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Abstract. This article analyzes the recovery performance of two popular finite
dimensional approximations of the sparse spikes deconvolution problem over Radon
measures. We examine in a unified framework both the ¢! regularization (often
referred to as LASSO or Basis-Pursuit) and the Continuous Basis-Pursuit (C-BP)
methods. The LASSO is the de-facto standard for the sparse regularization of inverse
problems in imaging. It performs a nearest neighbor interpolation of the spikes
locations on the sampling grid. The C-BP method, introduced by Ekanadham,
Tranchina and Simoncelli, uses a linear interpolation of the locations to perform a
better approximation of the infinite-dimensional optimization problem, for positive
measures. We show that, in the small noise regime, both methods estimate twice the
number of spikes as the number of original spikes. Indeed, we show that they both
detect two neighboring spikes around the locations of an original spikes. These results
for deconvolution problems are based on an abstract analysis of the so-called extended
support of the solutions of ¢!-type problems (including as special cases the LASSO
and C-BP for deconvolution), which are of an independent interest. They precisely
characterize the support of the solutions when the noise is small and the regularization
parameter is selected accordingly. We illustrate these findings to analyze for the
first time the support instability of compressed sensing recovery when the number
of measurements is below the critical limit (well documented in the literature) where
the support is provably stable.

1. Introduction

We consider the problem of estimating an unknown Radon measure mg € M(T)

from low-resolution noisy observations

y = ®(my) +w € L*(T)

where w € L*(T) is some measurement noise, and ® : M(T) — L*(T) is an integral

transform with smooth kernel ¢ € C?*(T x T), i.e.

VeeT, (dm)z)= / o(z,y)dm(y).
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A typical example of such an operation is the convolution, where ¢(x,y) = ¢(xz —y) for
some smooth function ¢ defined on the torus T = R/Z (i.e. an interval with periodic
boundary conditions). We focus our attention here for simplicity on the compact 1-D
domain T, but the algorithms considered (LASsO and C-BP) as well as our theoretical
analysis can be extended to higher dimensional settings (see Section 1.4).

1.1. Sparse Regularization

The problem of inverting (1) is severely ill-posed. A particular example is when
® is a low pass filter, which is a typical setting for many problems in imaging. In
several applications, it makes sense to impose some sparsity assumption on the data to
recover. This idea has been introduced first in the geoseismic literature, to model
the layered structure of the underground using sparse sums of Dirac masses [13].
Sparse regularization has later been studied by David Donoho and co-workers, see for
instance [17].

In order to recover sparse measures (i.e. sums of Diracs), it makes sense to consider
the following regularization

min_ 5y = @(m)|? + Xm(T) 3)

where |m|(T) is the total variation of the measure m, defined as

(1) % sup { [ wioam(a) € O, ol < 1 (1)

This formulation of the recovery of sparse Radon measures has recently received lots of
attention in the literature, see for instance the works of [6, 15, 10].

1.2. LASSO

The optimization problem (3) is convex but infinite dimensional, and while there
exists solvers when ® is measuring a finite number of Fourier frequency (see [10]),
they do not scale well with the number of frequencies. Furthermore, the case of an
arbitrary linear operator ® is still difficult to handle, see [6] for an iterative scheme.
The vast majority of practitioners thus approximate (3) by a finite dimensional problem
computed over a finite grid G S {z;; 1 €]0, P—1]} C T, by restricting their attention
to measures of the form

P-1
Mag =Y aid., € M(T)
=0
For such a discrete measure, one has |m|(T) = Zlgl "la;| = |a]i, which can be
interpreted as the fact that | - [(T) is the natural extension of the ¢! norm from

finite dimensional vectors to the infinite dimensional space of measures. Inserting this
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parametrization in (3) leads to the celebrated Basis-Pursuit problem [12], which is also
known as the LASSO method in statistics [33],

1 2
min Sy — @gaf” + Alal, (5)

where in the following we make use of the notations

Pga = B(mgg) Z a;o(+, zi), (6)

Db = D (myg) Zb@ggo %), (7)

and Oy is the derivative with respect to the second variable. One can understand (5)
as performing a nearest neighbor interpolation of the Dirac’s locations.

