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Abstract. This article analyzes the recovery performance of two popular finite

dimensional approximations of the sparse spikes deconvolution problem over Radon

measures. We examine in a unified framework both the ℓ
1 regularization (often

referred to as Lasso or Basis-Pursuit) and the Continuous Basis-Pursuit (C-BP)

methods. The Lasso is the de-facto standard for the sparse regularization of inverse

problems in imaging. It performs a nearest neighbor interpolation of the spikes

locations on the sampling grid. The C-BP method, introduced by Ekanadham,

Tranchina and Simoncelli, uses a linear interpolation of the locations to perform a

better approximation of the infinite-dimensional optimization problem, for positive

measures. We show that, in the small noise regime, both methods estimate twice the

number of spikes as the number of original spikes. Indeed, we show that they both

detect two neighboring spikes around the locations of an original spikes. These results

for deconvolution problems are based on an abstract analysis of the so-called extended

support of the solutions of ℓ
1-type problems (including as special cases the Lasso

and C-BP for deconvolution), which are of an independent interest. They precisely

characterize the support of the solutions when the noise is small and the regularization

parameter is selected accordingly. We illustrate these findings to analyze for the

first time the support instability of compressed sensing recovery when the number

of measurements is below the critical limit (well documented in the literature) where

the support is provably stable.

1. Introduction

We consider the problem of estimating an unknown Radon measure m0 ∈ M(T)

from low-resolution noisy observations

y = Φ(m0) + w ∈ L2(T) (1)

where w ∈ L2(T) is some measurement noise, and Φ : M(T) → L2(T) is an integral

transform with smooth kernel ϕ ∈ C2(T× T), i.e.

∀ x ∈ T, (Φm)(x) =

∫

T

ϕ(x, y)dm(y). (2)
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A typical example of such an operation is the convolution, where ϕ(x, y) = ϕ̃(x− y) for

some smooth function ϕ̃ defined on the torus T = R/Z (i.e. an interval with periodic

boundary conditions). We focus our attention here for simplicity on the compact 1-D

domain T, but the algorithms considered (Lasso and C-BP) as well as our theoretical

analysis can be extended to higher dimensional settings (see Section 1.4).

1.1. Sparse Regularization

The problem of inverting (1) is severely ill-posed. A particular example is when

Φ is a low pass filter, which is a typical setting for many problems in imaging. In

several applications, it makes sense to impose some sparsity assumption on the data to

recover. This idea has been introduced first in the geoseismic literature, to model

the layered structure of the underground using sparse sums of Dirac masses [13].

Sparse regularization has later been studied by David Donoho and co-workers, see for

instance [17].

In order to recover sparse measures (i.e. sums of Diracs), it makes sense to consider

the following regularization

min
m∈M(T)

1

2
||y − Φ(m)||2 + λ|m|(T) (3)

where |m|(T) is the total variation of the measure m, defined as

|m|(T)
def.
= sup

{∫

T

ψ(x)dm(x) ; ψ ∈ C(T), ||ψ||∞ 6 1

}

. (4)

This formulation of the recovery of sparse Radon measures has recently received lots of

attention in the literature, see for instance the works of [6, 15, 10].

1.2. Lasso

The optimization problem (3) is convex but infinite dimensional, and while there

exists solvers when Φ is measuring a finite number of Fourier frequency (see [10]),

they do not scale well with the number of frequencies. Furthermore, the case of an

arbitrary linear operator Φ is still difficult to handle, see [6] for an iterative scheme.

The vast majority of practitioners thus approximate (3) by a finite dimensional problem

computed over a finite grid G
def.
= {zi ; i ∈ J0, P − 1K} ⊂ T, by restricting their attention

to measures of the form

ma,G
def.
=

P−1∑

i=0

aiδzi ∈ M(T).

For such a discrete measure, one has |m|(T) =
∑|G|−1

i=0 |ai| = ||a||1, which can be

interpreted as the fact that | · |(T) is the natural extension of the ℓ1 norm from

finite dimensional vectors to the infinite dimensional space of measures. Inserting this
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parametrization in (3) leads to the celebrated Basis-Pursuit problem [12], which is also

known as the Lasso method in statistics [33],

min
a∈RN

1

2
||y − ΦGa||

2 + λ||a||1 (5)

where in the following we make use of the notations

ΦGa
def.
= Φ(ma,G) =

P−1∑

i=0

aiϕ(·, zi), (6)

Φ′
Gb

def.
= Φ′(mb,G) =

P−1∑

i=0

bi∂2ϕ(·, zi), (7)

and ∂2ϕ is the derivative with respect to the second variable. One can understand (5)

as performing a nearest neighbor interpolation of the Dirac’s locations.

This approximation is however quite crude, and we recently showed in [21] that it

leads to imperfect estimation of both the number of spikes and their locations. Indeed,

this problem typically recovers up to twice as many spikes as the input measures, because

spikes of m0 gets duplicated as the two nearest neighbors on the grid G.

Note that while we focus in this paper on convex recovery method, and in particular

ℓ1-type regularization, there is a vast literature on the subject, which makes use of

alternative algorithms, see for instance [28, 5] and the references therein.

1.3. Continuous Basis-Pursuit (C-BP)

To obtain a better approximation of the infinite dimensional problem, [23] proposes

to perform a first order approximation of the kernel. This method assumes that the

unknown measure is positive. To ease the exposition, we consider a uniform grid

G
def.
= {i/P ; i ∈ J0, P − 1K} of P points, so that the grid size is h

def.
= 1/P . The C-

BP method of [23] solves

min
(a,b)∈RP×RP

1

2
||y − ΦGa− Φ′

Gb||
2 + λ||a||1 subject to |b| 6

h

2
a, (8)

where the inequality should be understood component-wise. Note also that the obtained

a is always nonnegative, hence the C-BP method is tailored for the recovery of positive

measures. This is a convex optimization problem, which can be solved using traditional

conic optimization methods. As detailed in Section 4.2, this problem can also be re-cast

as a Lasso in dimension 2P with positivity constraints (see Section 4.2). Hence it can

be solved using a large variety of first order proximal method, the most simple one being

the Forward-Backward, see [3] and the references therein.

If (a⋆, b⋆) are solutions of (8), one recovers an output discrete measure defined by

m⋆ =
∑

a⋆i 6=0

a⋆i δx⋆i where x⋆i
def.
= ih+

b⋆i
a⋆i
, (9)
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where we set
b⋆i
a⋆i

= 0 whenever a⋆i = 0. The rationale behind (8) is to perform a first order

Taylor approximation of the operator Φ, where the variable τi
def.
= bi/ai ∈ [−h/2, h/2]

encodes the horizontal shift of the Dirac location with respect to the grid sample ih.

The landmark idea introduced in [23] is that, while the optimization is non-convex with

respect to the pair (a, τ), it is convex with respect to the pair (a, b).

1.4. Extensions

While we restrict here the exposition to 1-D problems, the C-BP formulation (8)

can be extended to cope with measures in arbitrary dimension d > 1, i.e. to consider

m0 ∈ M(Td). This requires to define at each sampling grid point indexed by i a vector

bi = (bi,k)
d
k=1 ∈ Rd together with the constraint ||bi||∞ 6

h
2
ai, and also to use a matrix

Φ′
G defined as

Φ′
Gb

def.
=
∑

i∈G

d∑

k=1

bi,k∂kϕ(·, xi) ∈ L2(Td)

where ∂k denote the differential operator with respect to the kth direction in Rd. Our

analysis carries over to this setting without major difficulties.

The paper [23] also proposes other interpolation schemes than a first order Taylor

expansion at the grid points. In particular, they develop a “polar” interpolation which

makes use of two adjacent grid points. This method seems to outperform the linear

interpolation in practice, and has been employed to perform spikes sorting in neuronal

recordings [22].

Extending the results we propose in the present paper to these higher dimensional

settings and alternative interpolation schemes is an interesting avenue for future work.

Let us also mention that an important problem is to extend the C-BP method (9) to

measures with arbitrary signs and that can even be complex-valued. Unfortunately, the

corresponding constraint |b| 6 |a| is then non-convex, which makes the mathematical

analysis apparently much more involved. A non-convex and non-smooth optimization

solver is proposed for this problem in [25], and shows promising practical performance

for spectrum estimation.

1.5. Previous Works

Most of the early work to assess the performance of convex sparse regularization has

focussed its attention on the finite dimensional case, thus considering only the Lasso

problem (5). While the literature on this subject is enormous, only very few works

actually deal with deterministic and highly correlated linear operators such as low-pass

convolution kernels. The initial works of Donoho [17] study the Lipschitz behavior of

the inverse map y 7→ a⋆, where a⋆ is a solution of (5), as a function of the bandwidth

of the bandpass filter. The first work to address the question of spikes identification

(i.e. recovery of the exact location of the spikes over a discrete grid) is [19]. This work

uses the analysis of ℓ1 regularization introduced by Fuchs in [26]. This type of analysis
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ensures that the support of the input measure is stable under small noise perturbation of

the measurements. Our finding is that this is however never the case (support is always

unstable) when the grid is thin enough, and we thus introduce the notion of “extended

support”, which is in some sense the smallest extension of the support which is stable.

The idea of extending the support to study the recovery performance of ℓ1 methods can

be found in the work of Dossal [18] who focusses on noiseless recovery and stability in

term of ℓ2 error.

Recently, a few works have studied the theoretical properties of the recovery over

measures (3). Candès and Fernandez-Granda show in [10] that this convex program

does recover exactly the initial sparse measure when w = 0 and λ→ 0, if the spikes are

well-separated. The robustness to noisy measurements is analyzed by the same authors

in [9] using an Hilbertian norm, and in [24, 2] in terms of spikes localization. The

work of [31] analyzes the reconstruction error. Lastly, [21] provides a condition ensuring

that (3) recovers the same number of spikes as the input measure and that the error in

terms of spikes localization and elevation has the same order as the noise level.

Very few works have tried to bridge the gap between these grid-free methods over

the space of measures, and finite dimensional discrete approximations that are used

by practitioners. The convergence (in the sense of measures) of the solutions of the

discrete problem toward to ones of the grid-free problem is shown in [32], where a speed

of convergence is shown using tools from semi-infinite programming [30]. The same

authors show in [4] that the discretized problem achieves a similar prediction L2 error

as the grid-free method. In [21], we have shown that solutions of the discrete Lasso

problem estimate in general as much as twice the number of spikes as the input measure.

We detail in the following section how the present work gives a much more precise and

general analysis of this phenomenon.

1.6. Contributions

Our first contribution is an improvement over the known analysis of the Lasso in an

abstract setting (that is (5) when ΦG is replaced with any linear operator RP → L2(R)).

Whereas Fuchs’ result [26] characterizes the support recovery of the Lasso at low noise,

our previous work [21] has pointed out that when Fuchs’criterion is not satisfied, the

nonzero components of the solutions of the Basis-Pursuit at low noise are contained in

the extended support, that is the saturation set of some minimal norm dual certificate.

In this work, we provide a characterization of this minimal norm certificate, and we give

a sufficient condition which holds generically and which ensures that all the components

of the extended support are actually nonzero (with a prediction on the signs). Our main

result in this direction is Theorem 1.

Our second contribution applies this result to Problem (5) on thin grids. After

recalling the convergence properties of Problem (5) towards (3), we show that under

some assumption, if the input measure m0 = mα0,x0 =
∑N

ν=1 α0,νδx0,ν has support on

the grid (i.e. x0,ν ∈ G for all ν), the model at low noise actually reconstructs pairs of
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Dirac masses, i.e. solutions of the form

mλ =
N∑

ν=1

(
αλ,νδx0,ν + βλ,νδx0,ν+ενh

)
, where εν ∈ {−1,+1}, (10)

and sign(αλ,ν) = sign(βλ,ν) = sign(α0,ν). (11)

The precise statement of this result can be found in Theorem 2. Compared to [21]

where it is predicted that spikes could appear at most in pairs, this result states that

all the pairs do appear, and it provides a closed-form expression for the shift ε. That

closed-form expression does not vary as the grid is refined, so that the side on which

each neighboring spike appears is in fact intrinsic to the measure, we call it the natural

shift. Moreover, we characterize the low noise regime as ||w||2
λ

= O(1) and λ = O(h).

Then, we turn to the Continuous Basis-Pursuit (8). We first study this problem

in an abstract setting, where it is reformulated as a Lasso with positivity constraints.

We derive similar noise robustness properties as for the Lasso, and we characterize the

extended support, see Theorem 3. Working on a thin grid, we show the Γ-convergence

of Problem (8) towards the Beurling Lasso (3) with positivity constraints and we give

a fine analysis of the support of the solutions as the grid stepsize tends to zero. We

also study the low noise behavior when the measure has support on the grid: under a

suitable assumption, the recovered spikes appear again in pairs,

mλ =

N∑

ν=1

(
αλ,νδx0,ν+tν + βλ,νδx0,ν+ενh/2

)
where

{

εν ∈ {−1,+1},

−h/2 < tν < h/2,

see Theorem 4. A closed form expression for ε is given, which depends on some

corresponding natural shift intrinsic to the measure (which differs from the one of the

Lasso). The corresponding low noise regime is characterized by ||w||2
λ

= O(1) and

λ = O(h3).

It is important to realize that, in this setting of convolution on thin grids, our

contributions give important information about the structure of the recovered spikes

when the noise w is small. This is especially important since, on contrary to common

belief, the spikes locations for Lasso and C-BP are not stable: even for an arbitrary

small noise w, neither methods retrieve the correct input spikes locations.

Eventually, we illustrate in Section 6 these theoretical results with numerical

experiments. We first display the evolution of the solution path λ 7→ aλ (a solution

of (5)) and λ 7→ (aλ, bλ) (a solution of (8)). These paths are piecewise-affine, and

our contributions (Theorems 2 and 4) precisely characterize the first affine segment of

these paths, which perfectly matches the numerical observations. We then illustrate our

abstract analysis of the Lasso problem (5) (as provided by Theorem 1) to characterize

numerically the behavior of the Lasso for compressed sensing (CS) recovery (i.e. when

one replaces the filtering ΦG appearing in (5) with a random matrix). The literature

on CS only describes the regime where enough measurements are available so that the

support is stable, or does not study support stability but rather ℓ2 stability. Theorem 1
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allows us to characterize numerically how much the support becomes unstable (in

the sense that the extended support’s size increases) as the number of measurements

decreases (or equivalently the sparsity increases).

1.7. Notations and preliminaries

The set of Radon measures (resp. positive Radon measures) is denoted by M(T)

(resp. M+(T)). Endowed with the total variation norm (4), M(T) is a Banach space.

Another useful topology on M(T) is the weak* topology: a sequence of measures

(mn)n∈N weak* converges towards m ∈ M(T) if and only if for all ψ ∈ C(T),

limn→+∞

∫

T
ψdmn =

∫

T
ψdm. Any bounded subset of M(T) (for the total variation) is

relatively sequentially compact for the weak* topology. Moreover the topology induced

by the total variation is stronger than the weak* topology, and the total variation is

sequentially lower semi-continuous for the weak* topology. Throughout the paper, given

α ∈ RN and x0 ∈ TN , the notation mα,x0
def.
=
∑N

ν=1 ανδx0,ν hints that αν 6= 0 for all ν

(contrary to the notation ma,G), and that the x0,ν ’s are pairwise distinct.

The properties of Φ : M(T) → L2(T) and its adjoint are recalled in Proposition 6

in Appendix. The ∞, 2-operator norm of Φ∗ : L2(T) → C(T) is defined as ||Φ∗||∞,2
def.
=

sup {||Φ∗w||∞ ; w ∈ L2(T), ||w||L2 6 1} (and the∞, 2 operator norm of a matrix is defined

similarly). Given a vector x0 ∈ TN , Φx0 refers to the linear operator RN → L2(T), with

∀α ∈ RN , Φx0α
def.
= Φ(mα,x0) =

N∑

ν=1

ανϕ(·, x0,ν).

It may also be seen as the restriction of Φ to measures supported on the set

{x0,ν ; ν ∈ J1, NK}. A similar notation is adopted for Φ′
x0

(replacing ϕ(·, x0,ν) with

∂2ϕ(·, , x0,ν). The concatenation of Φx0 and Φ′
x0

is denoted by Γx0
def.
=
(

Φx0 Φ′
x0

)

.

We shall rely on the notion of set convergence. Given a sequence (Cn)n∈N of subsets

of T, we define

lim sup
n→+∞

Cn =

{

x ∈ T ; lim inf
n→+∞

d(x, Cn) = 0

}

(12)

lim inf
n→+∞

Cn =

{

x ∈ T ; lim sup
n→+∞

d(x, Cn) = 0

}

(13)

where d is defined by d(x, C) = infx′∈C |x′−x| and |x−x′| refers to the distance between

x and x′ on the torus. If both sets are equal, let C be the corresponding set (then C is

necessarily closed), we write

lim
n→+∞

Cn = C. (14)

If the sequence (Cn)n∈N is nondecreasing (Cn ⊂ Cn+1), then limn→∞Cn =
⋃

n∈N Cn, and

if it is nonincreasing (Cn ⊃ Cn+1) then limn→∞Cn =
⋂

n∈N Cn (where C denotes the

closure of C). We refer the reader to [29] for more detail about set convergence. We

shall also use this notion in Hilbert spaces, with obvious adaptations.
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2. Abstract analysis of the Lasso

The aim of this section is to study the low noise regime of the Lasso problem in an

abstract finite dimensional setting, regardless of the grid stepsize. In this framework, the

columns of the (finite dimensional) degradation operator need not be the samples of a

continuous (e.g. convolution) operator, and the provided analysis holds for any general

Lasso problem. We extend the initial study of Fuchs of the basis pursuit method

(see [26]) which gives the analytical expression of the solution when the noise is low

and the support is stable. Here, provided we have access to a particular dual vector η0,

we give an explicit parametrization the solutions of the basis pursuit at low noise even

when the support is not stable. This is especially relevant for the deconvolution problem

since the support is not stable when the grid is thin enough.

2.1. Notations and optimality conditions

We consider in this section observations in an arbitrary Hilbert space H, which

might be for instance L2(T) (as in the previous section) or a finite dimensional vector

space. The linear degradation operator is then denoted as A : RP → H. Let us

emphasize that in this section, for a ∈ RP , ‖a‖∞
def.
= max06k6P−1 |ak|.

Given an observation y0 = Aa0 ∈ H (or y = y0 + w, where w ∈ H), we aim at

reconstructing the vector a0 ∈ RP by solving the Lasso problem for λ > 0,

min
a∈RP

1

2
||y − Aa||2 + λ||a||1 (Pλ(y))

and for λ = 0 we consider the (Basis-Pursuit) problem

min
a∈RP

||a||1 such that Aa = y0. (P0(y0))

If a ∈ RP , we denote by I(a), or I when the context is clear, the support of a,

i.e. I(a)
def.
= {i ∈ J0, P − 1K ; ai 6= 0}. Also, we let sI

def.
= sign(aI), and supp±(a)

def.
=

{(i, si) ; i ∈ I} the signed support of a.

