M2 (R), with rkB = 2, there exists a 3-stage
terminating division chain whose (nonzero) remainders have rank 2.

Indeed, instead of (23), we can apply division (7), which grants the same
properties for the remainder, and the additional condition that the remainder
has full rank.

Besides, we see that the nonzero remainder in (22) has full rank (by com-
puting its determinant for instance).

This explains why we have obtained a short division chain in Example 5.6.
Indeed,

Remark 7.12. Divisions (7) and (22) are exactly the divisions prescribed to
define ϕ2 in Section 3. So, if R is a PID, and if we start from a pair (A,B)
of elements of M2 (R), with rkB = 2, applying successive divisions by ϕ2 as
constructed in Section 3 will terminate in at most 3 steps.

We can extend the terminating division chain that we have obtained in
size 2 to arbitrary size n.

Proposition 7.13. Let R be a (commutative) elementary divisor ring and
n ∈ Z>1.

(1) Mn (R) is (2n − 1)-stage terminating right Euclidean.
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(2) If moreover R is an integral domain, then for all A, B ∈ Mn (R),
with rkB = n, there exists a (2n−1)-stage terminating division chain
such that all nonzero remainders have rank n.

Proof. (1) Thanks to Remark 7.1, it suffices to prove the existence of
division chains with length at most (2n − 1). We will prove it by
induction on n. For n = 2, this is Proposition 7.10(1).

Take n > 2, and A, B ∈ Mn (R), B 6= 0n. Then there exist X, Y ,
T ∈ GLn (R), (ai)1≤i≤n ∈ Rn, A′ B′ ∈ Mn−1 (R), such that

(24) Y AT =








a1 01,n−1

a2
...
an

A′








and Y BX =

(
b1 01,n−1

0n−1,1 B′

)

,

and b1 divides all coefficients of B′. If b1 does not divide a1, take

Q =

(
0 −1 01,n−2

0n−1,n

)

. Then A − BQ ∼ diag(b′1, . . . , b
′
n) where b′1

divides b1, so b′1 divides all coefficients of B.
In other words, after at most 1 division, we can assume that we

have (24), with the further assumption that b1 divides all coefficients
of A′, and in particular, b1 divides a1. Write a1 = b1a

′
1

By the induction hypothesis, there exists a (2n− 2)-stage8 termi-
nating division chain in Mn−1 (R). Let us denote by Q′

k its quotients
and R′

k its remainders, for 1 ≤ k ≤ 2n − 2.

Set Q1 =

(
a′1 − 1 01,n−1

0n−1,1 Q′
1

)

, Qi =

(
0 01,n−1

0n−1,1 Q′
i

)

, for 1 < i <

2n− 2, and Q2n−2 =

(
1 01,n−1

0n−1,1 Q′
2n−2

)

. Then we obtain a (2n− 2)-

stage terminating division stage with the following remainders:

for 1 ≤ i ≤ n− 1, R2i−1 =








b1 01,n−1

a2
...
an

R′
2i−1







,

for 1 ≤ i < n− 1, R2i =

(
b1 01,n−1

0n−1,1 R′
2i

)

.

(2) We prove it by induction on n ≥ 2. The case n = 2 is Remark 7.11.
In the induction hypothesis, we include the fact that the nonzero
remainders have full rank. We perform the same divisions as in the
proof of (1) with the following modifications. First, we replace the
first division by the division performed in the 1st step of the proof
of Lemma 3.6: we obtain Q ∈ Mn (R) such that A − BQ has rank
n, and the first invariant factor of A−BQ divides the first invariant
factor of B. With the construction above, the nonzero remainders
Rk have full rank. This completes the proof.

8The induction hypothesis ensures the existence of the (2n − 3)-stage division chain
with the required properties, but we can turn it into a (2n− 2)-stage division chain with
Remark 7.1.
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�

Corollary 7.14. Let R be an integral domain which is an elementary divisor
ring and n ∈ Z>1. Denote by F the field fractions of R. Then for all
X ∈ Mn (F), there exist Q1, Q2, . . . , Q2n−1 ∈ Mn (R) satisfying

X = [Q1, Q2, . . . , Q2n−1].