This approximation is however quite crude, and we recently showed in [21] that it
leads to imperfect estimation of both the number of spikes and their locations. Indeed,
this problem typically recovers up to twice as many spikes as the input measures, because
spikes of mg gets duplicated as the two nearest neighbors on the grid G.

Note that while we focus in this paper on convex recovery method, and in particular
(l-type regularization, there is a vast literature on the subject, which makes use of
alternative algorithms, see for instance [28, 5] and the references therein.

1.3. Continuous Basis-Pursuit (C-BP)

To obtain a better approximation of the infinite dimensional problem, [23] proposes
to perform a first order approximation of the kernel. This method assumes that the
unknown measure is positive. To ease the exposition, we consider a uniform grid
G = {i/P;ie[0, P—1]} of P points, so that the grid size is h = 1/P. The C-
BP method of [23] solves

dga — PGb|* + A bject to |b
ey RPQMy ga — P> + Al subject to |b] <

(8)

l\3|D‘

where the inequality should be understood component-wise. Note also that the obtained
a is always nonnegative, hence the C-BP method is tailored for the recovery of positive
measures. This is a convex optimization problem, which can be solved using traditional
conic optimization methods. As detailed in Section 4.2, this problem can also be re-cast
as a LASSO in dimension 2P with positivity constraints (see Section 4.2). Hence it can
be solved using a large variety of first order proximal method, the most simple one being
the Forward-Backward, see [3] and the references therein.

If (a*,0*) are solutions of (8), one recovers an output discrete measure defined by

o b;
m* = Z a0y where a7} = jh+ L, 9)

ar#0 ¢
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where we set Z—Z = 0 whenever a} = 0. The rationale behind (8) is to perform a first order

Taylor approximation of the operator ®, where the variable 7; = b;/a; € [—h/2,h/2]
encodes the horizontal shift of the Dirac location with respect to the grid sample ih.
The landmark idea introduced in [23] is that, while the optimization is non-convex with
respect to the pair (a,7), it is convex with respect to the pair (a,b).

1.4. Eaxtensions

While we restrict here the exposition to 1-D problems, the C-BP formulation (8)
can be extended to cope with measures in arbitrary dimension d > 1, i.e. to consider
mg € M(T?). This requires to define at each sampling grid point indexed by i a vector
by = (bix)i_; € R together with the constraint |b;ec < £ a;, and also to use a matrix
®; defined as

d
Opb =D Y bikOrep(-, i) € LA(TY)
1€G k=1
where 9% denote the differential operator with respect to the £*® direction in R¢. Our
analysis carries over to this setting without major difficulties.

The paper [23] also proposes other interpolation schemes than a first order Taylor
expansion at the grid points. In particular, they develop a “polar” interpolation which
makes use of two adjacent grid points. This method seems to outperform the linear
interpolation in practice, and has been employed to perform spikes sorting in neuronal
recordings [22].

Extending the results we propose in the present paper to these higher dimensional
settings and alternative interpolation schemes is an interesting avenue for future work.

Let us also mention that an important problem is to extend the C-BP method (9) to
measures with arbitrary signs and that can even be complex-valued. Unfortunately, the
corresponding constraint |b| < |a| is then non-convex, which makes the mathematical
analysis apparently much more involved. A non-convex and non-smooth optimization
solver is proposed for this problem in [25], and shows promising practical performance
for spectrum estimation.