The optimality conditions for Problems (Pλ(y)) and (P0(y0)) are quite standard,

as detailed in the following proposition.

Proposition 1. Let y ∈ H, and aλ ∈ RP . Then aλ is a solution to (Pλ(y)) if and only

if there exists pλ ∈ H such that

‖A∗pλ‖∞ 6 1, and (A∗pλ)I = sign(aλ,I), (15)

λA∗pλ + A∗(Aaλ − y) = 0. (16)

Similarly, if a0 ∈ RP , then a0 is a solution to (P0(y0)) if and only if Aa0 = y0 and

there exists p ∈ H such that.

‖A∗p‖∞ 6 1 and (A∗p)I = sign(a0,I). (17)
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Conditions (15) and (17) merely express the fact that ηλ
def.
= A∗pλ (resp. η

def.
= A∗p)

is in the subdifferential of the ℓ1-norm at aλ (resp. a0). In that case we say that ηλ
(resp. η) is a dual certificate for aλ (resp. a0). Condition (17) is also called the source

condition in the literature [7].

The term dual certificate stems from the fact that pλ (resp. p) is a solution to the

dual problem to (Pλ(y)) (resp. (P0(y0))),

inf
p∈C

∥
∥
∥
y

λ
− p
∥
∥
∥

2

2
, (Dλ(y))

resp. sup
p∈C

〈y0, p〉, (D0(y0))

where C
def.
=

{

p ∈ H ; max
k∈J0, P−1K

|(A∗p)k| 6 1

}

. (18)

If a is a solution to (Pλ(y)) and pλ is a solution to (Dλ(y)), then (15) and (16) hold.

Conversely, for any a ∈ RP and any pλ ∈ H, if (15) and (16) hold, then a is a solution

to (Pλ(y)) and pλ is a solution to (Dλ(y)). A similar equivalence hold for (P0(y0))

and (D0(y0)).

Remark 1. In general, the solutions to (Pλ(y)) and (P0(y0)) need not be unique.

However, the dual certificate ηλ = A∗pλ which appears in (15) and (16) is unique.

On the contrary, the dual certificate η = A∗p which appears in (17) is not unique in

general.

We say that a vector a0 is identifiable if it is the unique solution to (P0(y0)) for the

input y = Aa0. The following classical result gives a sufficient condition for a0 to be

identifiable.

Proposition 2. Let a0 ∈ RP such that AI is injective and that there exists p ∈ H such

that

||(A∗p)Ic||∞ < 1 and (A∗p)I = sign(a0,I), (19)

where Ic = J1, P K \ I. Then a0 is identifiable.

Conversely, if a0 is identifiable, there exists p ∈ L2(T) such that (19) holds and AI
is injective (see [27, Lemma 4.5]).

2.2. Extended support of the Lasso

From now on, we assume that the vector a0 ∈ RP is identifiable (i.e. a0 is the unique

solution to (P0(y0)) where y0 = Aa0). We denote by I = supp(a0) and sI = sign(a0,I)

the support and the sign of a0.

It is well known that (P0(y0)) is the limit of (Pλ(y)) for λ → 0 (see [12] for the

noiseless case and [27] when the observation is y = y0+w and the noise w tends to zero

as a multiple of λ) at least in terms of the ℓ2 convergence. In terms of the support of

the solutions, the study in [21], which extends the one by Fuchs [26], emphasizes the

role of a specific minimal-norm certificate η0 which governs the behavior of the model

at low noise regimes.
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Definition 1 (Minimal-norm certificate and extended support). Let a0 ∈ RP , and let

p0 be the solution to (D0(y0)) with minimal L2-norm. The minimal-norm certificate of

a0 is defined as η0
def.
= A∗p0. The set of indices ext(a0)

def.
= {1 6 j 6 P ; |(η0)j| = 1} is

called the extended support of a0, and the set ext±(a0)
def.
= {(j, (η0)j) ; j ∈ ext(a0)} ⊂

J0, P − 1K × {−1, 1} is called the extended signed support of a0.

Remark 2. In the case where a0 is a solution to (P0(y0)) (which is the case here since we

assume that a0 is an identifiable vector for (P0(y0))), we have (I, sign(a0,I)) ⊂ ext±(a0).

The minimal norm certificate thus turns out to be

η0 = A∗p0 where p0 = argmin
p∈H

{||p||2 ; ||A
∗p||∞ 6 1 and A∗

Ip = sI} . (20)

It is shown in [21] that there exists a low noise regime where the (signed) support

of any solution ãλ of Pλ(y0 + w) is included in ext±(a0), supp
± ãλ ⊂ ext±(a0). It is

therefore crucial to understand precisely the behavior of η0 and the structure of the

extended (signed) support ext±(a0). The following (new) result gives a characterization

of η0.

Lemma 1. Let (J, sJ) ⊂ J0, P − 1K × {−1, 1} such that (I, sign((a0)I)) ⊂ (J, sJ) and

AJ has full rank. Define vJ = (A∗
JAJ)

−1sJ .

Then (J, sJ) is the extended signed support of a0, i.e. (J, sJ) = ext±(a0), if and

only if the following two conditions hold:

• for all j ∈ J \ I, vj = 0 or sj = − sign(vj),

• ‖A∗
JcAJvJ‖∞ < 1.

In that case, the minimal norm certificate is given by η0 = A∗A+,∗
J sJ .

Proof. Writing the optimality conditions for (20), we see that p ∈ L2(T) is equal to p0 if

and only if ‖A∗p‖∞ 6 1, A∗
Ip = sign(a0,I), and there exists u+ ∈ (R+)P and u− ∈ (R+)P

such that:

2p+ Au+ −Au− = 0, (21)

where for i ∈ Ic, u+,i (resp. u−,i) is a Lagrange multiplier for the constraint

(A∗p)i 6 1 (resp. (A∗p)i > −1) which satisfies the complementary slackness condition:

u+,i((A
∗p)i − 1) = 0 (resp u−,i((A

∗p)i + 1) = 0), and for i ∈ I, (u+,i − u−,i) is the

Lagrange multiplier for the constraint (A∗p)i = sign(a0)i.

Now, let (J, sJ) = ext±(a0) (so that J determines the set of active constraints) and

p = p0. Using the complementary slackness condition we may reformulate (21) as

p0 − AJvJ = 0,

for some v ∈ RP , where vj = 0 or sign vj = −(A∗p0)j for j ∈ J \ I, and vj = 0 for

j ∈ J0, P−1K\J . Inverting this relation, we obtain vJ = (A∗
JAJ)

−1(η0)J , and the stated

conditions hold.
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Conversely, let (J, sJ) ⊂ J0, P − 1K × {−1, 1} (not necessarily equal to ext±(a0))

such that (I, sign((a0)I)) ⊂ (J, sJ) and that the conditions of the lemma hold, with

vJ = (A∗
JAJ)

−1sJ . Then, setting p = −AJvJ , we see that ‖A∗p‖∞ 6 1, A∗
Ip = sign(a0)I ,

and (21) holds with the complementary slackness when setting u+,j = 1
2
max(vj , 0),

u−,j =
1
2
max(−vj , 0) for j ∈ J and u±,j = 0 for j /∈ J . Then p = p0 and the equivalence

is proved.

As mentioned above, the minimal norm certificate governs the (signed) support of

the solution at low noise regimes insofar as the latter is contained in the extended signed

support. The following theorem shows that, in the generic case, both signed supports

are equal.

Theorem 1. Let a0 ∈ RP \ {0} be an identifiable signal , J
def.
= ext(a0) such that AJ has

full rank, and vJ
def.
= (A∗

JAJ)
−1 sign(η0,J). Assume that for all j ∈ J \ I, vj 6= 0. Then,

there exists constants C(1) > 0, C(2) > 0 (which depend only on A, I and sign(a0,I))

such that for λ 6 C(1)

(

min
i∈I

|a0,I |

)

and all w ∈ H with ‖w‖ 6 C(2)λ the solution ãλ

of (Pλ(y)) is unique, supp(ãλ) = J and it reads

ãλ,J = a0,J + A+
Jw − λ(A∗

JAJ)
−1 sign(η0,J),

where A+
J = (A∗

JAJ)
−1A∗

J .

Proof. We define a candidate solution â by

âJ = a0,J + A+
Jw − λvJ , âJc = 0

and we prove that â is the unique solution to (Pλ(y0 + w)) using the optimality

conditions (15) and (16).

We first exhibit a condition for sign(âJ) = sign(η0,J). To shorten the notation, we

write sJ = sign(η0,J). Since for i ∈ I, a0,i 6= 0, the constraint sign(âI) = sI is implied

by

||RIA
+
J ||∞,2||w||+ ||vI ||∞λ < T, where T = min

i∈I
|a0,I | > 0,

and RI : u 7→ uI is the restriction operator. As for K = J \ I, for all k ∈ K a0,k = 0

but we know from Lemma 1 that sign(vk) = −sk. The constraint sign(âK) = sK is thus

implied by

||RKA
+
J ||∞,2||w|| 6 λ

(

min
k∈K

|vk|

)

︸ ︷︷ ︸

>0

.

Hence, we have sign âJ = sign η0,J = sJ , and by construction supp(â) = J with

A∗
J(y −Aâ) = λsJ . (22)

To ensure that â is the unique solution to (Pλ(y)) with y = y0 + w, it remains to

check that

||A∗
Jc(y −Aâ)||∞ < λ. (23)
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Since we have

y −Aâ = w − AJ(A
∗
JAJ)

−1A∗
Jw + λAJ(A

∗
JAJ)

−1sJ = Pker(A∗

J
)w + λA+,∗

J sJ ,

we see that (23) is implied by

||A∗
JcPker(A∗

J
)||2,∞||w|| − λ(1− ||η0,Jc||∞) < 0

where by construction ||η0,Jc||∞ < 1.

Putting everything together, one sees that â is the unique solution of (Pλ(y)) if the

following affine inequalities hold simultaneously

c1||w||+ c2λ < T where

{

c1
def.
= ||RIA

+
J ||∞,2,

c2
def.
= ||vI ||∞,

(24)

||w|| 6 c3λ where c3
def.
= (||RKA

+
J ||∞,2)

−1

(

min
k∈K

|vk|

)

> 0, (25)

c4||w|| − c5λ < 0 where

{

c4
def.
= ||A∗

JcPker(A∗

J
)||2,∞,

c5
def.
= 1− ||η0,Jc||∞ > 0.

(26)

Hence, for ‖w‖ < min(c3,
c5
c4
)λ and

(
c1c5
c4

+ c2

)

λ < T , the first order optimality

conditions hold.

Remark 3 (Comparison with the analysis of Fuchs). When J = I, Theorem 1 recovers

exactly the result of Fuchs [26]. Note that this result has been extended beyond the

ℓ1 setting,see in particular [35, 34] for a unified treatment of arbitrary partly smooth

convex regularizers. For this result to hold, i.e. to obtain I = J , one needs to impose

that the following pre-certificate

ηF
def.
= A∗A+,∗

I sI (27)

is a valid certificate, i.e. one needs that ||ηF,Ic||∞ < 1. This condition is often called the

irrepresentability condition in the statistics literature (see for instance [37]). It implies

that the support I is stable for small noise. Unfortunately, it is easy to verify that for the

deconvolution problem, in general, this condition does not hold when the grid stepsize

is small enough (see [21, Section 5.3]), so that one cannot use the initial result. This

motivates our additional study of the extended support ext(a0) ⊃ I, which is always

stable to small noise. While this new result is certainly very intuitive, to the best of

our knowledge, it is the first time it is stated and proved, with explicit values of the

stability constant involved.

Remark 4. Theorem 1 guarantees that the support of the reconstructed signal ãλ at low

noise is equal to the extended support. The required condition vj 6= 0 in Theorem 1 is

tight in the sense that if vj = 0 for some j ∈ J \ I, then the saturation point of ηλ may

be strictly included in J . Indeed, it is possible, using similar calculations as above, to

construct w such that supp ãλ ( J with λ and ‖w‖2/λ arbitrarily small.
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3. Lasso on thin Grids

In this section, we focus on inverse problems with smooth kernels, such as for

instance the deconvolution problem. Our aim is to recover a measure m0 ∈ M(T) from

the observation y0 = Φm0 or y = Φm0 + w, where ϕ ∈ Ck(T × T) (k > 2), w ∈ L2(T)

and

∀x ∈ T, (Φm)(x)
def.
=

∫

T

ϕ(x, y)dm(y), (28)

so that Φ : M(T) → L2(T) is a bounded linear operator. Observe that Φ is in fact

weak* to weak continuous and its adjoint is compact (see Lemma 6 in Appendix).

Typically, we assume that the unknown measure m0 is sparse, in the sense that it

is of the form m0 =
∑N

ν=1 α0,νx0,ν for some N ∈ N∗, here α0,ν ∈ R∗ and the x0,ν ∈ T are

pairwise distinct.

The first approach we study is the one of the (discrete) Basis Pursuit. We look for

measures that have support on a certain discrete grid G ⊂ T, and we want to recover the

original signal by solving an instance of (P0(y0)) or (Pλ(y)) on that grid. Specifically,

we aim at analyzing the behavior of the solutions at low noise regimes (i.e. when the

noise w is small and λ well chosen) as the grid gets thinner and thinner. To this end, we

take advantage of the characterizations given in Section 2 with H
def.
= L2(T), regardless

of the grid, and we use the Beurling Lasso (3) as a limit of the discrete models.

3.1. Notations and preliminaries

For the sake of simplicity we only study uniform grids, i.e. G
def.
=

{ih ; i ∈ J0, P − 1K} where h
def.
= 1

P
is the stepsize. Moreover, we shall consider sequences

of grids (Gn)n∈N such that the stepsize vanishes (hn = 1
Pn

→ 0 as n→ +∞) and to ensure

monotonicity, we assume that Gn+1 ⊂ Gn. For instance, the reader may think of a dyadic

grid (i.e. hn = h0
2n
). We shall identify in an obvious way measures with support in Gn

(i.e. of the form
∑Pn−1

k=0 akδkhn) and vectors a ∈ RPn.

The problem we consider is a particular instance of (Pλ(y)) (or (P0(y0))) when

choosing A as the restriction of Φ to measures with support in the grid Gn,

A
def.
= ΦGn

=
(

ϕ(·, 0), . . . , ϕ(·, (P − 1)hn)
)

. (29)

More explicitely, on the grid Gn, we solve

min
a∈RPn

1

2
||y − ΦGn

a||2 + λ||a||1, (Pn
λ (y))

and min
a∈RPn

||a||1 such that ΦGn
a = y0. (Pn

0 (y0))

We say that a measure m0 =
∑N

ν=1 α0,νδx0,ν (with α0,ν 6= 0 and the x0,ν ’s pairwise

distinct) is identifiable through (Pn
0 (y0)) if it can be written as m0 =

∑Pn−1
k=0 aiδihn and

that the vector a is identifiable using (Pn
0 (y0)).
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As before, given a ∈ RPn, we shall write I(a)
def.
= {i ∈ J0, Pn − 1K ; ai 6= 0} or simply

I when the context is clear.

The optimality conditions (16) amount to the existence of some pλ ∈ L2(T) such

that

max
06k6Pn−1

|(Φ∗pλ)(khn)| 6 1, and (Φ∗pλ)(Ihn) = sign(aλ,I), (30)

λΦ∗pλ + Φ∗(Φaλ − y) = 0. (31)

Similarly the optimality condition (17) is equivalent to the existence of p ∈ L2(T) such

that

max
06k6Pn−1

|(Φ∗p)(khn)| 6 1 and (Φ∗p)(Ihn) = sign(a0,I). (32)

Notice that the dual certificates are naturally given by the sampling of continuous

functions η = Φ∗p : T → R, and that the notation η(Ihn) or (Φ∗p)(Ihn) stands for

(η(ihn))i∈I where I = I(a0) (and similarly for ηλ = Φ∗pλ and I(aλ)).

If m0 is identifiable through (Pn
0 (y0)), the minimal norm certificate for the

problem (Pn
0 (y0)) (see Section 2) is denoted by ηn0 , whereas the extended support on Gn

is defined as

extnm0
def.
= {t ∈ Gn ; ηn0 (t) = ±1} . (33)

From Section 2, we know that the extended support is the support of the solutions at

low noise.

3.2. The limit problem: the Beurling lasso

It turns out that Problems (Pn
λ (y)) and (Pn

0 (y0)) have natural limits when the grid

gets thin. Embedding those problems into the space M(T) of Radon measures, the

present authors have studied in [21] their convergence towards the Beurling-Lasso used

in [15, 10, 6, 31].

The idea is to recover the measure m0 using the following variants of (Pλ(y))

and (P0(y0)):

min
m∈M(T)

1

2
||y − Φm||2 + λ|m|(T), (P∞

λ (y))

and min
m∈M(T)

|m|(T) such that Φm = y0, (P∞
0 (y0))

where |m|(T) refers to the total variation of the measure m

|m|(T)
def.
= sup

{∫

T

ψ(x)dm(x) ; ψ ∈ C(T) and ‖ψ‖∞ 6 1

}

. (34)

Observe that in this framework, the notation ‖ψ‖∞ stands for supt∈T |ψ(t)|. When m

is of the form m =
∑N

ν=1 ανxν where αν ∈ R∗ and xν ∈ T (with the xν ’s pairwise
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distinct), |m|(T) =
∑N

ν=1 |αν |, so that those problems are natural extensions of (Pλ(y))

and (P0(y0)). This connection is emphasized in [21] by embedding (Pn
λ (y)) and (Pn

0 (y0))

in the space of Radon measures M(T), using the fact that

sup

{∫

T

ψ(x)dm(x) ; ψ ∈ C(T), ∀k ∈ J0, Pn − 1K |ψ|(khn) 6 1

}

=

{

‖a‖1 if m =
∑Pn−1

k=0 akδkhn,

+∞ otherwise.

We say that m0 is identifiable through (P∞
0 (y0)) if it is the unique solution

of (P∞
0 (y0)). A striking result of [10] is that when Φ is the ideal low-pass filter and

that the spikes m0 =
∑N

ν=1 α0,νx0,ν are sufficiently far from one another, the measure

m0 is identifiable through P∞
0 (y0).

The optimality conditions for (P∞
λ (y)) and (P∞

0 (y0)) are similar to those of the

abstract Lasso (respectively (15), (16) and (17)). The corresponding dual problems

are

inf
p∈C∞

∥
∥
∥
y

λ
− p
∥
∥
∥

2

2
, (D∞

λ (y))

resp. sup
p∈C∞

〈y0, p〉, (D∞
0 (y0))

where C∞ def.
=
{
p ∈ L2(T) ; ‖Φ∗p‖∞ 6 1

}
. (35)

The source condition associated with (P∞
0 (y0)) is of particular interest. It amounts to

the existence of some p ∈ L2(T) such that

‖Φ∗p‖∞ 6 1 and (Φ∗p)(x0,ν) = sign(α0,ν) for all ν ∈ {1, . . . , N}. (36)

Here, ‖Φ∗p‖∞ = supt∈T |(Φ
∗p)(t)|. Moreover, if such p exists and satisifies |(Φ∗p)(t)| < 1

for all t ∈ T \ {x0,1, . . . , x0,N}, and Φx0 has full rank, then m0 is the unique solution

to (P∞
0 (y0)) (i.e. m0 is identifiable).