Proof. We can apply the same technique as in the proof of Proposition 5.5.
Proposition 7.13(2) implies that we can obtain a (2n− 1)-stage terminating
division chain satisfying (11). �

7.5. 2-stage Euclidean property over a PID.

Proposition 7.15. Let R be a PID and n ∈ Z>1. Then Mn (R) is 2-stage
right Euclidean.

Proof. Let us define

fn :







Mn (R) −→ Z≥0

0n 7−→ 0
M ∼ diag(b1, b2, . . . , br, 0, . . . , 0),
b1|b2| . . . |br, br 6= 0

7−→ ℓ
(
∏min(r,n−1)

i=1 bi

)

+ 1.

We will prove by induction on n ≥ 2 that Mn (R) is 2-stage right Euclidean
with respect to fn. For n = 2, it is Proposition 7.10(2) (or rather its proof).

Take n > 2, A,B ∈ Mn (R), B 6= 0n. There exist X,Y, T ∈ GLn (R) such
that Y BX = diag(b1, b2, . . . , br, 0, . . . , 0) with b1|b2| . . . |br 6= 0 and Y AT is
lower triangular.

1. First consider the case r = 1. Write (ai,j)1≤i,j≤n = Y AT and set
E = (ei,j)1≤i≤n−1,1≤j≤n ∈ Mn−1,n (R), where

for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, ei,j = ai+1,j,

that is to say

Y AT =

(
a1,1 01,n−1

E

)

.

The kernel of E is nontrivial. Take v = (vi)1≤i≤n ∈ Mn,1 (R)• such that
v ∈ kerE and the coordinates of v are coprime, i.e.

(25)
n∑

i=1

Rvi = R.

1.a. If a1,1v1 /∈ Rb1, then we have the following 2-stage right Euclidean
division:






A−B 0n = A,

B −AT
(
0n,1 −v 0n,n−2

)
X−1 = Y −1

(
b1 a1,1v1 01,n−2

0n−1,2 0n−1,n−2

)

X−1.

Notice that this latter matrix

(
b1 a1,1v1 01,n−2

0n−1,2 0n−1,n−2

)

is equivalent to the

matrix diag(e, 0, . . . , 0), where e = gcd(b1, a1,1v1) is a strict divisor of b1, so
ℓ(e) < ℓ(b1).
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1.b. If a1,1v1 ∈ Rb1, thanks to (25), take λ = (λi)1≤i≤n ∈ M1,n (R) such that
∑n

i=1 λivi = −a1,1v1
b1

+1. Hence we have the following 2-stage division chain:







A−BX

(
−λ

0n−1,n

)

T−1 = Y −1

(
a1,1 + λ1b1 λ2b1 · · · λnb1

E

)

T−1,

B − Y −1

(
a1,1 + λ1b1 λ2b1 · · · λnb1

E

)

T−1T
(
v 0n,n−1

)
X−1 = 0n.

2. Assume now that r > 1 and that br ∈ R×, in which case we may suppose
that b1 = · · · = br = 1. Define M ∈ Mr,n (R) and M (0) ∈ Mn−r,n (R) such
that

Y AT =

(
M

M (0)

)

.

We build inductively v(i) ∈ Mn,1 (R) and λ(i) ∈ M1,n (R) for 1 ≤ i ≤ r as

follows. The kernel of M (0) is nontrivial, so there exists v(1) =
(

v
(1)
i

)

1≤i≤n
∈

Mn,1 (R) such that M (0)v(1) = 0n,1. We choose v(1) whose coordinates are

coprime, i.e. they satisfy
∑n

i=1 Rv
(1)
i = R, which allows us to take λ(1) ∈

M1,n (R) such that λ(1)v(1) = (1). Having built v(i) and λ(i) for 1 ≤ i ≤ i0 <

r, we build v(i0+1) and λ(i0+1). Define M (i0) ∈ Mn (R) by

M (i0) =










λ(1)

...

λ(i0)

0r−i0,n

M (0)










.

