On some Euclidean properties of matrix algebras - Archive ouverte HAL Access content directly
Journal Articles Journal of Algebra Year : 2017

On some Euclidean properties of matrix algebras

Abstract

Let $\mathfrak{R}$ be a commutative ring and $n \in \mathbf{Z}_{>1}$. We study some Euclidean properties of the algebra $\mathrm{M}_{n}(\mathfrak{R})$ of $n$ by $n$ matrices with coefficients in $\mathfrak{R}$. In particular, we prove that $\mathrm{M}_{n}(\mathfrak{R})$ is a left and right Euclidean ring if and only if $\mathfrak{R}$ is a principal ideal ring. We also study the Euclidean order type of $\mathrm{M}_{n}(\mathfrak{R})$. If $\mathfrak{R}$ is a K-Hermite ring, then $\mathrm{M}_{n}(\mathfrak{R})$ is a $(4n-3)$-stage left and right Euclidean. We obtain shorter division chains when $\mathfrak{R}$ is an elementary divisor ring, and even shorter ones when $\mathfrak{R}$ is a principal ideal ring. If we assume that $\mathfrak{R}$ is an integral domain, $\mathfrak{R}$ is a Bézout ring if and only if $\mathrm{M}_{n}(\mathfrak{R})$ is $\omega$-stage left and right Euclidean.
Fichier principal
Vignette du fichier
matrices_edr.pdf (441 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01135202 , version 1 (24-03-2015)
hal-01135202 , version 2 (27-04-2015)
hal-01135202 , version 3 (30-06-2017)

Identifiers

Cite

Pierre Lezowski. On some Euclidean properties of matrix algebras. Journal of Algebra, 2017, 486, pp.157--203. ⟨10.1016/j.jalgebra.2017.05.018⟩. ⟨hal-01135202v3⟩
511 View
688 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More