Observe that in this infinite dimensional setting, the source condition (36) implies

the optimality of m0 for (P∞
0 (y0)) but the converse is not true (see [21]).

Remark 5. A simple but crucial remark made in [10] is that if m0 is identifiable

through (P∞
0 (y0)) and that suppm0 ⊂ Gn, then m0 is identifiable for (Pn

0 (y0)).

Similarly, observe that the source condition for (P∞
0 (y0)) implies the source condition

for the (Pn
0 (y0)).

If we are interested in noise robustness, a stronger assumption is the Non Degenerate

Source Condition which relies on the notion of minimal norm certificate for (P∞
0 (y0)).

When there is a solution to (D∞
0 (y0)), the one with minimal L2 norm, p∞0 , determines

the minimal norm certificate η∞0
def.
= Φ∗p∞0 . When m0 is a solution to (P∞

0 (y0)), the

minimal norm certificate can be characterized as

η∞0 = Φ∗p∞0 where (37)

p∞0 = argmin
p∈L2(T)

{||p||2 ; ||Φ
∗p||∞ 6 1, (Φ∗p)(x0,ν) = sign(α0,ν), 1 6 ν 6 N} . (38)
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As with the discrete Lasso problem, a notion of extended (signed) support ext±∞ may

be defined and the minimal norm certificate governs the behavior of the solutions at low

noise (see [21] for more details).

Definition 2. Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for (P∞
0 (y0)), and

η∞0 ∈ C(T) its minimal norm certificate. We say that m0 satisfies the Non Degenerate

Source Condition if

• |η∞0 (t)| < 1 for all t ∈ T \ {x0,1, . . . x0,N},

• η∞0
′′(x0,ν) 6= 0 for all ν ∈ {1, . . . , N}.

The Non Degenerate Source Condition might seem difficult to check in practice.

The following proposition shows that it is in fact easy to check numerically on the

vanishing derivatives precertificate.

Definition 3. Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for (P∞
0 (y0)) such that

Γx0
def.
=
(

Φx0 Φ′
x0

)

has full rank. We define the vanishing derivatives precertificate as

η∞V
def.
= Φ∗p∞V where

p∞V
def.
= argmin

p∈L2(T)

{||p||2 ; (Φ
∗p)(x0,ν) = sign(α0,ν), (Φ

∗p)′(x0,ν) = 0, 1 6 ν 6 N} . (39)

The following proposition shows that this precertificate is easily computed by

solving a linear system in the least square sense.

Proposition 3 ([21]). Let m0 =
∑N

ν=1 α0,νδx0,ν an identifiable measure for the

problem (P∞
0 (y0)) such that Γx0 has full rank.

Then, the vanishing derivatives precertificate can be computed by

η∞V
def.
= Φ∗p∞V where p∞V

def.
= Γ+,∗

x0

(

sign(α0,·)

0

)

, (40)

and Γ+,∗
x0 = Γx0(Γ

∗
x0Γx0)

−1. Moreover, the following conditions are equivalent:

(i) m0 satisfies the Non Degenerate Source Condition.

(ii) The vanishing derivatives precertificate satisfies:

• |η∞V (t)| < 1 for all t ∈ T \ {x0,1, . . . x0,N},

• η∞V
′′(x0,ν) 6= 0 for all ν ∈ {1, . . . , N}.

And in that case, η∞V is equal to the minimal norm certificate η∞0 .

Remark 6. Using the block inversion formula in (40), it is possible to check that

p∞V = Φ+,∗
x0

sign(α0,·)−ΠΦ′
x0
(Φ′

x0

∗
ΠΦ′

x0
)−1Φ′

x0

∗
Φ+,∗
x0

sign(α0,·), (41)

where Π is the orthogonal projector onto (ImΦx0)
⊥. If we denote by p∞F the vector

introduced by Fuchs (see (27)), which turns out to be

p∞F = argmin
p∈L2(T)

{||p||2 ; (Φ
∗p)(x0,ν) = sign(α0,ν), 1 6 ν 6 N} ,

we observe that p∞V = p∞F − ΠΦ′
x0
(Φ′

x0
∗ΠΦ′

x0
)−1Φ′

x0
∗p∞F .
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Remark 7. At this stage, we see that two different minimal norm certificates appear:

the one for the discrete problem (Pn
0 (y0)) which should satisfy (32) on a discrete grid

Gn, and the one for gridless problem (P∞
0 (y0)) which should satisfy (36). One should

not mingle them.

3.3. The Lasso on thin grids for fixed λ > 0

As hinted by the notation, Problem (P∞
λ (y)) is the limit of Problem (Pn

λ (y)) as

the stepsize of the grid vanishes (i.e. n → +∞). Indeed, we may identify each

vector a ∈ RPn with the measure ma =
∑Pn−1

k=0 akδkhn (so that ‖a‖1 = |ma|(T))

and embed (Pn
λ (y)) into the space of Radon measures. With this identification, the

Problem (Pn
λ (y)) Γ-converges towards Problem (P∞

λ (y)) (see the definition below),

and as a result, any accumulation point of the minimizers of (Pn
λ (y)) is a minimizer

of (P∞
λ (y)).

Remark 8. The space M(T) endowed with the weak* topology is a topological vector

space which does not satisfy the first axiom of countability (i.e. the existence of a

countable base of neighborhoods at each point). However, each solution mn
λ of (Pn

λ (y))

(resp. m∞
λ of (P∞

λ (y))) satisfies

λ|mn
λ|(T) 6 λ|mn

λ|(T) +
1

2
||Φmn

λ − y||2 6
1

2
||y||2. (42)

Hence we may restrict those problems to the set

X
def.
=

{

m ∈ M(T) ; λ|m|(T) 6
1

2
||y||2

}

which is a metrizable space for the weak* topology. As a result, we shall work with

the definition of Γ-convergence in metric spaces, which is more convenient than working

with the general definition [14, Definition 4.1]). For more details about Γ-convergence,

we refer the reader to the monograph [14].

Definition 4. We say that the Problem (Pn
λ (y)) Γ-converges towards Problem (P∞

λ (y))

if, for all m ∈ X, the following conditions hold

• (Liminf inequality) for any sequence of measures (mn)n∈N ∈ XN such that

supp(mn) ⊂ Gn and that mn weakly* converges towards m,

lim inf
n→+∞

(

λ|mn|(T) +
1

2
||Φmn − y||2

)

> λ|m|(T) +
1

2
||Φm− y||2.

• (Limsup inequality) there exists a sequence of measures (mn)n∈N ∈ XN such that

supp(mn) ⊂ Gn, mn weakly* converges towards m and

lim sup
n→+∞

(

λ|mn|(T) +
1

2
||Φmn − y||2

)

6 λ|m|(T) +
1

2
||Φm− y||2.
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The following proposition shows the Γ-convergence of the discretized problems

toward the Beurling Lasso problem. This ensures in particular the convergence of

the minimizers, which was already proved in [32].

Proposition 4. The Problem (Pn
λ (y)) Γ-converges towards (P∞

λ (y)), and

lim
n→+∞

inf (Pn
λ (y)) = inf (P∞

λ (y)). (43)

Each sequence (mn
λ)n∈N such that mn

λ is a minimizer of (Pn
λ (y)) has accumulation

points (for the weak*) topology, and each of these accumulation point is a minimizer

of (P∞
λ (y)).

In particular, if the solution mλ to (P∞
λ (y)) is unique, the minimizers of (Pn

λ (y))

converge towards mλ.

Proof. The liminf inequality of Definition (4) is a consequence of the lower semi-

continuity of the total variation and the L2 norm (since Φ is weak* to weak continuous,

ΦGn
mn − y weakly converges towards Φm− y):

lim inf
n→+∞

(

λ|mn|(T) +
1

2
||Φmn − y||2

)

> λ lim inf
n→+∞

(|mn|(T)) +
1

2
lim inf
n→+∞

(
||Φmn − y||2

)

> λ|m|(T) +
1

2
||Φm− y||2.

As for the limsup inequality, we approximate m with the measure mn =
∑Pn−1

k=0 bkδkhn, where bk = m([khn, (k + 1)hn)). Then, for any ψ ∈ C(T),

∣
∣
∣
∣

∫

T

ψdm−

∫

T

ψdmn

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Pn−1∑

k=0

∫

[khn,(k+1)hn)

(ψ(x)− ψ(khn))dm

∣
∣
∣
∣
∣

6 ωψ(hn)|m|(T),

where ωψ : t 7→ sup|x′−x|6t |ψ(x) − ψ(x′)| is the modulus of continuity of ψ. Therefore,

limn→+∞〈mn, ψ〉 = 〈m,ψ〉, and mn weakly* converges towards m. Incidentally, observe

that |mn|(T) 6 |m|(T), so that using the liminf inequality we get limn→+∞ |mn|(T) =

|m|(T). Moreover, by similar majorizations, one may prove that Φmn converges strongly

in L2(T) towards Φm. As a result limn→+∞ ||Φmn − y||2 = ||Φm − y||2, and the limsup

inequality is proved.

Eventually, from (42) we deduce the compactness of X , hence the existence of

accumulation points, and [14, Theorem 7.8] implies that accumulation points of (mn
λ)n∈N

are minimizers of (P∞
λ (y)), as well as (43).

The weak* convergence of the minimizers of (Pn
λ (y)) can be described more

accurately by studying the dual certificates pλ and looking at the support of the solutions

mn
λ to (Pn

λ (y)) (see [21, Section 5.4]). One may prove that mn
λ is generally composed of

at most one pair of Dirac masses in the neighborhood of each Dirac mass of the solution

m∞
λ =

∑Nλ

ν=1 αλ,νδxλ,ν to (P∞
λ (y)). More precisely,
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Proposition 5. Let λ > 0, and assume that there exists a solution to (P∞
λ (y)) which

is a sum of a finite number of Dirac masses: m∞
λ =

∑Nλ

ν=1 αλ,νδxλ,ν (where αν 6= 0).

Assume that the corresponding dual certificate η∞λ = Φ∗p∞λ satisfies |η∞λ (t)| < 1 for all

t ∈ T \ {x1, . . . , xN}.

Then any sequence of solution mn
λ =

∑Pn−1
i=0 aλ,iδihn to (Pn

λ (y)) satisfies

lim sup
n→+∞

(supp(mn
λ)) ⊂ {x1, . . . xN}.

If, moreover, m∞
λ is the unique solution to (P∞

λ (y)),

lim
n→+∞

(supp(mn
λ)) = {x1, . . . xN}. (44)

If, additionally, (η∞λ )′′(xν) 6= 0 for some ν ∈ {1, . . . , N}, then for all n large enough,

the restriction of mn
λ to (xν − r, xν + r) (with 0 < r < 1

2
minν−ν′ |xλ,ν − xλ,ν′ |) is a sum

of Dirac masses of the form aλ,iδihn + aλ,i+εi,nδ(i+εi,n)hn with εi,n ∈ {−1, 1}, aλ,i 6= 0 and

sign(aλ,i) = sign(αλ,ν). Moreover, if aλ,i+εi,n 6= 0, sign(aλ,i+εi,n) = sign(αλ,ν).

We skip the proof as it is very close to the arguments of [21, Section 5.4]. Moreover

the proof of Proposition 13 below for the C-BP is quite similar.

3.4. Convergence of the extended support

Now, we focus on the study of low noise regimes. The convergence of the extended

support for (Pn
0 (y0)) towards the extended support of (P∞

0 (y0)) is analyzed by the

following proposition.

From now on, we assume that the source condition for (P∞
0 (y0)) holds, and that

suppm0 ⊂ Gn for n large enough (in other words, y0 = ΦGn
a0 for some a0 ∈ RPn), so

that m0 =
∑N

ν=1 α0,iδx0,ν is a solution of (Pn
0 (y0)). Moreover we assume that n is large

enough so that |x0,ν − x0,ν′ | > 2hn for ν ′ 6= ν.

Proposition 6 ([21]). The following result holds:

lim
n→+∞

ηn0 = η∞0 , (45)

in the sense of the uniform convergence (which also holds for the first and second

derivatives). Moreover, if m0 satisfies the Non Degenerate Source Condition, for n

large enough, there exists εn ∈ {−1, 0,+1}N such that

ext±
n
(m0) = supp±(m0) ∪

(
supp±(m0) + εnhn

)
, (46)

where supp±(m0) + εnhn
def.
= {(x0,ν + εnνhn, η

∞
0 (x0,ν)) ; 1 6 ν 6 N}.

That result ensures that on thin grids, there is a low noise regime for which

the solutions are made of the same spikes as the original measure, plus possibly one

immediate neighbor of each spike with the same sign. However, it does not predict
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which neighbors may appear and where (is it at the left or at the right of the original

spike?).

The following Theorem refines that result by giving a sufficient condition for the

spikes to appear in pairs (i.e. εν = ±1 for 1 6 ν 6 N). Moreover, it shows that the

value of εn does not depend on n, and it gives the explicit positions of the added spikes

εν , for 1 6 ν 6 N .

Theorem 2. Assume that the operator Γx0 =
(

Φx0 Φ′
x0

)

has full rank, and that

m0 satisfies the Non-Degenerate Source Condition. Moreover, assume that all the

components of the natural shift

ρ
def.
= (Φ′∗

x0
ΠΦ′

x0
)−1Φ′∗

x0
Φ+,∗
x0

sign(m0(x0)) (47)

are nonzero, where Π is the orthogonal projector onto (ImΦx0)
⊥.

Then, for n large enough, the extended signed support of m0 on Gn has the form

ext±
n
(m0) = {(xν , sign(α0,ν))}16ν6N ∪ {(xν + ενhn, sign(α0,ν)}16ν6N (48)

where ε = sign (diag(sign(α0))ρ) . (49)

In the above theorem, observe that Φ′∗
x0
ΠΦ′

x0
is indeed invertible since Γx0 has full

rank.

Corollary 1. Under the hypotheses of Theorem 2, for n large enough, there exists

constants C
(1)
n > 0, C

(2)
n > 0 such that for λ 6 C

(1)
n min16ν6N |α0,ν |, and for all

w ∈ L2(T) such that ‖w‖2 6 C
(2)
n λ, the solution to (Pn

λ (y)) is unique, and reads

mλ =
∑N

ν=1(αλ,νδx0,ν + βλ,νδx0,ν+εhn), where

(

αλ
βλ

)

=

(

α0

0

)

+ Φ+
extnw − λ(Φ∗

extnΦextn)
−1 sign

(

α0

α0

)

,

where extn(m0) = {xν}16ν6N ∪ {xν + ενhn}16ν6N ,

ε = sign (diag(sign(α0))ρ) ,

sign(αλ,ν) = sign(βλ,ν) = sign(α0,ν).

Proof of Theorem 2. We define a good candidate for ηn0 and using Lemma 1 we prove

that it is indeed equal to ηn0 when the grid is thin enough.

To comply with the notations of Section 2, we write

N∑

ν=1

α0,iδx0,ν =

Pn−1∑

k=0

a0,kδkhn,

and we let I
def.
= {i ∈ J0, Pn − 1K ; a0,i 6= 0}. Moreover, for any choice of sign (εi)i∈I ∈

{−1,+1}N , we set J
def.
=
⋃

i∈I{i, i + εi} and sJ = (sj)j∈J where si
def.
= si+εi

def.
= sign(a0,i)

for i ∈ I. Since |x0,ν − x0,ν′ | > 2hn for ν ′ 6= ν, we have Card J = 2× Card I = 2N .
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Recalling that A =
(

ϕ(·, 0), . . . ϕ(·, (Pn − 1)hn)
)

, we consider the submatrices

AI
def.
=
(

ϕ(·, ihn)
)

i∈I
=
(

ϕ(·, x0,1), . . . ϕ(·, x0,N)
)

and AJ\I
def.
=
(

ϕ(·, (i+ εi)hn)
)

i∈I

so that up to a reordering of the columns AJ =
(

AI AJ\I

)

. In order to apply Lemma 1,

we shall exhibit a choice of (εi)i∈I such that AJ has full rank, that v
def.
= (A∗

JAJ)
−1sJ

satisfies sign(vj) = −sj for j ∈ J \ I and ‖A∗
JcAJv‖∞ < 1 .

The following Taylor expansion holds for AJ\I as n→ ∞:

AJ\I = A0 + hn(B0 +O(hn)), with A0 = AI = Φx0

and B0 =
(

(∂2)ϕ(·, x0,1) . . . (∂2)ϕ(·, x0,N)
)

diag ((εi1), . . . (εiN ))

= Φ′
x0
diag ((εi1), . . . (εiN )) .

By Lemma 8 in Appendix, the Gram matrix A∗
JAJ is invertible for n large enough,

and

(A∗
JAJ)

−1

(

sI
sI

)

=
1

hn

(

(diag(εi1, . . . , εiN ))
−1ρ

−(diag(εi1, . . . , εiN ))
−1ρ

)

+O(1),

where ρ is defined in (47), where Π is the orthogonal projector onto (ImΦx0)
⊥, and for

ν ∈ J1, NK, iν refers to the index i ∈ I such that ihn = x0,ν . Therefore, vJ\I has the

sign of − diag(εi1 , . . . εiN )ρ, and it is sufficient to choose εiν = siν × sign(ρν) to ensure

that sign vJ\I = −sJ\I for n large enough.

With that choice of ε, it remains to prove that ‖A∗
JcAJv‖∞ < 1. Let us write

p̃n
def.
= AJv = A+,∗

J

(

sI
sI

)

. It is equivalent to prove that for k ∈ Jc, |Φ∗p̃n(khn)| < 1.

Using the above Taylor expansion and Lemma 8 in Appendix, we obtain that

lim
n→+∞

p̃n = A+,∗
0 sI − ΠB0(B

∗
0ΠB0)

−1B∗
0A

+,∗
0 sI

= Φ+,∗
x0 sign(α0,·)− ΠΦ′

x0(Φ
′
x0

∗
ΠΦ′

x0)
−1Φ′

x0

∗
Φ+,∗
x0 sign(α0,·)

= p∞V (by (41)).

Hence, Φ∗p̃n and its derivatives converge to those of η∞V = η∞0 , and there exists

r > 0 such that for all n large enough, for all 1 6 ν 6 N , Φ∗p̃n is strictly concave (or

stricly convex, depending on the sign of η∞0
′′(x0,ν)) in (x0,ν − r, x0,ν + r). Hence, for

t ∈ (x0,ν − r, x0,ν + r) \ [x0,ν , x0,ν + εi(ν)hn], we have |Φ
∗p̃n(t)| < 1. Since by compactness

max

{

|η∞0 (t)| ; t ∈ T \
N⋃

ν=1

(x0,ν − r, x0,ν + r)

}

< 1

we also see that for n large enough

max

{

|Φ∗p̃n(t)| ; t ∈ T \
N⋃

ν=1

(x0,ν − r, x0,ν + r)

}

< 1.