1.5. Previous Works

Most of the early work to assess the performance of convex sparse regularization has
focussed its attention on the finite dimensional case, thus considering only the LLASSO
problem (5). While the literature on this subject is enormous, only very few works
actually deal with deterministic and highly correlated linear operators such as low-pass
convolution kernels. The initial works of Donoho [17] study the Lipschitz behavior of
the inverse map y — a*, where a* is a solution of (5), as a function of the bandwidth
of the bandpass filter. The first work to address the question of spikes identification
(i.e. recovery of the exact location of the spikes over a discrete grid) is [19]. This work
uses the analysis of ¢! regularization introduced by Fuchs in [26]. This type of analysis
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ensures that the support of the input measure is stable under small noise perturbation of
the measurements. Our finding is that this is however never the case (support is always
unstable) when the grid is thin enough, and we thus introduce the notion of “extended
support”, which is in some sense the smallest extension of the support which is stable.
The idea of extending the support to study the recovery performance of /! methods can
be found in the work of Dossal [18] who focusses on noiseless recovery and stability in
term of 2 error.

Recently, a few works have studied the theoretical properties of the recovery over
measures (3). Candes and Fernandez-Granda show in [10] that this convex program
does recover exactly the initial sparse measure when w = 0 and A — 0, if the spikes are
well-separated. The robustness to noisy measurements is analyzed by the same authors
in [9] using an Hilbertian norm, and in [24, 2] in terms of spikes localization. The
work of [31] analyzes the reconstruction error. Lastly, [21] provides a condition ensuring
that (3) recovers the same number of spikes as the input measure and that the error in
terms of spikes localization and elevation has the same order as the noise level.

Very few works have tried to bridge the gap between these grid-free methods over
the space of measures, and finite dimensional discrete approximations that are used
by practitioners. The convergence (in the sense of measures) of the solutions of the
discrete problem toward to ones of the grid-free problem is shown in [32], where a speed
of convergence is shown using tools from semi-infinite programming [30]. The same
authors show in [4] that the discretized problem achieves a similar prediction L? error
as the grid-free method. In [21], we have shown that solutions of the discrete LASSO
problem estimate in general as much as twice the number of spikes as the input measure.
We detail in the following section how the present work gives a much more precise and
general analysis of this phenomenon.

1.6. Contributions

Our first contribution is an improvement over the known analysis of the LASSO in an
abstract setting (that is (5) when ®g is replaced with any linear operator R — L%(R)).
Whereas Fuchs’ result [26] characterizes the support recovery of the LASSO at low noise,
our previous work [21] has pointed out that when Fuchs’criterion is not satisfied, the
nonzero components of the solutions of the Basis-Pursuit at low noise are contained in
the extended support, that is the saturation set of some minimal norm dual certificate.
In this work, we provide a characterization of this minimal norm certificate, and we give
a sufficient condition which holds generically and which ensures that all the components
of the extended support are actually nonzero (with a prediction on the signs). Our main
result in this direction is Theorem 1.

Our second contribution applies this result to Problem (5) on thin grids. After
recalling the convergence properties of Problem (5) towards (3), we show that under
some assumption, if the input measure mg = Mmyg 2, = Eivzl 0,04, has support on
the grid (i.e. xo, € G for all v), the model at low noise actually reconstructs pairs of



Sparse Spikes Deconvolution on Thin Grids 6

Dirac masses, i.e. solutions of the form

N
my = Z (Oé)\,zx(smo,u + /BA,V(sZ'O,U‘i’Euh) ) where SRS {_17 +1}’ <10)

v=1

and  sign(ay,) = sign(By,) = sign(ap, ). (11)

The precise statement of this result can be found in Theorem 2. Compared to [21]
where it is predicted that spikes could appear at most in pairs, this result states that
all the pairs do appear, and it provides a closed-form expression for the shift . That
closed-form expression does not vary as the grid is refined, so that the side on which
each neighboring spike appears is in fact intrinsic to the measure, we call it the natural
shift. Moreover, we characterize the low noise regime as % = O0(1) and A = O(h).