The kernel of M (i0) is nontrivial, so there exists v(i0+1) ∈ Mn,1 (R) such

that M (i0+1)v(i0+1) = 0n,1. We can choose v(i0+1) such that its coordi-

nates are coprime, which allows us to define λ(i0+1) ∈ M1,n (R) satisfying

λ(i0+1)v(i0+1) = (1). Now, we can exhibit the following 2-stage division
chain.







A−BX








M −






λ(1)

...

λ(r)






0n−r,n







T−1 = Y −1








λ(1)

...

λ(r)

M (0)







T−1,

B − Y −1








λ(1)

...

λ(r)

M (0)







T−1T

(

v(1) · · · v(r) 0n,n−r

)
X−1 = 0n.

3. Assume now that r > 1 and that br /∈ R×. Consider A′ ∈ Mn−1 (R) such
that

Y AT =








a1 01,n−1

a2
...
an

A′







, B′ = diag(b2, . . . , br).
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Then, by induction hypothesis, we can write a 2-stage right Euclidean di-
vision of A′ by B′ with respect to fn−1, that is to say that there exist
Q′

1, Q
′
2, R

′
1, R

′
2 ∈ Mn−1 (R) such that

(26)

{

A′ −B′Q′
1 = R′

1,

B′ −R′
1Q

′
2 = R′

2,

and fn−1(R
′
2) < fn−1(B

′).

3.a. If r = n, and bn−1 ∈ R×, then fn−1(B
′) = 1, so fn−1(R

′
2) = 0 and then

R′
2 = 0n−1. As for all 1 ≤ i < n − 1, bi divides bn−1, bi ∈ R× and we may

suppose that b1 = · · · = bn−1 = 1. Using (26), we get






A−BX








a1 − 1 01,n−1

a2
...
an

Q′
1







T−1 = Y −1

(
1 01,n−1

0n−1,1 R′
1

)

T−1

B − Y −1

(
1 01,n−1

0n−1,1 R′
1

)

T−1T

(
1 01,n−1

0n−1,1 Q′
2

)

X−1 = 0n.

From now, we can assume that r < n or bn−1 /∈ R×. In both cases, since
br /∈ R×, bmin(r,n−1) /∈ R×.
3.b. Suppose that R′

2 = 0n−1. Let us extend (26) to size n:

(27)







A−BX

(
0 01,n−1

0n−1,1 Q′
1

)

T−1 = Y −1








a1 01,n−1

a2
...
an

R′
1







T−1,

B − Y −1








a1 01,n−1

a2
...
an

R′
1







T−1T

(
0 01,n−1

0n−1,1 Q′
2

)

X−1 = R2,

where R2 = Y −1

(
b1 01,n−1

0n−1,1 R′
2

)

X−1. Then

fn(B) = ℓ





min(r,n−1)
∏

i=1

bi



 ≥ ℓ(b1bmin(r,n−1)) + 1 > ℓ(b1) + 1,

and fn(R2) = ℓ(b1) + 1, so

fn(R2) < fn(B),

which proves that (27) is a 2-stage right Euclidean division for (A,B).
3.c. Assume that R′

2 6= 0n−1. Set r′ = rkR′
2 + 1, write

R′
2 ∼ diag(b′2, . . . , b

′
r′ , 0, . . . , 0),

with b′2|b′3| . . . |b′r′ 6= 0. By construction, these invariant factors satisfy

(28) ℓ





min(r′,n−1)
∏

i=2

b′i



 = fn−1(R
′
2)− 1 < fn−1(B

′)− 1 = ℓ





min(r,n−1)
∏

i=2

bi



 .
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Besides, we can still extend (26) to size n as in (27). Then R2 has rank r′,
and R2 ∼ diag(b′′1 , b

′′
2 , . . . , b

′′
r′ , 0, . . . , 0), with b′′1|b′′2 | . . . |b′′r′ 6= 0. But, thanks

to Lemma 2.3(a),
∏min(r′,n−1)

i=1 b′′i divides b1
∏min(r′,n−1)

i=2 b′i, so (28) implies

fn(R2) = ℓ





min(r′,n−1)
∏

i=1

b′′i



+ 1 < ℓ





min(r,n−1)
∏

i=1

bi



+ 1 = fn(B).