As a consequence, for k ∈ Jc, |Φ∗p̃n(khn)| < 1, and from Lemma 1, we obtain that

Φ∗p̃n = ηn0 and
⋃N
ν=1{x0,ν , x0,ν + εi(ν)hn} is the extended support on Gn.
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3.5. Asymptotics of the constants

To conclude this section, we examine the decay of the constants C
(1)
n , C

(2)
n in

Corollary 1 as n → +∞. For this we look at the values of c1, . . . , c5 given in the

proof of Theorem 1.

By Lemma 8 applied to Φextn(m0) =
(

Φx0 Φx0 + hn(Φ
′
x0 +O(hn))

)

, we see that

c1,n
def.
= ||RIΦ

+
extn(m0)

||∞,2 ∼
1

hn
||(Φ′∗

x0
ΠΦ′∗

x0
)−1Φ′∗

x0
Π||∞,2, (50)

c2,n
def.
= ||vI ||∞ =

∣
∣
∣

∣
∣
∣RI(Φ

∗
extn(m0)

Φextn(m0))
−1

(

sI
sI

)
∣
∣
∣

∣
∣
∣
∞

∼
1

hn
||ρ||∞, (51)

c3,n
def.
= (||RKΦ

+
extn(m0)

||∞,2)
−1

(

min
k∈K

|vk|

)

∼
mink∈K |ρk|

||(Φ′∗
x0ΠΦ

′∗
x0)

−1Φ′∗
x0Π||∞,2

. (52)

However, the expressions of c4 and c5 lead to an overly pessimistic bound on the signal-

to-noise ratio. Indeed the majorization used in (2.2) is too rough in this framework: it

does not distinguish between neighborhoods of x0,ν ’s, where the certificate is close to 1,

and the rest of the domain.

Proposition 7. The constants C
(1)
n , C

(2)
n in Corollary 1 can be chosen as C

(1)
n = O(hn)

and C
(2)
n = O(1), and one has

∣
∣
∣

∣
∣
∣

(

αλ
βλ

)

−

(

α0

0

)
∣
∣
∣

∣
∣
∣
∞

= O

(
w

hn
,
λ

hn

)

. (53)

Proof. The proof of (53) follows from applying (50) and (51) in the expression for αλ
and βλ provided by Corollary 1. Let ω

def.
= Φ∗Πw, where Π is the orthogonal projector

onto (ImΦx0)
⊥ = kerΦ∗

x0
. In order to ensure (23) we may ensure that :

|ω(jhn) + ληn0 (jhn)| − λ < 0, (54)

for all j ∈ Jc (that is (jhn /∈ extn(m0)).

By the Non-Degenerate Source Condition, there exists r > 0 such that for all

ν ∈ {1, . . . , N},

∀t ∈ (x0,ν − r, x0,ν + r), |η∞0 (t)| > 0.95 and |(η∞0 )′′(t)| >
3

4
|(η∞0 )′′(x0,ν)|,

and by compactness supT\
⋃N

ν=1(x0,ν−r,x0,ν+r)
|η∞0 | < 1. Since ηn0 → η∞0 (with uniform

convergence of all the derivatives), for n large enough,

∀ν ∈ {1, . . . , N}, ∀t ∈ (x0,ν−r, x0,ν+r), |η
n
0 (t)| > 0.9 and |(ηn0 )

′′(t)| >
1

2
|(η∞0 )′′(x0,ν)|,

(with equality of the signs) and

sup
T\

⋃N
ν=1(x0,ν−r,x0,ν+r)

|ηn0 | 6 k
def.
=

1

2

(

sup
T\

⋃N
ν=1(x0,ν−r,x0,ν+r)

|η∞0 |+ 1

)

< 1.
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First, for j such that jhn ∈ T \
⋃N
ν=1(x0,ν − r, x0,ν + r), we see that it is sufficient

to assume ||Φ∗||∞,2||w||2 < (1− k)λ to obtain (54).

Now, let ν ∈ {1, . . . , N} and assume that η∞0 (x0,ν) = 1 (so that (η∞0 )′′(x0,ν) < 0)

and that εν = 1, the other cases being similar. We make the following observation: if

a function f : (−r,+r) → R satisfies f ′′(t) 6 C for some C < 0 and f(0) = f(hn) = 0,

then f(t) 6 C
2
t(t− hn) < 0 for t ∈ (−r, 0] ∪ [hn, r).

Notice that ω = Φ∗Πw is a C2 function which vanishes on extn(m0) (hence at x0,ν
and x0,ν + hn), and that its second derivative is bounded by ||(Φ′′)∗||∞,2||w||2. Moreover,

ηn0 (x0,ν) = ηn0 (x0,ν + hn) = 1 and sup(x0,ν−r,x0,ν+r)(η
n
0 )

′′ 6
1
2
(η∞0 )′′(x0,ν) < 0. Thus, for

||w||2
λ

<
|(η∞0 )′′(x0,ν)|

2||(Φ′′)∗||∞,2
, we may apply the observation to ω(· − x0,ν) + λ(ηn0 (· − x0,ν)− 1) so

as to get

ω(t) + λ(ηn0 (t)− 1) 6

(

||(Φ′′)∗||∞,2||w||2 + λ
1

2
(η∞0 )′′(x0,ν)

)

(t− x0,ν)(t− x0,ν − hn) < 0

for t ∈ (x0,ν − r, x0,ν ] ∪ [x0,ν + hn, x0,ν + r).

On the other hand, the inequality −ω(t)−λ(ηn0 (t)+1) < 0 holds for ||Φ∗||∞,2||w||2 <

1.9λ. As a result (54) holds for all j such that jhn ∈ (x0,ν−r, x0,ν+r), provided that the

signal-to-noise ratio satisfies ||w||2
λ

6 c, where c > 0 is a constant which only depends on

minν |(η
∞
0 )′′(x0,ν)|, ||Φ

∗||∞,2, ||(Φ
′′)∗||∞,2 and supT\

⋃N
ν=1(x0,ν−r,x0,ν+r)

|η∞0 |. In other words,

including the condition involving c3,n, we may choose C
(2)
n = min(c3,n, c) = O(1).

4. Abstract analysis of the Lasso with cone constraint

This section studies a simple variant of the Lasso with cone constraint in an

abstract setting. The results stated here shall be useful in Section 5, since this variant

turns out to be the Continuous Basis-Pursuit when the degradation operator is a

convolution with an impulse response and its derivative. Similarly to Section 2, we

consider in this section observations in an arbitrary Hilbert space H.

4.1. Notations

Given a parameter h > 0, we consider the cone generated by the vectors (1, h
2
) and

(1,−h
2
),

Ch
def.
=

{

(c, d) ∈ R× R ; c > 0 and − c
h

2
+ |d| 6 0

}

. (55)

We also define the cone CPh as the set of vectors (a, b) ∈ RP × RP such that for all

k ∈ J0, P − 1K (ak, bk) ∈ Ch.

Now, given a vector (a0, b0) ∈ CPh (i.e. ∀k ∈ J0, P − 1K, a0,k >
2
h
|b0,k|), we observe

y0 = Aa0 + Bb0, where A : RP → H and B : RP → H are linear operators, or its noisy

version y = y0 + w where w ∈ H. To recover (a0, b0) from y or y0, we consider the

following reconstruction problems:

min
(a,b)∈CP

h

1

2
||y − Aa−Bb||22 + λ||a||1, (Qλ(y))
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and for λ = 0,

min
(a,b)∈CP

h

||a||1 such that Aa +Bb = y0. (Q0(y0))

Our main focus is on the support recovery properties of (Qλ(y)). Precisely, we split

the “support” of (a, b) ∈ CPh into several parts:

I
def.
= supp(a)

def.
= {i ∈ J0, P − 1K ; ai > 0} (56)

= I(r) ∪ I(l) (57)

where I(r)
def.
=

{

i ∈ I ; ai +
2

h
bi > 0

}

, I(l)
def.
=

{

i ∈ I ; ai −
2

h
bi > 0

}

. (58)

Observe that in general I(r) ∩ I(l) 6= ∅. If (aλ, bλ) is a solution of (Qλ(y)), we

say that we have exact support recovery provided that I(r)(aλ, bλ) = I(r)(a0, b0) and

I(l)(aλ, bλ) = I(l)(a0, b0).

Remark 9. The notation I(r), I(l), which might seem a bit obscure at this point, shall

become clearer in the next section. It turns out that when considering the Continuous

Basis-Pursuit on a grid with stepsize h > 0, points i in I(r) correspond to Dirac masses

which “tend to be on the right”, that is they do not coincide with the left half-grid point

ih − h
2
. Similarly, points in I(l) correspond to Dirac masses which “tend to be on the

left”, as they do not coincide with the right half-grid point ih+ h
2
. In fact, if i ∈ I(r)\I(l),

it correponds to a Dirac mass at the right half-grid point: δih+h
2
, and if i ∈ I(l) \ I(r),

it correponds to a Dirac mass at the left half-grid point: δih−h
2
. If i ∈ I(r) ∩ I(l), it

correponds to a Dirac mass which may belong “freely” to the interval (ih− h
2
, ih+ h

2
).

4.2. Parametrization as a positive Lasso

To characterize the solutions of (Qλ(y)) and (Q0(y0)), it is convenient to

reparametrize the problem as a Lasso with positivity constraint. Indeed, let us write

for all i ∈ J0, P − 1K,

(

ai
bi

)

def.
=

(

1 1
h
2

−h
2

)(

ri
li

)

or

(

ri
li

)

=
1

2

(

ai +
2
h
bi

ai −
2
h
bi

)

. (59)

In the following, we define the linear map

Hh :

(

r

l

)

7−→

(

a

b

)

(60)

It is clear that (ai, bi) ∈ Ch if and only if ri > 0 and li > 0. Moreover, given

(a, b) ∈ CPh ,

Ic = {i ∈ J0, P − 1K ; (ri, li) = (0, 0)} , I(r) = {i ∈ J0, P − 1K ; ri > 0} ,

and I(l) = {i ∈ J0, P − 1K ; li > 0} .
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Therefore, Problems (Qλ(y)) and (Q0(y0)) are respectively equivalent to the Lasso

and Basis Pursuit with positivity constraint:

min
(r,l)∈(R+)P×(R+)P

λ
∣
∣
∣

∣
∣
∣

(

r

l

)
∣
∣
∣

∣
∣
∣
1
+

1

2

∥
∥
∥
∥
∥
y −Ah

(

r

l

)∥
∥
∥
∥
∥

2

2

(Q̃λ(y))

and min
(r,l)∈(R+)P×(R+)P

∣
∣
∣

∣
∣
∣

(

r

l

)
∣
∣
∣

∣
∣
∣
1

such that Ah

(

r

l

)

= y0, (Q̃0(y0))

where Ah
def.
=
(

A+ h
2
B A− h

2
B
)

: R2P → H.

Observe that there is “support recovery” of (a0, b0) through (Qλ(y)) if and only if

there is support recovery of (r0, l0) through (Q̃λ(y)). But precisely, as we shall explain

below, the characterization of minimizers and the support recovery properties of the

Lasso with positivity constraint (Q̃λ(y)) are quite similar to those exposed in Section 2.

The regularization term may be written as J : RP → R ∪ {+∞}, where for all

(r, l) ∈ RP × RP ,

J(r, l)
def.
=

{ ∑P−1
i=0 (ri + li) if ri > 0 and li > 0 for all i ∈ J0, P − 1K,

+∞ otherwise.

=

P−1∑

i=0

j(ri) +

P−1∑

i=0

j(li),

with j(x)
def.
= sup {qx ; q 6 1} =

{

x if x > 0,

+∞ otherwise.

Hence, the subdifferential of J is the product of the subdifferentials ∂j(ri) and ∂j(li)

for 1 6 i 6 P − 1, where

∂j(x) =

{

{1} if x > 0,

(−∞, 1] if x = 0.

That is quite similar to the subdifferential of | · | at x ∈ R which is −1, [−1, 1] or 1 if

x < 0, x = 0 or x > 0 respectively, and one may adapt all the results of Section 2 to

the Lasso with positivity constraint. It essentially amounts to replacing the conditions

||η||∞ 6 1 with max η 6 1 (and similarly for strict inequalities) wherever they appear.

We leave the detail to the reader, and in the following, we use those results freely to

derive the properties of the Lasso with cone constraint (Qλ(y)).

4.3. Optimality conditions

Applying the results (or their straightforward adaptations) of Section 2 to (Q̃λ(y))

and (Q̃0(y0)), then composing by Hh, we immediately get the following results.
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Proposition 8. Let y ∈ H, (aλ, bλ) ∈ CPh , and I = I(aλ, bλ). Then (aλ, bλ) is a solution

to (Qλ(y)) if and only if there exists qλ ∈ H such that

max

(

(A∗ +
h

2
B∗)qλ

)

6 1, and max

(

(A∗ −
h

2
B∗)qλ

)

6 1, (61)

(A∗
I(r) +

h

2
B∗
I(r))qλ = 1I(r), and (A∗

I(l) −
h

2
B∗
I(l))qλ = 1I(l), (62)

λ

(

A∗

B∗

)

qλ +

(

A∗

B∗

)

(Aaλ +Bbλ − y) = 0. (63)

Similarly, (a0, b0) ∈ CPh is a solution to (Q0(y0)) if and only if Aa0+Bb0 = y0 and there

exists q ∈ H such that

max

(

(A∗ +
h

2
B∗)q

)

6 1, and max

(

(A∗ −
h

2
B∗)q

)

6 1, (64)

(A∗
I(r) +

h

2
B∗
I(r))q = 1I(r), and (A∗

I(l) −
h

2
B∗
I(l))q 6 1, (65)

where I = I(a0, b0).

The corresponding dual problems are given by

inf
q∈D

∥
∥
∥
y

λ
− q
∥
∥
∥

2

(Eλ(y))

sup
q∈D

〈y, q〉 (E0(y))

where D
def.
=

{

q ∈ H ; max
k∈J0, Pn−1K

(A∗q)k +
h

2
|(B∗q)k| 6 1

}

, (66)

Again, if the inequalities outside the support are strict, it is possible to ensure the

uniqueness of the solution.

Proposition 9. Under the hypotheses of Proposition 8, if
(

(A+ h
2
B)I(r) (A− h

2
B)I(l)

)

has full rank and if qλ (resp. q) satisfies

∀k ∈ Ic, (A∗qλ)k +
h

2
|(B∗qλ)k| < 1, (67)

∀i ∈ I(l) \ I(r), ((A∗ +
h

2
B∗)qλ)i < 1, (68)

∀i ∈ I(r) \ I(l), ((A∗ −
h

2
B∗)qλ)i < 1, (69)

then (aλ, bλ) (resp. (a0, b0)) is the unique solution to (Qλ(y)) (resp. (Q0(y0))).

4.4. Low noise behavior of C-BP

The Theorem of Fuchs [26] for the Lasso (see Remark 3) extends to this setting as

follows.
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Proposition 10. Let (a0, b0) ∈ CPh \ {0} such that

Âh
def.
=
(

(A + h
2
B)I(r) (A− h

2
B)I(l)

)

has full rank, and let

T
def.
= min

{

b0,i +
2

h
a0,i ; i ∈ I(r)(b0, a0)

}

∪

{

b0,i −
2

h
a0,i ; i ∈ I(l)(b0, a0)

}

. (70)

Then there exists constants C(1) > 0, C(2) > 0 such that for λ 6 C(1)T , ‖w‖ < C(2)λ,

the solution to (Qλ(y0 + w)) is unique, satisfies I(r)(bλ, aλ) = I(r)(b0, a0), I
(l)(bλ, aλ) =

I(l)(b0, a0), and it reads:
(

aλ
bλ

)

=

(

a0
b0

)

+HhÂ
+
hw − λHh(Â

∗
hÂh)

−1s,

where Hh is defined in (60).

In general, the conditions of Proposition 10 do not hold, and the support at low

noise is strictly larger than (I(r)(a0, b0), I
(l)(a0, b0)). This support is governed by the

minimal norm certificate.

Definition 5 (Minimal norm certificate). Let (a0, b0) ∈ CPh . Its minimal norm certificate

is ζ0
def.
=

(

A∗ + h
2
B∗

A∗ − h
2
B∗

)

q0 where q0 is the solution to (E0(y)) with minimal L2 norm. The

extended support is ext(rl)(a0, b0) =
(
ext(r)(a0, b0), ext

(l)(a0, b0)
)
, where

ext(r)(a0, b0) =

{

j ∈ J0, P − 1K ; ((A∗ +
h

2
B∗)q0)j = 1

}

, (71)

ext(l)(a0, b0) =

{

j ∈ J0, P − 1K ; ((A∗ −
h

2
B∗)q0)j = 1

}

. (72)

From the optimality conditions, if (a0, b0) is a solution of (Q0(y0)) then I(r) ⊂

ext(r)(a0, b0) and I
(l) ⊂ ext(l)(a0, b0) (where I = I(a0, b0)), and q0 can be characterized

as

q0 = argmin
q∈H

{

‖q‖2 ;

(

A∗ + h
2
B∗

A∗ − h
2
B∗

)

q ∈ ∂J(r0, l0)

}

. (73)

Lemma 2. Let J (r), J (l) ⊂ J0, P − 1K, and (a0, b0) ∈ CPh . Assume that (I(r), I(l))
def.
=

(I(r)(a0, b0), I
(l)(a0, b0)) is such that

I(r) ⊂ J (r), I(l) ⊂ J (l) and Âh
def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)

has full rank. Define

(

uJ(r)

vJ(l)

)

def.
= −(Â∗

hÂh)
−1s where s

def.
=






1
...

1




 ∈ R|J(r)|+|J(l)|. Then

(J (r), J (l)) is the extended support of (a0, b0) if and only if the following two conditions

hold:
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• for all j ∈ J (r) \ I(r), uj > 0, and for all j ∈ J (l) \ I(l), vj > 0.

• max

[(

(A+ h
2
B)∗

J(r)c

(A− h
2
B)∗

J(l)c

)

Âh

(

uJ(r)

vJ(l)

)]

< 1.

Moreover, in that case, the minimal norm certificate is given by

ζ0 = −Ah
∗(Â∗

hÂh)
−1s.

The proof is identical to the one of Lemma 1, therefore we omit it. We are now in

position to describe the behavior of (Qλ(y)) at low noise in the generic case:

Theorem 3. Let (a0, b0) ∈ (R+)
2 \ {0} be an identifiable signal, (J (r), J (l)) =

ext(rl)(a0, b0) such that Âh
def.
=

(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)

has full rank. Let

(

uJ(r)

vJ(l)

)

def.
= −(Â∗

hÂh)
−1s where s

def.
=






1
...