Then, we turn to the Continuous Basis-Pursuit (8). We first study this problem
in an abstract setting, where it is reformulated as a LASSO with positivity constraints.
We derive similar noise robustness properties as for the LASSO, and we characterize the
extended support, see Theorem 3. Working on a thin grid, we show the I'-convergence
of Problem (8) towards the Beurling LLASSO (3) with positivity constraints and we give
a fine analysis of the support of the solutions as the grid stepsize tends to zero. We
also study the low noise behavior when the measure has support on the grid: under a
suitable assumption, the recovered spikes appear again in pairs,

N
mx = ; (@rw0s0,,+t, + BrwOsg,+e,n/2)  Where { ?hi2{<1t;+<1}iz,/2,

see Theorem 4. A closed form expression for € is given, which depends on some
corresponding natural shift intrinsic to the measure (which differs from the one of the
L.AssO). The corresponding low noise regime is characterized by % = O(1) and
A= O(h?).

It is important to realize that, in this setting of convolution on thin grids, our
contributions give important information about the structure of the recovered spikes
when the noise w is small. This is especially important since, on contrary to common
belief, the spikes locations for LASSO and C-BP are not stable: even for an arbitrary
small noise w, neither methods retrieve the correct input spikes locations.

Eventually, we illustrate in Section 6 these theoretical results with numerical
experiments. We first display the evolution of the solution path A +— a) (a solution
of (5)) and A — (ay,by) (a solution of (8)). These paths are piecewise-affine, and
our contributions (Theorems 2 and 4) precisely characterize the first affine segment of
these paths, which perfectly matches the numerical observations. We then illustrate our
abstract analysis of the LASSO problem (5) (as provided by Theorem 1) to characterize
numerically the behavior of the LASSO for compressed sensing (CS) recovery (i.e. when
one replaces the filtering ®g appearing in (5) with a random matrix). The literature
on CS only describes the regime where enough measurements are available so that the
support is stable, or does not study support stability but rather ¢? stability. Theorem 1
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allows us to characterize numerically how much the support becomes unstable (in
the sense that the extended support’s size increases) as the number of measurements
decreases (or equivalently the sparsity increases).

1.7. Notations and preliminaries

The set of Radon measures (resp. positive Radon measures) is denoted by M(T)
(resp. M™T(T)). Endowed with the total variation norm (4), M(T) is a Banach space.
Another useful topology on M(T) is the weak™ topology: a sequence of measures
(my)nen weak*® converges towards m € M(T) if and only if for all v € C(T),
limy, 400 Jp¥dm, = [1dm. Any bounded subset of M(T) (for the total variation) is
relatively sequentially compact for the weak™ topology. Moreover the topology induced
by the total variation is stronger than the weak™® topology, and the total variation is
sequentially lower semi-continuous for the weak™* topology. Throughout the paper, given
a € RY and 2o € TV, the notation Mz, S Zf/v:l @0z, hints that o, # 0 for all v
(contrary to the notation m,g), and that the z(,’s are pairwise distinct.

The properties of ® : M(T) — L?*(T) and its adjoint are recalled in Proposition 6
in Appendix. The oo, 2-operator norm of ®* : L*(T) — C(T) is defined as |®* s =
sup {|®*w|o ; w € L*(T), |w|r2 < 1} (and the oo, 2 operator norm of a matrix is defined
similarly). Given a vector zy € TV, ®,, refers to the linear operator RY — L?*(T), with

N def.
VO& c R 5 ®:B0a - ma 1'0 ZCYVSO xOV

It may also be seen as the restriction of ® to measures supported on the set
{zoy ; v €1, N]}. A similar notation is adopted for @/ = (replacing ¢(:,zo,) with
def.