This implies that (27) is a 2-stage right Euclidean division for the pair (A,B).
�

Remark. This division does not necessarily correspond to taking successively
the quotient and remainder of the division with respect to ϕn.

7.6. Proof of Theorem 7.3. We will combine the above results to prove
Theorem 7.3. Notice that 2-stage right Euclidean rings are preserved by
products.

Lemma 7.16. The direct product of finitely many 2-stage right Euclidean
rings is a 2-stage right Euclidean ring.

Proof. By a clear induction, it is enough to prove it for the product of two
rings. Let A1, A2 be 2-stage right Euclidean rings with respect to f1 and f2.
Then we will prove that A1 × A2 is 2-stage right Euclidean with respect to

f :

{
A1 × A2 −→ Z≥0(
a(1), a(2)

)
7−→ f1

(
a(1)
)
+ f2

(
a(2)
)
.

Take a(i), b(i) ∈ Ai, for i = 1, 2, with (b(1), b(2)) 6= (0, 0).

a. First, assume that b(1) 6= 0 and b(2) 6= 0. Then for i = 1, 2, we have
some 2-stage right Euclidean divisions

(29)







a(i) − b(i)q
(i)
1 = r

(i)
1 ,

b(i) − r
(i)
1 q2(i) = r

(i)
2 ,

and fi

(

r
(i)
2

)

< fi

(

b(i)
)

.

These divisions can be naturally combined into






(

a(1), a(2)
)

−
(

b(1), b(2)
)(

q
(1)
1 , q

(2)
1

)

=
(

r
(1)
1 , r

(2)
1

)

,
(

b(1), b(2)
)

−
(

r
(1)
1 , r

(2)
1

)(

q
(1)
2 , q

(2)
2

)

=
(

r
(1)
2 , r

(2)
2

)

,

with

f
(

r
(1)
2 , r

(2)
2

)

= f1

(

r
(1)
2

)

+ f2

(

r
(2)
2

)

< f1

(

b
(1)
2

)

+ f2

(

b
(2)
2

)

= f
(

b(1), b(2)
)

.

b. Now, assume that b(1) = 0 and b(2) 6= 0. Then (29) still holds for i = 2,
and we have the following 2-stage right Euclidean division:







(

a(1), a(2)
)

−
(

0, b(2)
)(

0, q
(2)
1

)

=
(

a(1), r
(2)
1

)

,
(

0, b(2)
)

−
(

a(1), r
(2)
1

)(

0, q
(2)
2

)

=
(

0, r
(2)
2

)

,

with

f
(

0, r
(2)
2

)

= f2

(

r
(2)
2

)

< f2

(

b
(2)
2

)

= f
(

0, b(2)
)

.
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c. The proof is similar for b(1) 6= 0 and b(2) = 0. �

Proof of Theorem 7.3. (1) See Proposition 7.8.
(2) See Proposition 7.13(1).
(3) Let R be a PIR and n ∈ Z>1. Thanks to Proposition 4.2, R =

∏l
i=1Ri, where each Ri is a PID or a special PIR. Then Mn (R)

can be identified with
∏l

i=1Mn (Ri). Each Mn (Ri) is 2-stage right
Euclidean, cf. Propositions 7.5 and 7.15. Lemma 7.16 completes the
proof.

�

7.7. Final remarks. Let R be a commutative ring and n ∈ Z>1. If Mn (R)
is ω-stage right Euclidean, then Mn (R) is right K-Hermite, it follows that
srMn (R) ≤ 2 (Lemma 2.2). Consequently, srR ≤ n + 1. As R is a Bézout
ring, R is K-Hermite if and only if srR ≤ 2 [Zab03, Theorem 1]. I do not
know of any commutative Bézout ring R satisfying 2 < srR <∞.

Let R be an integral domain. If R is a Bézout ring, then M2 (R) is 5-
stage right Euclidean. If we can find such a ring R which is not 3-stage right
Euclidean, then it cannot be an elementary divisor ring.
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