1




 ∈ R|J(r)|+|J(l)|, and assume that for all

j ∈ J (r) \ I(r), uj > 0, and that for all j ∈ J (l) \ I(l), vj > 0.

Then, there exists constants C(1) > 0, C(2) > 0 such that for

λ 6 C(1) min

{

b0,i +
2

h
a0,i ; i ∈ I(r)(a0, b0)

}

∪

{

b0,i −
2

h
a0,i ; i ∈ I(l)(a0, b0)

}

(74)

and ||w||2 6 C(2)λ, the solution (aλ, bλ) to (Qλ(y)) is unique, I(r)(aλ, bλ) = J (r),

I(l)(aλ, bλ) = J (l), and it reads
(

aλ
bλ

)

=

(

a0
b0

)

+HhÂ
+
hw − λHh(Â

∗
hÂh)

−1s,

where Hh is defined in (60).

5. Continuous-Basis Pursuit on thin grids

Facing the same inverse problem as in Section 3, but this time assuming that each

αν (1 6 ν 6 N) is positive, we aim at recovering m0 using the Continuous Basis-

Pursuit proposed in [23]. Given a grid Gn as in Section 3, the goal is to reconstruct

a measure m =
∑Pn−1

i=0 aiδihn+ti where ti ∈ [−hn
2
, hn

2
] which estimates m0. Applying a

Taylor expansion and setting bi = tiai, the authors of [23] are led to solve

min
(a,b)∈CPn

hn

1

2
||y − ΦGn

a− Φ′
Gn
b||2 + λ||a||1 (Qn

λ(y))

min
(a,b)∈CPn

hn

||a||1 such that ΦGn
a+ Φ′

Gn
b = y0. (Qn

0 (y0))

which are particular instances of (Qλ(y)) and (Q0(y0)). The dual problems are

respectively:

inf
q∈Dn

∥
∥
∥
y

λ
− q
∥
∥
∥

2

(Enλ (y))

sup
q∈Dn

〈y0, q〉 (En0 (y0))
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where Dn def.
=

{

q ∈ L2(T) ; max
k∈J0, Pn−1K

(Φ∗q)(khn) +
hn
2
|(Φ∗q)′(khn)| 6 1

}

, (75)

To study the behavior of the solutions to these problems as n increases, we aim at

applying the results of the previous section, and in particular Lemma 2, in the setting

where H = L2(T) and (A,B) = (ΦGn
,Φ′

Gn
).

5.1. The positive Beurling Lasso

The situation with the continuous basis pursuit on thin grids is quite similar to

the situation of the Lasso. Still, the non-negativity constraint on the components

(ak)06k6Pn
passes to the limit, and the appropriate limit model is the positive Beurling

Lasso,

min
m∈M+(T)

1

2
||y − Φm||2 + λm(T), (Q∞

λ (y))

and min
m∈M+(T)

m(T) such that Φm = y0, (Q∞
0 (y0))

where M+(T) refers to the space of positive Radon measures. The indicator function

of positive measures plus the total mass may be encoded in the quantity:

m(T) + ιM+(T)(m) = sup

{∫

T

ψ(t)dm(t) ; ψ ∈ C(T) and max
t∈T

ψ(t) 6 1

}

. (76)

As a result, the characterization of optimality, the notions of minimal norm certificates

and extended support may be adapted from Section 3.2 in a straightforward manner,

replacing condition ‖η‖∞ 6 1 by supt∈T µ(t) 6 1 where µ = Φ∗q for q ∈ L2(T). For

instance, up to the addition of a constant, the dual problems to (Q∞
λ (y)) and (Q∞

0 (y0))

are respectively:

inf
q∈D∞

∥
∥
∥
y

λ
− p
∥
∥
∥

2

(E∞
λ (y))

sup
q∈D∞

〈y0, q〉 (E∞
0 (y0))

where D∞ def.
=

{

q ∈ L2(T) ; max
t∈T

(Φ∗q)(t) 6 1

}

. (77)

5.2. The limit problem for thin grids

To consider the limit of (Qn
λ(y)), let us recall that we obtain a measure from the

vector (a, b) ∈ CPn

hn
by setting

m =

Pn−1∑

i=0

aiδihn+bi/ai (78)

with the convention that bi/ai = 0 if ai = 0. It should be noticed that bi/ai ∈ [−hn
2
, hn

2
].

We rely again on the notion on Γ-convergence to express the convergence

of (Qn
λ(y)) towards (Q∞

λ (y)). As before, we may restrict the problems to X+
def.
=

{
m ∈ M+(T) ; λ|m|(T) 6 1

2
||y||2

}
which is metrizable for the weak* topology.
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Definition 6. We say that the Problem (Qn
λ(y)) Γ-converges towards Problem (Q∞

λ (y))

if, for all m ∈ X+, the following conditions hold

• (Liminf inequality) for any sequence of measures (mn)n∈N ∈ XN
+ of the form (78)

with (a(n), b(n)) ∈ CPn

hn
such that mn weakly* converges towards m,

lim inf
n→+∞

(

λ‖a(n)‖1 +
1

2
||ΦGn

a(n) + Φ′
Gn
b(n) − y||2

)

> λm(T) +
1

2
||Φm− y||2.

• (Limsup inequality) there exists a sequence of measures (mn)n∈N ∈ XN
+ of the

form (78) with (a(n), b(n)) ∈ CPn

hn
such that mn weakly* converges towards m and

lim sup
n→+∞

(

λ‖a(n)‖1 +
1

2
||ΦGn

a(n) + Φ′
Gn
b(n) − y||2

)

6 λm(T) +
1

2
||Φm− y||2.

Proposition 11. The Problem (Qn
λ(y)) Γ-converges towards (Q∞

λ (y)), and

lim
n→+∞

inf (Qn
λ(y)) = inf (Q∞

λ (y)). (79)

Each sequence (mn
λ)n∈N such that mn

λ is a minimizer of (Qn
λ(y)) has accumulation

points (for the weak*) topology, and each of these accumulation points is a minimizer

of (Q∞
λ (y)).

In particular, if the solution m∞
λ to (Q∞

λ (y)) is unique, the whole sequence (mn
λ)n∈N

converges towards m∞
λ .

Proof. The proof is the same as for Proposition 4 with minor adaptations, observing

that ‖a(n)‖1 = mn(T). For the liminf inequality, let (mn)n∈N be of the form (78) which

weakly* converges towards m. We notice that Φ′
Gn
b(n) = Φ′(

∑Pn−1
i=0 b

(n)
i δihn), and

∣
∣
∣
∣
∣

Pn−1∑

i=0

b
(n)
i δihn

∣
∣
∣
∣
∣
(T) 6

hn
2

(
Pn−1∑

i=0

a
(n)
i

)

6
hn
2λ

(
1

2
||y||2 + 1

)

→ 0,

so that Φ′
Gn
b(n) (strongly) converges towards 0 in L2(T). Moreover, ΦGn

a(n) =

Φ(
∑Pn−1

i=0 a
(n)
i δihn) and for all ψ ∈ C(T),

∣
∣
∣
∣
∣

〈
Pn−1∑

i=0

a
(n)
i δihn+bi/ai −

Pn−1∑

i=0

aiδihn, ψ

〉∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Pn−1∑

i=0

a
(n)
i (ψ(ihn + bi/ai)− ψ(ihn))

∣
∣
∣
∣
∣

6

Pn−1∑

i=0

a
(n)
i ωψ

(
hn
2

)

→ 0

where ωψ : t 7→ sup|x′−x|6t |ψ(x)− ψ(x′)| is the modulus of continuity of ψ. As a result,
∑Pn−1

i=0 a
(n)
i δihn −mn ∗

⇀ 0 and
∑Pn−1

i=0 a
(n)
i δihn weakly* converges to m. Hence, ΦGn

a(n)

weakly converges towards Φm in L2(T). To sum up, ΦGn
a(n) + Φ′

Gn
b(n) − y weakly

converges towards Φm− y and we conclude as before.

For the limsup inequality, the only difference is in the construction of mn for the

limsup inequality: it is sufficient to choose a
(n)
k = m([khn, (k + 1)hn)) and b

(n)
k = 0 for

all k ∈ J0, Pn − 1K.
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5.3. Asymptotics of the support: generalities

Though Proposition 11 states the convergence of the solutions of (Qn
λ(y)) towards

those of (Q∞
λ (y)), it does not describe the supports of the solutions. We now study

the convergence of those supports using dual certificates and the optimality conditions

(Proposition 8). In this context, a dual certificate is determined by a function

µ = Φ∗q ∈ C(T) where q ∈ L2(T), and

I(r) =

{

i ∈ J0, Pn − 1K ; bi > −
hn
2
ai

}

⊂

{

i ∈ J0, Pn − 1K ;

(

µ+
hn
2
µ′

)

(ihn) = 1

}

,

I(l) =

{

i ∈ J0, Pn − 1K ; bi <
hn
2
ai

}

⊂

{

i ∈ J0, Pn − 1K ;

(

µ−
hn
2
µ′

)

(ihn) = 1

}

.

To sum up, we shall exploit the following observations

• if
(
µ+ hn

2
µ′
)
(ihn) = 1 but

(
µ− hn

2
µ′
)
(ihn) < 1, a spike may appear at ihn +

hn
2
,

• if
(
µ− hn

2
µ′
)
(ihn) = 1 but

(
µ+ hn

2
µ′
)
(ihn) < 1, a spike may appear at ihn −

hn
2
,

• if
(
µ+ hn

2
µ′
)
(ihn) = 1 and

(
µ− hn

2
µ′
)
(ihn) = 1, a spike may appear anywhere in

the interval [ihn −
hn
2
, ihn +

hn
2
].

The following lemma is central in our analysis. We consider a sequence of functions

(µn)n∈N and for 0 < r < 1
2
minν 6=ν′ |xν − xν′ |, ν ∈ {1, . . . , N}, we study:

S(r)
n,ν(r)

def.
=

{

t ∈ Gn ∩ (xν − r, xν + r) ;

(

µn +
hn
2
µn′
)

(t) = 1

}

,

S(l)
n,ν(r)

def.
=

{

t ∈ Gn ∩ (xν − r, xν + r) ;

(

µn −
hn
2
µn′
)

(t) = 1

}

.

Lemma 3. Let (x1, . . . , xN) ∈ TN pairwise distinct, and let {µn}n∈N ∈ (C3(T))N be a

sequence of functions which converges uniformly towards some µ∞ (and similarly for the

derivatives) such that for all ν ∈ {1, . . . , N}, µ∞(xν) = 1 and for all t ∈ T\{x1, . . . , xN},

µ∞(t) < 1.

(i) Then

lim sup
n→+∞

{

t ∈ Gn ; µn(t) +
hn
2
|µn′(t)| = 1

}

⊂ {x1, . . . , xN}. (80)

In particular there exists n0 ∈ N such that for n > n0

{

t ∈ Gn ; µn(t) +
hn
2
|µn′(t)| = 1

}

=
N⋃

ν=1

(
S(r)
n,ν(r) ∪ S

(l)
n,ν(r)

)
⊂

N⋃

ν=1

(xν − r, xν + r).

Assume moreover that for all n ∈ N and all t ∈ Gn, µn(t) +
hn
2
|µn′(t)| 6 1. For each

ν ∈ {1, . . . , N}:

(ii) If (µ∞)′′(xν) 6= 0, then there exists n0 ∈ N such that for n > n0, each set S
(r)
n,ν(r) and

S
(l)
n,ν(r) is of the form ∅, {ihn}, or {ihn, (i+ 1)hn}, and if both sets are nonempty:

maxS(r)
n,ν(r) 6 minS(l)

n,ν(r).
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(iii) If (µ∞)(3)(xν) 6= 0, then there exists n0 ∈ N such that for each n > n0, S
(r)
n,ν(r) = ∅

or S
(l)
n,ν(r) = ∅.

(iv) If (µ∞)(4)(xν) 6= 0, the set of n ∈ N such that S
(r)
n,ν(r) = {(in − 1)hn, inhn} and

S
(l)
n,ν(r) = {inhn, (in + 1)hn} (with the same in ∈ J0, Pn − 1K) is finite.

Proof. Observe that both µn+ hn
2
µn′ and µn− hn

2
µn′ converge uniformly towards µ∞ as

n→ +∞ (and similarly for the derivatives).

(i) For all r̃ ∈ (0, r), by compactness, sup {µ∞(t) ; t ∈ T \
⋃
(xν − r̃, xν + r̃)} < 1.

Thus by uniform convergence there exists n0 ∈ N such that for all n > n0,

(µn ± hn
2
µn′) < 1 on T \

⋃N
ν=1(xν − r̃, xν + r̃), and the first claim is proved.

(ii) If moreover (µ∞)′′(xν) 6= 0, it is in fact negative. Choosing r̃ ∈ (0, r) small enough

and then n large enough, we may assume that µn′′ < −k0 in (xν−r̃, xν+r̃), for some

k0 > 0, and by (80) that S
(r)
n,ν(r)∪S

(l)
n,ν(r) ⊂ (xν−r̃, xν+r̃). By uniform convergence,

µn′′ + hn
2
|µn(3)| < −k0

2
for n large enough, so that both functions µn + hn

2
µn′ and

µn − hn
2
µn′ are strictly concave in (xν − r̃, xν + r̃). This implies that S

(r)
n,ν(r) (resp.

S
(l)
n,ν(r)) is of the form ∅, {ihn}, or {ihn, (i+ 1)hn}.

Observe also that µn + hn
2
µn′ − (µn − hn

2
µn′) = hnµ

n′. Since the function µn′ is

strictly decreasing in (xν − r̃, xν + r̃), it vanishes at most once. If S
(r)
n,ν(r) 6= ∅ and

S
(l)
n,ν(r) 6= ∅, it must change sign in (xν − r̃, xν + r̃) and thus it vanishes exactly

once, at some ξ ∈ (xν − r̃, xν + r̃). Then for t ∈ (xν − r̃, ξ),

(µn −
hn
2
µn′)(t) = (µn +

hn
2
µn′)(t)− hn(µ

n)′(t) 6 1− hn(µ
n)′(t) < 1

so that minS
(l)
n,ν(r) > ξ. Similarly maxS

(r)
n,ν(r) 6 ξ.

(iii) By contradiction, assume that the set of n′ ∈ N such that S
(r)
n′,ν(r) 6= ∅ and

S
(l)
n′,ν(r) 6= ∅ is infinite. We may extract a subsequence n = n′(m) such that there

exists in, jn ∈ J0, Pn − 1K (denoted hereafter i, j) with ihn ∈ S
(r)
n,ν(rm), jhn ∈ S

(l)
n,ν .

Combining the Taylor expansions of µn and (µn)′ around ihn (resp. jhn), we get

1 > µn((i+ 1)hn)−
hn
2
µn′((i+ 1)hn)

= µn(ihn) + hnµ
n′(ihn)(1−

1

2
)

︸ ︷︷ ︸

=1

+hn
2µn′′(ihn)

(
1

2!
−

1

2

)

︸ ︷︷ ︸

=0

+hn
3µn(3)(ihn)α3

+ hn
4

∫ 1

0

µn(4)(ihn + thn)

(
(1− t)3

3!
−

(1− t)2

2!× 2

)

dt, and

1 > µn((j − 1)hn) +
hn
2
µn′((j − 1)hn)

= µn(jhn)− hnµ
n′(jhn)(1−

1

2
)

︸ ︷︷ ︸

=1

+hn
2µn′′(jhn)

(
1

2!
−

1

2

)

︸ ︷︷ ︸

=0

−hn
3µn(3)(jhn)α3

+ hn
4

∫ 1

0

µn(4)(jhn − thn)

(
(1− t)3

3!
−

(1− t)2

2!× 2

)

dt
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where αk is defined in (96). Now, let n → +∞. By (80), ihn → xν and jhn → xν ,

and using the uniform convergence of (µn)(k) towards (µ∞)(k), dividing by hn
3,

we obtain respectively 0 > −(µ∞)(3)(xν) ×
1
12

and 0 > (µ∞)(3)(xν) ×
1
12
, thus

(µ∞)(3)(xν) = 0.

(iv) Assume by contradiction, that the mentioned set is infinite. For such n, a Taylor

expansion at ihn yields (we write i for in):

1 = µn((i+ 1)hn)−
hn
2
µn′((i+ 1)hn)

= µn(ihn) +
hn
2
µn′(ihn)

︸ ︷︷ ︸

=1

+γ3hn
3µn(3)(ihn) + γ4hn

4µn(4)(ihn)

+ hn
5

∫ 1

0

µn(5)(ihn + thn)

(
(1− t)4

4!
−

(1− t)3

3!× 2

)

dt, and

1 = µn((i− 1)hn) +
hn
2
µn′((i− 1)hn)

= µn(ihn)−
hn
2
µn′(ihn)

︸ ︷︷ ︸

=1

−γ3hn
3µn(3)(ihn) + γ4hn

4µn(4)(ihn)

+ hn
5

∫ 1

0

µn(5)(ihn + thn)

(
(1− t)4

4!
−

(1− t)3

3!× 2

)

dt,

with γk = 1
k!
− 1

(k−1)!×2
. Summing both equalities, dividing by hn

4 and taking the

limit n→ +∞ yields (µ∞)(4)(xν) = 0.

This other lemma focusses on the limit of the sets Dn defined in (75).

Lemma 4. As n → +∞, the sets Dn converge towards D∞ defined in (77) (in the

sense of set convergence).

Proof. We observe that En ⊂ Dn ⊂ F n, where

En def.
=

{

q ∈ L2(T) ; max
t∈T

(Φ∗q)(t) +
hn
2
|(Φ∗q)′(t)| 6 1

}

,

F n def.
=

{

q ∈ L2(T) ; max
k∈J0, Pn−1K

Φ∗q(khn) 6 1

}

so that it suffices to prove that En and F n converge towards D∞. On the one hand, it is

clear that D∞ =
⋂

n∈N F
n, and the sequence F n is non-increasing. On the other hand,

it is possible to check that D∞ =
⋃

n∈NE
n, and the sequence En is non-decreasing. As

a consequence, the claimed set convergences hold.
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5.4. Asymptotics of the support for fixed λ > 0

Let us recall that the dual problem to (Qn
λ(y)) is the projection onto the closed

convex set

Dn def.
=

{

q ∈ L2(T) ; (Φ∗q)(ihn) +
hn
2
|(Φ∗q)′(ihn)| 6 1

}

.

Since the set convergence of Dn (see Lemma 4) implies the convergence of the

projections onto Dn (see [29], or [21] for a direct proof in a similar context), we obtain:

Proposition 12. Let qnλ (resp. q∞λ ) be a solution of (Enλ (y)) (resp. (E∞
λ (y))), and

µnλ = Φ∗qnλ (resp. µ∞
λ = Φ∗q∞λ ). Then

lim
n→+∞

qnλ = q∞λ for the L2(T) strong topology,

lim
n→+∞

µ
n(k)
λ = µ

∞(k)
λ in the sense of the uniform convergence, for all k ∈ N.