O20(+, , 0,,). The concatenation of ®,, and @) is denoted by I';, = (@xo @;0)

We shall rely on the notion of set convergence. Given a sequence (C),)nen of subsets
of T, we define

limsup C,, = {ZE € T; liminfd(z,C,) = 0} (12)
n—+00 n—r+00
liminf C,, = {x €T ; limsupd(z,C,) = 0} (13)
n—+00 n—+00

where d is defined by d(z, C') = infcc |2’ — x| and |x — /| refers to the distance between
x and z’ on the torus. If both sets are equal, let C' be the corresponding set (then C' is
necessarily closed), we write

lim C,=C. (14)

n—-+0o0o

If the sequence (C),)nen is nondecreasing (C,, C Cpy1), then lim,, o Cy, = J,,cn Cn, and
if it is nonincreasing (C,, D Cy41) then lim, ., C, = nneNC_" (where C' denotes the
closure of C'). We refer the reader to [29] for more detail about set convergence. We
shall also use this notion in Hilbert spaces, with obvious adaptations.
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2. Abstract analysis of the Lasso

The aim of this section is to study the low noise regime of the LLASSO problem in an
abstract finite dimensional setting, regardless of the grid stepsize. In this framework, the
columns of the (finite dimensional) degradation operator need not be the samples of a
continuous (e.g. convolution) operator, and the provided analysis holds for any general
LASSO problem. We extend the initial study of Fuchs of the basis pursuit method
(see [26]) which gives the analytical expression of the solution when the noise is low
and the support is stable. Here, provided we have access to a particular dual vector 7,
we give an explicit parametrization the solutions of the basis pursuit at low noise even
when the support is not stable. This is especially relevant for the deconvolution problem
since the support is not stable when the grid is thin enough.

2.1. Notations and optimality conditions

We consider in this section observations in an arbitrary Hilbert space H, which
might be for instance L?(T) (as in the previous section) or a finite dimensional vector
space. The linear degradation operator is then denoted as A : RY — H. Let us
= maxocp<p_1 |agl-

Given an observation yo = Aag € H (or y = yo + w, where w € H), we aim at

emphasize that in this section, for a € R?, ||al/s
reconstructing the vector ag € RY by solving the LASSO problem for A > 0,
iy Sly — Aal? + Aol (PA(¥))
min —|y — Aa a
sy Y 1 Y
and for A = 0 we consider the (Basis-Pursuit) problem

min |al; such that Aa = y. (Po(yo))
a€RP

If @ € RY, we denote by I(a), or I when the context is clear, the support of a,
ie. I(a) = {ie[0,P—1]; a; #0}. Also, we let s; = sign(a;), and supp*(a) =
{(i,s;) ; i € I} the signed support of a.

The optimality conditions for Problems (Py(y)) and (Py(yo)) are quite standard,

as detailed in the following proposition.

Proposition 1. Let y € H, and ay € RY. Then ay, is a solution to (Px(y)) if and only
if there exists py € H such that

[A"pallee <1, and  (A*py); = sign(ay 1), (15)
AA*py + A*(Aay —y) = 0. (16)

Similarly, if ag € RY, then ag is a solution to (Py(yo)) if and only if Aay = yo and
there exists p € H such that.

|A*plloc <1 and (A'p); = sign(ag ). (17)
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Conditions (15) and (17) merely express the fact that 1, = A*py (resp. n = A*p)
is in the subdifferential of the f!-norm at ay (resp. ag). In that case we say that 7,
(resp. m) is a dual certificate for ay (resp. ag). Condition (17) is also called the source
condition in the literature [7].

The term dual certificate stems from the fact that py (resp. p) is a solution to the
dual problem to (P(y)) (resp. (Po(yn))),

|12 2 D
5l (Al
resp.  sup{(¥yo, p), (Do(yo))
peC
h et : A* <1p. 1
where C {p eEH; keﬁgi})}iw [(A"p)| } (18)

If a is a solution to (Py(y)) and p, is a solution to (Dy(y)), then (15) and (16) hold.
Conversely, for any a € R” and any py € H, if (15) and (16) hold, then a is a solution
to (Pa(y)) and p, is a solution to (Dx(y)). A similar equivalence hold for (Py(yo))
and (Dy(yo))-
Remark 1. In general, the solutions to (Px(y)) and (Py(yo)) need not be unique.
However, the dual certificate 7, = A*p, which appears in (15) and (16) is unique.
On the contrary, the dual certificate n = A*p which appears in (17) is not unique in
general.