The following proposition states that in the generic case, one may observe up to two

pairs of spikes for each spike of the solution of the positive Beurling-lasso. As before, r

is chosen such that 0 < r < 1
2
minν 6=ν′ |xν − xν′ |.

Proposition 13. Let λ > 0, and assume that there exists a solution to (Q∞
λ (y)) which

is a sum of a finite number of (positive) Dirac masses: m∞
λ =

∑N
ν=1 ανδxν where αν > 0.

Assume that µ∞
λ satisfies |µ∞

λ (t)| < 1 for all t ∈ T \ {x1, . . . , xN}.

Then any sequence of solution mn
λ =

∑Pn−1
i=0 aλ,iδihn+bλ,i/aλ,i to (Qn

λ(y)) satisfies

lim sup
n→+∞

(suppmn
λ) ⊂ {x1, . . . xN}.

If, moreover, m∞
λ is the unique solution to (Q∞

λ (y)),

lim
n→+∞

(supp(mn
λ)) = {x1, . . . xN}. (81)

If, additionally, (µ∞
λ )′′(xν) 6= 0 for some ν ∈ {1, . . . , N}, then for all n large enough,

the restriction of mn
λ to (xν − r, xν + r) is a sum of Dirac masses whose configuration

is given in Table 1, and if (µ∞
λ )(3)(xν) 6= 0, then only the cases indicated with (∗) may

appear.

Proof. By Proposition 12, we know that the dual certificates µnλ converge towards µ∞
λ .

By Lemma 3 and the optimality conditions, we have thus lim supn→+∞(supp(mn
λ)) ⊂

{x1, . . . , xN}. If m∞
λ is the unique solution, assume by contradiction that

lim inf(supp(mn
λ)) ( {x1, . . . , xN}. Then there is some ν, some ε > 0 such that (up

to a subsequence) (supp(mn
λ))∩ (xν −ε, xν + ε) = ∅. This contradicts the Γ-convergence

result (Prop. 11) which ensures that mn
λ converges towards m∞

λ for the weak* topology.

As a result limn→+∞(supp(mn
λ)) = {x1, . . . , xN}.

If (µ∞
λ )′′(xν) 6= 0, Lemma 3 ensures that the sets S

(r)
n,ν(r) and S

(l)
n,ν(r) are of the

form ∅, {ihn}, or {ihn, (i + 1)hn}. Moreover, since limn→+∞(suppmn
λ) = {x1, . . . , xN}
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Number

of Dirac

masses

Saturations of the
certificates
(S

(r)
n,ν/S

(l)
n,ν)

Possible Dirac Locations

One
{ihn}/∅ or ∅/{ihn} ihn + εn

hn

2
, with εn ∈ {−1, 1} (∗)

{ihn}/{ihn} ihn + ti, with −hn

2
6 ti 6

hn

2

Two

{(i− 1)hn, ihn}/∅
or

∅/{ihn, (i+ 1)hn}

(

(i− εn)hn + εhn

2
, ihn + εn

hn

2

)

, with εn ∈ {−1, 1} (∗)

{ihn}/{jhn}
(

ihn + hn

2
, jhn − hn

2

)

, i < j

{ihn}/{jhn, (i + 1)hn}
or

{(i − 1)hn, ihn}/{ihn}

(

(i− εn)hn + εn
hn

2
, ihn + ti

)

, εn ∈ {−1, 1}, −hn

2
6 ti 6

hn

2

Three

{ihn}/{jhn, (j + 1)hn}
(

ihn + hn

2
, jhn − hn

2
, (j + 1)hn − hn

2

)

, with i < j

{(i − 1)hn, ihn}/{jhn}
(

(i− 1)hn + hn

2
, ihn + hn

2
, jhn − hn

2

)

, with i < j

{(i− 1)hn, ihn}/{ihn, (i+ 1)hn}
(

(i− 1)hn + hn

2
, ihn + ti, (i+ 1)hn − hn

2

)

, −hn

2
6 ti 6

hn

2

Four {(i−1)hn , ihn}/{jhn, (j+1)hn}
(

(i− 1)hn + hn

2
, ihn + hn

2
, jhn − hn

2
, (j + 1)hn − hn

2

)

, i < j

Table 1: Number of Dirac masses that may appear if (µ∞
λ )′′(xν) 6= 0. For the sake of

the simplicity of the table, and since we focus on the saturations of dual certificates, we

regard sums like δihn+hn/2 + δ(i+1)hn−hn/2 as “two” Dirac masses.

we must have S
(r)
n,ν(r) 6= ∅ or S

(l)
n,ν(r) 6= ∅. Using the fact that maxS

(r)
n,ν(r) 6 minS

(l)
n,ν(r),

one may check that the only possible saturation points of µnλ+
hn
2
µnλ

′ and µnλ−
hn
2
µnλ

′ are

given in Table 1. The optimality conditions of Proposition 8 imply that mn
λ is at most

a sum of Dirac masses at those locations.

If (µ∞
λ )(3)(xν) 6= 0 the third point of Lemma 3 implies that for n large enough,

S
(r)
n,ν(r) = ∅ or S

(r)
n,ν(r) = ∅ (but not both). Hence there are at most two (successive)

saturations, produced either by µnλ +
hn
2
µnλ

′ or by µnλ −
hn
2
µnλ

′.

Remark 10. Proposition 13 states that the support of the C-BP on thin grids actually

depends on the properties of the dual certificate µ∞
λ of the (positive) Beurling Lasso.

The condition (µ∞
λ )′′(xν) 6= 0 seems to be overwhelming, if not generic, and it is ensured

for instance if λ is small and the Non-Degenerate Source Condition holds (see [21]). As

for the condition (µ∞
λ )(3)(xν) 6= 0, it also seems to be generic, as there is nothing to

impose (µ∞
λ )(3)(xν) = 0 in the positive Beurling Lasso. As a result, in practice, one

does not observe all the configurations given in Table 1, and only the cases indicated

with (∗) appear, the case of two spikes being again overwhelming.

This means that when approximating the positive Beurling Lasso with the

Continuous Basis-Pursuit, one generally sees two spikes instead of one, and those spikes

are at successive half-grid points: (ih + h
2
, (i+ 1)h+ h

2
) or (ih− h

2
, (i+ 1)h− h

2
).
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5.5. Asymptotic of the low noise support

Now, we focus on the behavior of the Continuous Basis Pursuit at low noise. As

for the Lasso, this analysis is more difficult in whole generality, since it involves the

minimal norm solutions of nonlinear problems, in which it is difficult to pass to the

limit. Therefore, we are led to assume that {x0,1, . . . , x0,N} ⊂ Gn, and the measure now

reads m0 =
∑Pn−1

i=0 a0,iδihn.

The following property ensures that m0 is a solution to (Qn
0 (y0)) for each n large

enough.

Lemma 5. Assume that there exists a function µ ∈ ImΦ∗, such that for all t ∈

T \ {x0,1, . . . , x0,N}, µ(t) < 1 and

∀ν ∈ {1, . . . , N}, µ(x0,ν) = 1, µ′′(x0,ν) 6= 0, µ(3)(x0,ν) = 0, µ(4)(x0,ν) > 0. (82)

Then, for all n large enough, µ is a dual certificate for m0 =
∑N

ν=1 α0,νδx0,ν for (Qn
0 (y0)),

and m0 is a solution to (Qn
0 (y0)). Moreover, if Γx0 has full rank, this solution is unique.

Remark 11. The condition µ(3)(x0,ν) = 0 is natural since our aim is to build a certificate

which is valid for all n, hence Lemma 3 applies with S
(r)
n,ν(r) 6= ∅ and S

(l)
n,ν(r) 6= ∅.

Proof. Let ν ∈ {1, . . . , N} and rν ∈ (0, r) such that µ′′(t) < 0, and µ(4)(t) > 0 in

(x0,ν − rν , x0,ν + rν). We shall prove that µ(khn) +
hn
2
|µ′(khn)| < 1 for all k such that

khn ∈ (x0,ν − rν , x0,ν + rν) \ {x0,ν}. To simplify the notation, we assume without loss of

generality that x0,ν = 0 and we write r̃ = rν . The variations of µ and its derivatives are

given by the table below:

t

µ(4)

µ(3)

µ′′

µ′

µ

−r̃ 0 r̃

+

0

0

µ′′(−r̃) < 0µ′′(−r̃) < 0

µ′′(0)µ′′(0)

µ′′(r̃) < 0µ′′(r̃) < 0

0

0

11

Let us observe that the function θ : t 7→ µ(t) − t
2
µ′(t) is (strictly) decreasing in [0, r̃),

since

∀t ∈ (0, r̃), θ′(t) =
1

2
(µ′(t)− tµ′′(t)) =

1

2

∫ t

0

(µ′′(u)− µ′′(t))
︸ ︷︷ ︸

<0

du < 0. (83)
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Hence, for all k such that khn ∈ (0, r̃),

µ(khn)−
hn
2
µ′(khn) = µ(khn)−

khn
2
µ′(khn)

︸ ︷︷ ︸

=θ(khn)<θ(0)=1

+
(k − 1)hn

2
µ′(khn)

︸ ︷︷ ︸

<0

< 1. (84)

On the other hand, θ is (strictly) increasing on (−r̃, 0] since

∀t ∈ (−r̃, 0), θ′(t) =
1

2
(µ′(t)− tµ′′(t)) =

1

2

∫ t

0

(µ′′(u)− µ′′(t))
︸ ︷︷ ︸

<0

du > 0. (85)

As a consequence, for all k such that khn ∈ (−r̃, 0),

µ(khn) +
hn
2
µ′(khn) = µ(khn)−

khn
2
µ′(khn)

︸ ︷︷ ︸

=θ(khn)<θ(0)=1

+
(k + 1)hn

2
µ′(khn)

︸ ︷︷ ︸

60

< 1. (86)

Thus we see that µ(khn) +
hn
2
|µ′(khn)| < 1 for all khn ∈ (−r̃, r̃) \ {0}, and we proceed

similarly on all the intervals of the form (x0,ν−rν , x0,ν+rν). By a compactness argument,

there exists a constant β < 1 such that µ(t) 6 β for all t ∈ T\
⋃N
ν=1(x0,ν − rν , x0,ν + rν).

For n large enough, the inequality hn
2
(supt∈T |µ

′(t)|) < 1 − β holds, and we see that

µ(khn) +
hn
2
|µ′(khn)| < 1 for all t ∈ T \

⋃N
ν=1(x0,ν − rν , x0,ν + rν).

As a conclusion, we see that µ is a valid certificate for (a0, 0) (see the optimality

conditions of Proposition 8), thus (a0, 0) is a solution of (Qn
0 (y0)).

Now, we consider the limit of the minimal norm solutions of (En0 (y0)). In general,

they do not converge towards the minimal norm solution of (E∞
0 (y0)), and we are led to

introduce a new variational problem to carry the study further.

Definition 7 (Third derivative precertificate). Given m0 ∈ M(T), we define the third

derivative precertificate as µT
def.
= Φ∗qT where

qT
def.
= argmin

q∈L2(T)

{

‖q‖2; ∀i ∈ {1, . . . , N}, (Φ∗q)(xi) = 1,

(Φ∗q)′(xi) = 0 and (Φ∗q)(3)(xi) = 0

}

, (87)

whenever the above set is not empty.

It is clear that the set defined in (87) is a closed convex set. It is nonempty for

instance if the conditions of Lemma 5 hold. Note that qT corresponds to a quadratic

minimization under linear constraint, and can hence be computed by solving a linear

system,

qT =

(

Γ∗
x0

Φ
(3)
x0

∗

)+





(

1N

0

)

0




 = Γ+,∗

x0

(

1N

0

)

− Π̃Φ(3)
x0

∗
(Φ(3)

x0

∗
Π̃Φ(3)

x0

∗
)−1Φ(3)

x0

∗
Γ+,∗
x0

(

1N

0

)

(88)

= p∞V − Π̃Φ(3)
x0

∗
(Φ(3)

x0

∗
Π̃Φ(3)

x0

∗
)−1Φ(3)

x0

∗
p∞V , (89)
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where Π̃ is the orthogonal projector onto (ImΓx0)
⊥, and Γx0 =

(

Φx0 Φ′
x0

)

.

Definition 8 (Twice Non-Degenerate Source Condition). We say that m0 satisfies the

Twice Non-Degenerate Source Condition (TNDSC) if qT in (87) is well defined and if

it satisfies, for µT = Φ∗qT ,

∀t ∈ T \ {x0,1, . . . , x0,N}, µT (t) < 1,

∀ν ∈ {1, . . . , N}, µ′′
T (x0,ν) < 0 and µ

(4)
T (x0,ν) > 0.

Observe that if the Twice Non-Degenerate Source Condition holds, the hypotheses

of Lemma 5 are satisfied and m0 is a solution to (Qn
0 (y0)) for n large enough. In fact

the associated minimal norm certificates (which thus exist) converge towards µT .

Proposition 14. Let m0 ∈ M(T) satisfy the Twice Non-Degenerate Source Condition

(and µT the corresponding Third derivative (pre)certificate). Let qn0 be the minimal norm

solution of (En0 (y0)), and µ
n
0 = Φ∗qn0 . Then,

lim
n→+∞

qn0 = qT for the L2(T) strong topology, (90)

lim
n→+∞

µ
n(k)
0 = µ

(k)
T in the sense of the uniform convergence, for all k ∈ N. (91)

Proof. As mentioned above, the Twice Non-Degenerate Source Condition implies that

µT is a function admissible for Lemma 5, hence a certificate for (Qn
0 (y0)). As a

result, ‖qn0 ‖2 6 ‖qT‖2 and the sequence (qn0 )n∈N is bounded in L2(T). We may

extract a subsequence qn
′

0 which weakly converges towards some q̃ ∈ L2(T), and then

‖q̃‖2 6 lim infn′→+∞ ‖qn0‖2 6 ‖qT‖2. Since Φ∗ and Φ(k),∗ are compact (see Lemma (6) in

Appendix), we obtain that µ
n′(k)
0 = (Φ∗qn

′

0 )(k) converges toward µ̃ = Φ∗q̃ for the (strong)

topology of the uniform convergence. We immediately obtain that µ̃(t) 6 1 for all t ∈ T,

and µ̃(x0,ν) = 1, µ̃(x0,ν) = 0 for all ν ∈ {1, . . . , N}.

Moreover, applying Lemma 3 to Φ∗qn0 (observing that xν ∈ S
(r)
n,ν(r) ∩ S

(l)
n,ν(r)), we

get µ̃(3)(x0,ν) = 0. As a result, q̃ is admissible for (87), hence ‖qT‖2 6 ‖q̃‖2. Thus in fact

‖qT‖2 = ‖q̃‖2 and qT = q̃. Since the limit of the extracted subsequence does not depend

on the choice of the subsequence, in fact the whole sequence converges. Moreover, the

convergence is strong in L2(T) since limn→+∞ ‖qn0 ‖2 = ‖qT‖2.

As a consequence of the above convergence result, the third derivative precertificate

controls the extended support on thin grids.

Proposition 15. Let m0 ∈ M(T) (with {x0,1, . . . x0,N} ⊂ Gn) such that the Twice

Non Degenerate Source Condition holds. Then, for n large enough, m0 is a solution

to (Qn
0 (y0)) and its extended support is given by:

ext(r)n (m0) =
N⋃

ν=1

S(r)
n,ν(r), and ext(l)n (m0) =

N⋃

ν=1

S(l)
n,ν(r), (92)

where
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• S
(r)
n,ν(r) is equal to {x0,ν} or {x0,ν − hn, x0,ν},

• S
(l)
n,ν(r) is equal to {x0,ν} or {x0,ν , x0,ν + hn}.

Moreover, one cannot have simultaneously S
(r)
n,ν(r) = {x0,ν − hn, x0,ν} and S

(r)
n,ν(r) =

{x0,ν , x0,ν + hn}.

Proof. By Lemma 5, m0 is a solution to (Qn
0 (y0)) and µT is a solution to (En0 (y0)).

Applying Lemma 3 to µn0 , µT , we see that S
(r)
n,ν(r) is of the form ∅, {ihn} or

{(i− 1)hn, ihn}, and that S
(l)
n,ν(r) is of the form ∅, {jhn} or {jhn, (j+1)hn}, with i 6 j.

On the other hand, by the extremality relations between µn0 (solution of (En0 (y0))) and

mn
0 (solution of (Qn

0 (y0))), x0,ν ∈ S
(r)
n,ν(r) and x0,ν ∈ S

(l)
n,ν(r). As a consequence S

(r)
n,ν(r)

is equal to {x0,ν} or {x0,ν − hn, x0,ν}, and S
(l)
n,ν(r) is equal to {x0,ν} or {x0,ν , x0,ν + hn}.

Now, since µ4
T (0) 6= 0, the fourth point of Lemma 3 ensures that for n large

enough, one cannot have simultaneously S
(r)
n,ν(r) = {x0,ν − hn, x0,ν} and S

(l)
n,ν(r) =

{x0,ν , x0,ν + hn}.

Remark 12. As Proposition 15 shows, for each original spike, at most one pair of spikes

appears at low noise : the original spike slightly shifted and either the immediate left

neighbor shifted by +hn/2 or the immediate right neighbor shifted by −hn/2.

We are now in position to provide a sufficient condition for the spikes to appear in

pair, with a prediction on the location of the neighbor.

Theorem 4. Assume that the operator
(

Φx0 Φ′
x0 Φ

(3)
x0

)

has full rank and that the

Twice Non Degenerate Source condition (Definiton 8) holds. Moreover, assume that all

the components of the natural shift

ρ
def.
= (Φ(3)∗

x0 Π̃Φ(3)
x0 )

−1Φ(3)∗
x0 Γ+,∗

x0

(

1N

0

)

(93)

are nonzero. Then, for n large enough, and all ν ∈ {1, . . . , N},

If ρν > 0, then S(r)
n,ν(r) = {x0,ν − hn, x0,ν}, and S(l)

n,ν(r) = {x0,ν}, (94)

If ρν < 0, then S(l)
n,ν(r) = {x0,ν}, and S(l)

n,ν(r) = {x0,ν , x0,ν + hn}, (95)

so that the extended support of m0 on the grid Gn has the form

ext(r)n (m0) = {x0,1, . . . , x0,N} ∪ {x0,ν − hn ; ν ∈ J1, NK and ρν > 0}

ext(l)n (m0) = {x0,1, . . . , x0,N} ∪ {x0,ν + hn ; ν ∈ J1, NK and ρν < 0} .

Corollary 2. Under the hypotheses of Theorem 4, for n large enough, there exists

constants C
(1)
n > 0, C

(2)
n > 0 such that for λ 6 C

(1)
n min16ν6N |α0,ν |, and for all

w ∈ L2(T) such that ‖w‖2 6 C
(2)
n λ, the solution to (Qn

λ(y)) is unique, and reads

mλ =
∑N

ν=1(αλ,νδx0,ν+tν + βλ,νδx0,ν+ενhn), where

−hn/2 < tν < hn/2 and ε
def.
= − sign (ρ) .
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Proof of Theorem 4. We proceed as in the proof of Theorem 2 by building a

good candidate for µn0 and using Lemma 2. To comply with the notations of

Lemma 2, let us write
∑N

ν=1 α0,iδx0,ν =
∑Pn−1

k=0 a0,kδkhn , and I(r)
def.
= I(l)

def.
= I

def.
=

{i ∈ J0, Pn − 1K ; a0,i 6= 0}.

For any choice of shift (εi)i∈I ∈ {−1,+1}N , we set J (r) def.
= I(r) ∪

{i+ εi ; i ∈ I and εi = −1} and J (l) def.
= I(l) ∪ {i+ εi ; i ∈ I and εi = +1}. Since

|x0,ν − x0,ν′ | > 2hn for ν ′ 6= ν and n large enough, we have Card J (r) + CardJ (l) =

3 × Card I = 3N . We shall find a choice of ε such that uj > 0 for all j ∈ J (r) \ I, and

vj > 0 for all j ∈ J (l) \ J , where

(

uJ(r)

vJ(l)

)

def.
= −(Â∗

hÂh)
−1

(

1J(r)

1J(l)

)

, Âh
def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)

A
def.
= ΦGn

and B
def.
= Φ′

Gn
.

In this particular case where I(r) = I(l) = I, all j in (J (r) \ I) ∪ (J (l) \ I) may be

uniquely written as j = i+ εi for some i ∈ I, where εi ∈ {−1,+1}. We may swap the

columns of Âh so as to reformulate the condition

(

uJ(r)

vJ(l)

)

= −(Â∗
hÂh)

−1
13N into






ũI
ṽI
t̃I




 = −(Ā∗

hĀh)
−1






1N

1N

1N




 ,

where Āh
def.
=
(

AI +
hn
2
BI diag(ε) AI −

hn
2
BI diag(ε) AI+ε −

hn
2
BI+ε diag(ε)

)

and t̃i >

0 for all i ∈ I. But a Taylor expansion yields

AI+ε −
hn
2
BI+ε diag(ε) = Φx0

︸︷︷︸

=AI

+
hn
2

Φ′
x0 diag(ε)
︸ ︷︷ ︸

=BI diag(ε)

+(hn)
3γ3Φ

(3)
x0 diag(ε) + o(hn

3),

where we defined

γk
def.
=

1

k!
−

1

(k − 1)!× 2
. (96)

Hence, we may apply Lemma 9 to Φx0 , Φ
′
x0 diag(ε) and γ3Φ

(3)
x0 diag(ε) so as to obtain

t̃I = −
1

γ3hn
3 diag(ε)ρ+ o

(
1

hn
3

)

.

Therefore it is sufficient to choose ε = − sign(ρ) to make all the components of t̃I
nonnegative.

With that choice of ε, it remains to prove that

max

[(

(A+ h
2
B)∗

J(r)c

(A− h
2
B)∗

J(l)c

)

Âh

(

uJ(r)

vJ(l)

)]

< 1.
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Let us write q̃n
def.
= Âh

(

uJ(r)

vJ(l)

)

. Since

(

uJ(r)

vJ(l)

)

= −(Â∗
hÂh)

−1
13N , we get q̃n = Â+,∗

h 13N ,

and applying Lemma 9 to Φx0 , Φ
′
x0 diag(ε) and γ3Φ

(3)
x0 diag(ε), we see that q̃n converges

towards qT (using (88)).

By construction of q̃n,

∀j ∈ J (r) \ I, (Φ∗q̃n +
hn
2
(Φ∗q̃n)

′)(jhn) = 1,

and ∀j ∈ J (l) \ I, (Φ∗q̃n −
hn
2
(Φ∗q̃n)

′)(jhn) = 1, (97)

which may be summarized as

∀i ∈ I, (Φ∗q̃n − εi
hn
2
(Φ∗q̃n)

′)((i+ εi)hn) = 1.

Arguing as in the proof of point (iv) in Lemma 3 (replacing “1 = . . .” with

“1 > . . .” and using that µ
(4)
T (x0,ν) > 0), we may prove that for n large enough,

(Φ∗q̃n + εi
hn
2
(Φ∗q̃n)

′)((i− εi)hn) < 1.

Then, by the same argument of compactness and local concavity as in point (ii) of

Lemma 3, we observe that

{

k ∈ J0, Pn − 1K ; (Φ∗q̃n +
hn
2
(Φ∗q̃n)

′)(khn) > 1

}

⊂ J (r),

{

k ∈ J0, Pn − 1K ; (Φ∗q̃n −
hn
2
(Φ∗q̃n)

′)(khn) > 1

}

⊂ J (l),

and those inclusions are in fact equalities. That precisely means that

max

[(

(A+ h
2
B)∗

J(r)c

(A− h
2
B)∗

J(l)c

)

q̃n

]

< 1.

Hence, by Lemma 2, Φ∗q̃n is the minimal norm certificate µn0 and (J (r)hn, J
(l)hn) is

the extended support. This concludes the proof.

5.6. Asymptotics of the constants

Again, we may examine the asymptotic behavior of the constants given in

Corollary 2. Those constants stem from Theorem 3 which is itself a variant of Theorem 1

for the Lasso.

Replacing the constants c1, . . . , c3 of the proof of Theorem 1 with the corresponding
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expressions for the C-BP, and using Lemma 9 we get

c1,n = ||RI(r)∪I(l)Â
+
h || ∼

1

(hn)3

∣
∣
∣

∣
∣
∣

(

(Φ
(3),∗
x0 Π̃Φ

(3)
x0 )

−1Φ
(3),∗
x0 Π̃

0

)
∣
∣
∣

∣
∣
∣
∞,2

(98)

c2,n =
∣
∣
∣

∣
∣
∣

(

ũI
ṽI

)
∣
∣
∣

∣
∣
∣ ∼

1

(hn)3

∣
∣
∣

∣
∣
∣

(

ρ

0

)
∣
∣
∣

∣
∣
∣
∞

(99)

c3,n =
(

||R(J(r)\I(r))∪(J(l)\I(l))Â
+
h ||∞,2

)−1
(

min
i∈I

t̃i

)

∼
mini

∣
∣
∣
1
γ3
ρi

∣
∣
∣

||(Φ(3),∗
x0 Π̃Φ

(3)
x0 )−1Φ

(3),∗
x0 Π̃||∞,2

(100)

where γk is defined in (96). As for c4,n and c5n , like in the case of the Lasso, their

expression lead to a pessimistic bound for the low noise regime, and we are led to make

finer majorizations.

Proposition 16. The constants C
(1)
n , C

(2)
n in Corollary 2 can be chosen as C

(1)
n = O(hn

3)

and C
(2)
n = O(1), and one has

∣
∣
∣

∣
∣
∣

(

αλ
βλ

)

−

(

α0

0

)
∣
∣
∣

∣
∣
∣
∞

= O

(
w

hn
3 ,

λ

hn
3

)

. (101)

Proof. The proof of (101) follows from (98) and (99). Using the reformulation (Q̃λ(y))

of the C-BP as a (positive) Lasso, we have to ensure that (23) holds, or more precisely,

max

[(

(A∗ + hn
2
B∗)(J(r))c

(A∗ − hn
2
B∗)(J(l))c

)
(

y − Aa− Bb
)
]

< λ

where A
def.
= ΦGn

, B
def.
= Φ′

Gn
. Let Âh

def.
=
(

(A+ h
2
B)J(r) (A− h

2
B)J(l)

)

, Π̃ be the

orthogonal projector onto ker Â∗
h = (Im Âh)

⊥, and ω = Φ∗Π̃w. Since

y − Aa− Bb = w − Âh(Â
∗
hÂh)

−1Â∗
hw + λÂh(Â

∗
hÂh)

−1
13N = Π̃w + λÂ+,∗

h 13N ,

we are led to check that

(ω + λµn0)(jhn) +
hn
2
(ω + λµn0)

′(jhn) < λ for all j ∈ (J (r))C , (102)

(ω + λµn0)(jhn)−
hn
2
(ω − λµn0)

′(jhn) < λ for all j ∈ (J (l))C , (103)

where µn0
def.
= Φ∗(Â∗

hÂh)
−1)13N yields the minimal norm certificate

(

(µn0 +
hn
2
µn0)(Gn)

(µn0 −
hn
2
µn0)(Gn)

)

=

(

(A+ h
2
B)∗

(A− h
2
B)∗

)

(Â∗
hÂh)

−1
13N .

Given 0 < r < 1
2
minν 6=ν′ |x0,ν − x0,ν′ |, let N(r)

def.
=
⋃

ν(x0,ν − r, x0,ν + r) be a

neighborhood of the x0,ν ’s. By the Twice Non-Degenerate Source condition, we may

choose r > 0, such that

−k̃1
def.
= sup

t∈N(r)

µ′′
T (t) < 0, and k̃2

def.
= inf

t∈N(r)
µ
(4)
T (t) > 0.
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By compactness, k̃3
def.
= supt∈T\N(r) µT (t) < 1.

Let us recall that µn0 → µT in the sense of the uniform convergence (and similarly

for the derivatives). As a result, for n ∈ N large enough,

sup
t∈N(r)

(µn0)
′′(t) < −

k̃1
2
< 0, inf

t∈N(r)
(µn0)

(4)(t) >
k̃2
2
> 0, sup

t∈T\N(r)

µn0 (t) <
1 + k̃3

2
< 1, (104)

hn
2
||(µn0)

(3)||∞ 6
k̃1
8
, and

hn
2
||(µn0)

′||∞ 6
1− k̃3

6
.

Now, we assume that ||w||2
λ

is small enough, so that

||(Φ(k))∗||∞,2
||w||2
λ

<
k̃1
8
, for k ∈ {2, 3}, ||(Φ(4))∗||∞,2

||w||2
λ

<
k̃2
4
,

and ||(Φ(k))∗||∞,2
||w||2
λ

<
1− k̃3

6
, for k ∈ {0, 1}, (105)

Then, using the fact that and |ω(k)|(t) 6 ||(Φ(k))∗||∞,2||w||2 and hn 6 1, we obtain

sup
t∈T\N(r)

(
ω

λ
+ µn0 +

hn
2

∣
∣
∣(
ω

λ
+ µn0)

′
∣
∣
∣

)

(t) < 1.

Thus it remains to prove that for each ν ∈ {1, . . . , N},
(
ω

λ
+ µn0 +

hn
2
(
ω

λ
+ µn0)

′

)

(t) < 1 for t ∈ (x0,ν − r, x0,ν + r) \ S(r)
n,ν(r), (106)

and

(
ω

λ
+ µn0 −

hn
2
(
ω

λ
+ µn0)

′

)

(t) < 1 for t ∈ (x0,ν − r, x0,ν + r) \ S(l)
n,ν(r). (107)

We only deal with the case S
(r)
n,ν(r) = {x0,ν}, S

(l)
n,ν(r) = {x0,ν , x0,ν + hn}, the symmetric

case being similar. Let f
def.
= 1

λ
ω(· − x0,ν) + µn0(· − x0,ν). By definition of Π̃,

ω(x0,ν) = ω′(x0,ν) = ω(x0,ν + hn)−
hn
2
ω(x0,ν + hn) = 0, so that

f(0) = 1, f ′(0) = 1, and f(hn)−
hn
2
f ′(hn) = 1. (108)

Moreover, from Eq. (104) to (105), and letting k1 =
k̃1
8
, k2 =

k̃2
4
, we deduce that

∀t ∈ (−r, r), f ′′(t) +
h

2
|f (3)(t)| < −k1 < 0, and f (4)(t) > k2 > 0, (109)

so that the strict concavity of f − hn
2
f ′ implies that (f − hn

2
f ′)(t) < 1 for t ∈

(−r,−hn) ∪ (0, r).

It remains to prove that (f + hn
2
f ′)(t) < 1 for t ∈ (−r, r) \ (−hn, 0]. A Taylor

expansion of f and f ′ yields (writing as usual γk =
1
k!
− 1

(k−1)!×2
)

1− (f(h)−
hn
2
f(hn))

︸ ︷︷ ︸

=0

= 1− f(0)−
hn
2
f ′(0)

︸ ︷︷ ︸

=0

−hn
3γ3f

(3)(0)− hn
4γ4f

(4)(0) +R1(hn),

1− (f(−hn) +
hn
2
f ′(−hn)) = 1− f(0) +

hn
2
f ′(0)

︸ ︷︷ ︸

=0

+hn
3γ3f

(3)(0)− hn
4γ4f

(4)(0) +R2(hn).
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Adding both equations we get

1− (f(−hn) +
hn
2
f ′(−hn)) = −2hn

4γ4f
(4)(0) + (R1 +R2)(hn) (110)

> 2(−γ4)k2hn
4 + (R1 +R2)(hn), (111)

where

R1 +R2(h) = hn
5

∫ 1

0

(−f (5)(shn) + f (5)(−shn))

(
(1− s)4

4!
−

(1− s)3

2× 3!

)

ds, (112)

with ||f (5)||∞ 6 ||
1

λ
ω(5)||∞ + ||(µn0 )

(5)||∞ = O(1). (113)

Hence,

1− (f(−hn) +
hn
2
f ′(−hn)) > 2(−γ4)k2

︸ ︷︷ ︸

>0

hn
4 +O(hn

5) > 0. (114)

Moreover,by the strict concavity of f + hn
2
f ′, we also deduce that (f + hn

2
f ′)(t) < 1 for

t ∈ (−r,−hn]∪(0, r), thus we get the local inequalities (106) and (107), hence the global

inequalities (102) and (103).

To conclude, the constants in the condition on ||w||2
λ

are O(1), and gathering the

asympotics for c1,n, c2,n, c3,n we obtain C
(1)
n = O(hn

3), C
(2)
n = O(1).

6. Numerical illustrations

In this section, we illustrate the usefulness of our analysis to gain a precise

understanding of the recovery performance of ℓ1-type methods (Lasso and C-BP) for

both deconvolution and compressed sensing problems. The code to reproduce these

numerical experiments is available online‡.

6.1. Convergence of pre-certificates

In this section and in Section 6.2, we consider the deconvolution problems in the

case where ϕ is an ideal filter, i.e. whose Fourier coefficients

∀ k ∈ Z, ϕ̂(k)
def.
=

∫

T

ϕ(t)e−2iπktdt

satisfy ϕ̂(k) = 1 if k ∈ {−fc, . . . , fc} and ϕ̂(k) = 0 otherwise. This allows us to

implement exactly the Φ operator appearing in the Lasso and C-BP problem since

Im(Φ) is a finite dimensional space of dimension Q = 2fc + 1, i.e. it can be represented

using a matrix of size (Q,P ) when evaluated on a grid of P points. In Figures 1 and 2

we used fc = 10.

‡ https://github.com/gpeyre/2015-IP-lasso-cbp/
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1 1

1 1

1 1

N = 2 N = 3

Figure 1: Display of η∞V (red) and µT (blue) pre-certificate for different input positive

measures m0 (showed as black dots to symbolize the position of the Diracs).

Figure 1 illustrates for the case of two (N = 2) and three (N = 3) spikes

the behavior of the vanishing pre-certificate η∞V (see Definition 3) useful to analyze

Lasso/BLasso problems and of the pre-certificate µT (see Definition 7) useful to

analyze C-BP problems.

We first notice that for all the (positive) input measures (i.e. whatever the

spacing between the Diracs), η∞V is always a non-degenerate certificate (in the sense

of Proposition 3), meaning that one actually has η∞V = η∞0 (where the minimal norm

certificate η∞0 is defined in (37)). This empirical finding is the subject of another

recent work on the asymptotic of sparse recovery of positive measures when the spacing

between the Diracs tends to zero [16]. Since η∞0 is non-degenerate, one can thus apply

Theorem 2 to analyze the extended support of the Lasso (see below Section 6.2 for a

numerical illustration).

For the C-BP problem, the situation is however more contrasted. We observe

that when the Dirac masses are separated enough (first row) then the pre-certificate

µT is a valid certificate, meaning the the Twice Non-Degenerate Source Condition (see

Definition 8) holds. This means that Theorem 4 can be applied to analyze the extended

support of C-BP (see Section 6.2 below for a numerical illustration). But when the

Dirac masses are too close (second and third rows), one has ||µT ||∞ > 1, so that one

cannot ensure the support stability of the C-BP solution with our result.

6.2. Extended support for deconvolution

We still consider the case of an ideal low pass filter. Figure 2 displays the evolution,

as a function of λ (in abscissa) of the solutions aλ of (Pn
λ (y)) and of (aλ, bλ) of (Qn

λ(y)).

We consider here the case of an input measure with two nearby Diracs (displayed as
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red/blue dots in the upper-left part of the Figure) and when there is no noise, i.e. w = 0.

Each 1-D curve (either plain or dashed) represents the evolution of a single coefficient,

e.g. (aλ)i, for some index i (only non-zero coefficients are displayed).

1

0 10
0

0.5

1

Pre-certificates ηV and µT Lasso, aλ

0 10
0

0.5

1

0 10

-0.5

0

0.5

C-BP, aλ C-BP, 2bλ
haλ

0
0

0.5

1

0

-0.5

0

0.5

C-BP, aλ (zoom) C-BP, 2bλ
haλ

(zoom)

Figure 2: Display of the evolution as a function of λ of the solutions of the Lasso

and C-BP problems. Note that dashed curved have been (artificially) slightly shifted to

avoid that they overlap with the plain curve.

The solutions path λ 7→ aλ (for Lasso) and λ 7→ (aλ, bλ) (for C-BP) are continuous

and piecewise affine, which is to be expected since the regularizations (ℓ1 and ℓ1 under

conic constraints) are polyhedral. The upper-left plot in the figure displays the pre-

certificate η∞V (in magenta, see Definition 3) and µT (in green, see Definition 7).

This shows graphically that these two precertificates are non-degenerate (according to

Definitions 2 and 8) so that the results of Theorems 2 and 4 hold, hence precisely

describing the evolution of the solution on the extended support when λ is small. On

these graphs, this corresponds to the first segment of the corresponding piecewise affine

paths.

The behavior for BP agrees with our analysis. As predicted by Theorem 2, there

exists a range of values 0 < λ < λ0 on which the solution is exactly supported on the

extended support J , which is composed of four spikes (the plain curve corresponds to the

support I and the dashed curve corresponds to J\I). Also, as predicted by Proposition 7

in the case w = 0, we verify that λ0 = O(hn) and that the Lipschitz constant of λ 7→ aλ
is of order O(1/hn).
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In sharp contrast, the behavior for C-BP is less regular, since the range 0 < λ < λ0
on which the solution is supported on the extended support is shorter, as it can be clearly

seen on the zoom for very small values of λ. This is in agreement with Proposition 16

which shows that λ0 is of the order of O(hn
3) and that the Lipschitz constant of

λ 7→ (aλ, bλ) is of order O(1/hn
3). On this range of small λ, as predicted by Theorem 4,

the support of the solutions (which correspond to the extended support J described

in Theorem 4) is composed of one pair of neighboring spikes for each original spike.

For indices on the support i ∈ I, one has |(bλ)i|/(aλ)i < h/2 (the constraint is non-

saturating, and the spike moves “freely” inside (ih− h
2
, ih+ h

2
)) while for indices on the

extended part i ∈ J\I, one has |(bλ)i|/(aλ)i = h/2 (the constraint is saturating, the

spikes are fixed at half-grid points). Another part of the path is interesting, for λ not so

small (say λ > λ1), which is in fact the prominent regime in the non-zoomed figure. For

this range of λ, there is still a pair of spikes for each original spike, but this time both

spikes saturate, on same side. This observation should be related to Proposition 13 and

Remark 10 which predict that, in the case where µ∞
λ

(3)(xλ,ν) 6= 0, the C-BP yields either

one spike or a pair of spikes with the same shift (the latter case is in fact overwhelming).

6.3. Extended support for compressed sensing

To show the usefulness of our “abstract” support analysis of the Lasso problem

(Section 4), we illustrate its use to analyze the performance of ℓ1 recovery in a

compressed sensing setup. Compressed sensing corresponds to the recovery of a high

dimensional (but hopefully sparse) vector a0 ∈ RP from low resolution, possibly noisy,

randomized observations y = Ba0 + w ∈ RQ, see for instance [8] for an overview of the

literature on this topic. For simplicity, we assume that there is no noise (w = 0) and

we consider here the case where B ∈ RQ×P is a realization from the Gaussian matrix

ensemble, where the entries are independent and uniformly distributed according to a

Gaussian N (0, 1) distribution. This setting is particularly well documented, and it has

been shown, assuming that a0 is s-sparse (meaning that | supp(a0)| = s), that there are

roughly three regimes:

If s < s0
def.
= Q

2 log(P )
, then a0 is with “high probability” the unique solution of (P0(y0))

(it is identifiable), and the support is stable to small noise, because ηF (as defined

in (27)) is a valid certificate, ||ηF ||∞ 6 1. This is shown for instance in [36, 20].

If s < s1
def.
= Q

2 log(P/Q)
, then a0 is with “high probability” the unique solution

of (P0(y0)), but the support is not stable, meaning that ηF is not a valid certificate.

This phenomena is precisely analyzed in [11, 1] using tools from random matrix theory

and so-called Gaussian width computations.

If s > s1, then a0 with “high probability” is not the solution of (P0(y0)).

We do not want to give details here on the precise meaning of with “high probability”,

but this can be precisely quantified in term of probability of success (with respect to

the random draw of B) and one can show that a phase transition occurs, meaning that

for large (P,Q) the transition between these regimes is sharp.
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While the regime s < s0 is easy to understand, a precise analysis of the intermediate

regime s0 < s < s1 in term of support stability is still lacking. Figure 3 shows how

Theorem 1 allows us to compute numerically the size of the recovered support, hence

providing a quantification of the degree of “instability” of the support when a small noise

w contaminates the observations. The simulation is done with (P,Q) = (400, 100).

The left cuve shows, as a function of s (in abscissa), the probability (with respect

to a random draw of Φ and a0 a s-sparse vector) of the event that a0 is identifiable

(plain curve) and of the event that ηF is a valid certificate (dashed curve). This clearly

highlights the phase transition phenomena between the three different regimes, and one

roughly gets that s0 ≈ 6 and s1 ≈ 20, which is consistent with the theoretical asymptotic

bounds found in the literature.

The right part of the figure, shows, for three different sparsity levels s ∈ {14, 16, 18},

the histogram of the repartition of |J | where J is the extended support, as defined in

Theorem 1. According to Theorem 1, this histogram thus shows the repartition of

the sizes of the supports of the solutions to (Pλ(y)) when the noise w contaminating

the observations y = Ba0 + w is small and λ is chosen in accordance to the noise

level. As one could expect, this histogram is more and more concentrated around the

minimum possible value s (since we are in the regime s < s1 so that the support I of

size s is included in the extended support J) as s approaches s0 (for smaller values,

the histogram being only concentrated at s since J = I and the support is stable).

Analyzing theoretically this numerical observation is an interesting avenue for future

work that would help to better understand the performance of compressed sensing.

Conclusion

In this work, we have provided a precise analysis of the properties of the solution

path of ℓ1-type variational problems in the low-noise regime. This includes in particular

the Lasso and the C-BP problems. A particular attention has been paid to the support

set of this path, which in general cannot be expected to match the one of the sought

after solution. Two striking examples support the relevance of this approach. For

the deconvolution problem, we showed theoretically that in general this support is not

stable, and we were able to derive in closed form the solution of the “extended support”

that is twice larger, but is stable. In the compressed sensing scenario (i.e. when the

operator of the inverse problem is random), we showed numerically how to leverage our

theoretical findings and analyze the growth of the extended support size as the number of

measurements diminishes. This analysis opens the doors for many new developments to

better understand this extended support, both for deterministic operators (e.g. Radon

transform in medical imaging) and random ones.
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Figure 3: Left: probability as a function of s of the event that a0 is identifiable (plain

curve) and of the even that its support is stable (dashed curve). Right: for several value

of s, display of histogram of repartition of the sizes |J | of the extended support J .
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Appendix A. Useful properties of the integral transform

Lemma 6. Let K ∈ N∗ and assume that ϕ ∈ CK(T × T). Then for all p ∈ L2(T),

Φ∗p ∈ CK(T) and for all k ∈ {0, 1 . . .K}

∀y ∈ T, (Φ∗p)(k)(y) =

∫

T

(∂2)
kϕ(x, y)p(x)dx. (A.1)

Moreover, the adjoint operator

Φ(k),∗ :
L2(T) −→ C(T)

p 7−→
∫

T
(∂2)

kϕ(x, y)p(x)dx
, (A.2)

is compact for all k ∈ {0, 1, . . .K}.

Proof. The first part of the lemma is a standard application of the Lebesgue dominated

convergence theorem.
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As for the second part, it is a consequence of the Ascoli-Arzela theorem. Indeed,

let BL2(0, 1) = {p ∈ L2(T); ‖p‖2 6 1}, and F = {Φ∗p; p ∈ BL2(0, 1)}. Then F ⊂ C(T)

is bounded since

|Φ(k),∗p(x)| 6

√
∫

T

((∂2)kϕ(x, y))
2 dx

√
∫

T

(p(x))2dx 6
√

‖(∂2)kϕ‖∞

Moreover, it is equicontinuous since

|Φ(k),∗p(x)− Φ(k),∗p(x′)| =

∣
∣
∣
∣

∫

T

((∂2)
kϕ(x, y)− (∂2)

kϕ(x′, y))p(x)

∣
∣
∣
∣

(A.3)

6

√

ω(∂2)kϕ(|x− x′|, 0), (A.4)

where ω(∂2)kϕ is the modulus of continuity of (∂2)
kϕ. Thus Ascoli-Arzela’s theorem

ensures that Φ(k),∗BL2(0, 1) is relatively compact, hence the result.

An interesting consequence of the above lemma is the following. Given any bounded

sequence {pn}n∈N in L2(T), we may extract a subsequence {pn′}n′∈N which converges

weakly towards some p̃ ∈ L2(T). Then, the (sub)sequence Φ∗pn′ converges towards Φ∗p̃

for the (strong) uniform topology, and its derivatives Φ(k),∗pn′ also converge towards

Φ(k),∗p̃ for that topology.

Appendix B. Asymptotic expansion of the inverse of a Gram matrix

In this Appendix, we gather some useful lemmas on the asymptotic behavior of

inverse Gram matrices.

Lemma 7. Let A : RN → L2(T), B : RN → RN be linear operators such that A has full

rank and B is invertible. Then (AB)+ = B−1A+.

Proof. It is sufficient to write

((AB)∗(AB))−1 (AB)∗) = B−1(A∗A)−1B−1,∗B∗A∗ = B−1A+.

Lemma 8. Let A,B,Bh : R
N → L2(T) be linear operators such that Bh = B+O(h) for

h > 0, and that
(

A B
)

has full rank. Let Π be the orthogonal projector onto (ImA)⊥,

and let

Gh
def.
=

(

A∗

A∗ + hB∗
h

)
(

A A + hBh

)
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and s ∈ RN . Then for h > 0 small enough, Gh and B∗ΠB are invertible, and

G−1
h

(

s

s

)

=
1

h

(

(B∗ΠB)−1B∗A+,∗s

−(B∗ΠB)−1B∗A+,∗s

)

+O(1), (B.1)

(

A A + hBh

)+

=
1

h

(

(B∗ΠB)−1B∗Π

−(B∗ΠB)−1B∗Π

)

+O(1), (B.2)

but
(

A A+ hBh

)+,∗
(

s

s

)

= A+,∗s−ΠB(B∗ΠB)−1B∗A+,∗s+O(h). (B.3)

Proof. Observe that
(

A A+ hBh

)

=
(

A Bh

)
(

IN IN
0 hIN

)

so that

Gh =

(

IN 0

IN hIN

)(

A∗A A∗Bh

B∗
hA B∗

hBh

)(

IN IN
0 hIN

)

.

Since
(

A B
)

has full rank, the middle matrix is invertible for h small enough, and

G−1
h =

(

IN − 1
h
IN

0 1
h
IN

)(

A∗A A∗Bh

B∗
hA B∗

hBh

)−1(

IN 0

− 1
h
IN

1
h
IN

)

.

Writing

(

a b

c d

)

def.
=

(

A∗A A∗Bh

B∗
hA B∗

hBh

)

, the block inversion formula yields

(

a b

c d

)−1

=

(

a−1 + a−1bS−1ca−1 −a−1bS−1

−S−1ca−1 S−1

)

,

where S
def.
= d− ca−1b = B∗

hBh − B∗
hA(A

∗A)−1A∗Bh = B∗
hΠBh

is indeed invertible for small h since
(

A B
)

has full rank. Moreover, a−1bS−1 =

A+Bh(B
∗
hΠBh)

−1, and S−1ca−1 = (B∗
hΠBh)

−1B∗
hA

+,∗.

Now, we evaluate G−1
h

(

s

s

)

=

(

IN − 1
h
IN

0 1
h
IN

)(

a−1s+ a−1bS−1ca−1s

−S−1ca−1s

)

. We obtain

G−1
h

(

s

s

)

=
1

h

(

S−1ca−1s

−S−1ca−1s

)

+O(1) =
1

h

(

(B∗ΠB)−1B∗A+,∗s

−(B∗ΠB)−1B∗A+,∗s

)

+O(1).

Eventually, by Lemma 7,
(

A A+ hBh

)+

=

(

IN − 1
h
IN

0 1
h
IN

)(

A∗A A∗Bh

B∗
hA B∗

hBh

)−1(

A∗

B∗
h

)

.

We obtain

(

A A+ hBh

)+

=

(

IN − 1
h
IN

0 1
h
IN

)(

A+ − A+Bh(B
∗
hΠBh)

−1B∗
hΠ

−(B∗
hΠBh)

−1B∗
hΠ

)
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and we deduce

(

A A+ hBh

)+

=
1

h

(

(B∗ΠB)−1B∗Π

−(B∗ΠB)−1B∗Π

)

+O(1),

and
(

A A+ hBh

)+,∗
(

s

s

)

=
(

A+,∗ −ΠBh(BhΠBh)
−1B∗

hA
+,∗ ΠBh(B

∗
hΠBh)

−1
)

(

IN 0

− 1
h
IN

1
h
IN

)(

s

s

)

= A+,∗s− ΠB(B∗ΠB)−1B∗A+,∗s+O(h).

Lemma 9. Let A,B,C, Ch : R
N → L2(T) be linear operators such that Ch = C + o(1)

for h > 0, and that
(

A B C
)

has full rank. Let Π̃ be the orthogonal projector onto

(Im
(

A B
)

)⊥, and let

Gh
def.
=






(A+ h
2
B)∗

(A− h
2
B)∗

(A+ h
2
B + h3Ch)

∗






(

A+ h
2
B A− h

2
B A + h

2
B + h3Ch

)

.

Then for h > 0 small enough, Gh and C∗Π̃C are invertible, and

G−1
h






1N

1N

1N




 = −

1

h3






−IN
0

IN




 (C∗Π̃C)−1C∗

(

A B
)+,∗

(

1N

0

)

+ o

(
1

h3

)

(

A+ h
2
B A− h

2
B A + h

2
B + h3Ch

)+

=
1

h3






−(C∗Π̃C)−1C∗Π̃

0

(C∗Π̃C)−1C∗Π̃




 + o

(
1

h3

)

,

but





A∗ + h
2
B∗

A∗ − h
2
B∗

A∗ + h
2
B∗ + h3C∗

h






+




1N

1N

1N




 =

(

A∗

B∗

)+(

1N

0

)

− Π̃C(C∗Π̃C)−1C∗

(

A∗

B∗

)+(

1N

0

)

+o(1).

Proof. Observe that

(

A+ h
2
B A− h

2
B A+ h

2
B + h3Ch

)

=
(

A B Ch

)

diag

(

1,
h

2
, h3
)






IN IN IN
IN −IN IN
0 0 IN





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As a result, for h > 0 small enough Gh is invertible and

G−1
h =






1
2
IN

1
2
IN −IN

1
2
IN −1

2
IN 0

0 0 IN




diag

(

1,
2

h
,
1

h3

)






A∗A A∗B A∗Ch
B∗A B∗B B∗Ch
C∗
hA C∗

hB C∗
hCh






−1

× diag

(

1,
2

h
,
1

h3

)






1
2
IN

1
2
IN 0

1
2
IN −1

2
IN 0

−IN 0 IN






the middle matrix being invertible from the full rank assumption on
(

A B C
)

.

Moreover, writing Γ̃
def.
=
(

A B
)

and

(

a b

c d

)

def.
=

(

Γ̃∗Γ̃ Γ̃∗Ch
C∗
hΓ̃ C∗

hCh

)

, we obtain






A∗A A∗B A∗Ch
B∗A B∗B B∗Ch
C∗
hA C∗

hB C∗
hCh






−1

=

(

u −a−1bS−1

−S−1ca−1 S−1

)

where u
def.
= a−1 + a−1bS−1ca−1, S

def.
= d − ca−1b = C∗

hΠ̃Ch, a−1bS−1 =

(Γ̃∗Γ̃)−1Γ̃∗Ch(C
∗
hΠ̃Ch)

−1, S−1ca−1 = (C∗
hΠ̃Ch)

−1C∗
hΓ̃(Γ̃

∗Γ̃)−1, and Π̃ is the orthogonal

projector onto (Im Γ̃)⊥. Thus

G−1
h






1N

1N

1N




 =






1
2
IN

1
2
IN −IN

1
2
IN −1

2
IN 0

0 0 IN




 diag

(

1,
2

h
,
1

h3

)(

u −a−1bS−1

−S−1ca−1 S−1

)





1N

0

0






=
1

h3






0 0 −IN
0 0 0

0 0 IN














u

(

1N

0

)

−S−1ca−1

(

1N

0

)









+ o

(
1

h3

)

= −
1

h3






−IN
0

IN




 (C∗Π̃C)−1C∗Γ̃+,∗

(

1N

0

)

+ o

(
1

h3

)

.
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Eventually, one has

(

A + h
2
B A− h

2
B A+ h

2
B + h3Ch

)+

=






1
2
IN

1
2
IN −IN

1
2
IN −1

2
IN 0

0 0 IN




 diag(1,

2

h
,
1

h3
)
(

Γ̃ Ch

)+

=
1

h3






0 0 −IN
0 0 0

0 0 IN






(

u −a−1bS−1

−S−1ca−1 S−1

)
(

Γ̃∗ C∗
h

)

+ o

(
1

h3

)

=
1

h3






−(C∗Π̃C)−1C∗Π̃

0

(C∗Π̃C)−1C∗Π̃




+ o

(
1

h3

)

,

and

(

A + h
2
B A− h

2
B A+ h

2
B + h3Ch

)+,∗






1N

1N

1N






=

(

Γ̃∗

C∗
h

)+

diag(1,
2

h
,
1

h3
)






1
2
IN

1
2
IN 0

1
2
IN −1

2
IN −IN

0 0 IN











1N

1N

1N






=
[

Γ̃+,∗ − Π̃Ch(C
∗
hΠ̃Ch)

−1C∗
hΓ̃

+,∗
]
(

1N

0

)

= Γ̃+,∗

(

1N

0

)

− Π̃C(C∗Π̃C)−1C∗Γ̃+,∗

(

1N

0

)

+ o(1)
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[21] V. Duval and G. Peyré. “Exact Support Recovery for Sparse Spikes

Deconvolution”. In: to appear in Foundation of Computational Mathematics

(2015).



REFERENCES 56

[22] C. Ekanadham, D. Tranchina, and E.P. Simoncelli. “A unified framework and

method for automatic neural spike identification”. In: Journal of Neuroscience

Methods 222 (2014), pp. 47–55.

[23] C. Ekanadham, D. Tranchina, and E.P. Simoncelli. “Recovery of Sparse

Translation-Invariant Signals With Continuous Basis Pursuit”. In: Signal

Processing, IEEE Transactions on 59.10 (2011), pp. 4735–4744.

[24] C. Fernandez-Granda. “Support detection in super-resolution”. In: Proc.

Proceedings of the 10th International Conference on Sampling Theory and

Applications (2013), pp. 145–148.

[25] A. Florescu et al. A Constrained Optimization Approach For Complex Sparse

Perturbed Models. Tech. rep. Preprint hal-00783298, 2013.

[26] J.J. Fuchs. “On sparse representations in arbitrary redundant bases”. In: IEEE

Transactions on Information Theory 50.6 (2004), pp. 1341–1344.

[27] M. Grasmair, O. Scherzer, and M. Haltmeier. “Necessary and sufficient conditions

for linear convergence of ℓ1-regularization”. In: Communications on Pure and

Applied Mathematics 64.2 (2011), pp. 161–182.

[28] J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. “Two-dimensional

superresolution radar imaging using the MUSIC algorithm”. In: IEEE

Transactions on Antennas and Propagation 42 (Oct. 1994), pp. 1386–1391.

[29] R. T. Rockafellar, R. J-B. Wets, and M. Wets. Variational analysis. Grundlehren

der mathematischen Wissenschaften. Berlin, Heidelberg, New York: Springer,

1998.

[30] G. Still. “Discretization in semi-infinite programming: the rate of convergence”.

In: Mathematical Programming 91.1 (2001), pp. 53–69.

[31] G. Tang, B. Narayan Bhaskar, and B. Recht. “Near Minimax Line Spectral

Estimation”. In: CoRR abs/1303.4348 (2013).

[32] G. Tang, B. Narayan Bhaskar, and B. Recht. “Sparse recovery over continuous

dictionaries-just discretize”. In: Proc. ACSSC. IEEE, 2013, pp. 1043–1047.

[33] R. Tibshirani. “Regression shrinkage and selection via the Lasso”. In: Journal of

the Royal Statistical Society. Series B. Methodological 58.1 (1996), pp. 267–288.
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