We say that a vector aq is identifiable if it is the unique solution to (Py(yo)) for the

input y = Aag. The following classical result gives a sufficient condition for ay to be
identifiable.

Proposition 2. Let ag € RY such that Ay is injective and that there exists p € H such
that

[(A*p) el <1 and (A*p); = sign(aogr), (19)

where [¢ = [1, P]\ I. Then aq is identifiable.

Conversely, if ag is identifiable, there exists p € L*(T) such that (19) holds and A;
is injective (see [27, Lemma 4.5]).

2.2. Extended support of the LLASSO

From now on, we assume that the vector ag € RY is identifiable (i.e. a is the unique
solution to (Py(yo)) where yo = Aag). We denote by I = supp(ap) and s; = sign(ao )
the support and the sign of ay.

It is well known that (Po(yo)) is the limit of (Pr(y)) for A — 0 (see [12] for the
noiseless case and [27] when the observation is y = yo + w and the noise w tends to zero
as a multiple of \) at least in terms of the ¢* convergence. In terms of the support of
the solutions, the study in [21], which extends the one by Fuchs [26], emphasizes the
role of a specific minimal-norm certificate ny which governs the behavior of the model
at low noise regimes.
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Definition 1 (Minimal-norm certificate and extended support). Let ag € RY, and let

po be the solution to (Do(yo)) with minimal L*-norm. The minimal-norm certificate of

ap is defined as my = A*po. The set of indices ext(ag) = {1 <j < P; |(no);| = 1} is
def.

called the extended support of ag, and the set ext®(ag) = {(J,(m0);) ; J € ext(ag)} C
[0, P —1] x {—1,1} is called the extended signed support of ay.

Remark 2. In the case where qq is a solution to (Py(yo)) (which is the case here since we
assume that ag is an identifiable vector for (Py(y))), we have (I,sign(ag s)) C ext®(ay).
The minimal norm certificate thus turns out to be

no = A'pg  where pg = argmin {|p|s; |[A"P|ec <1 and Ajp=s;}. (20)
pEH

It is shown in [21] that there exists a low noise regime where the (signed) support
of any solution @y of Py(yo + w) is included in ext*(ag), supp™ ay C ext®(ag). It is
therefore crucial to understand precisely the behavior of 7y, and the structure of the
extended (signed) support ext®(ag). The following (new) result gives a characterization
of np.

Lemma 1. Let (J,s;) C [0, P — 1] x {—1,1} such that (I,sign((ao);)) C (J,ss) and
Ay has full rank. Define vy = (A%A;)"'s;.

Then (J,sy) is the extended signed support of ag, i.e. (J,s5) = ext¥(ag), if and
only if the following two conditions hold:

o forallje J\I, v;=0 ors; =—sign(v;),
° ”AT]CAJ'UJ”OO < 1.

In that case, the minimal norm certificate is given by ng = A*A}L’*SJ.

Proof. Writing the optimality conditions for (20), we see that p € L*(T) is equal to py if
and only if [|A*p|| < 1, A}p = sign(ag 1), and there exists u; € (R*)” and u_ € (RT)”
such that:

2p+ Auy — Au_ =0, (21)

where for ¢ € I° wu;,; (resp. wu_,;) is a Lagrange multiplier for the constraint
(A*p); < 1 (resp. (A*p); = —1) which satisfies the complementary slackness condition:
uy i((A*p); — 1) = 0 (resp u_;((A*p); +1) = 0), and for i € I, (uy; —u_;) is the
Lagrange multiplier for the constraint (A*p); = sign(ag);.

Now, let (J,s;) = ext®(ag) (so that J determines the set of active constraints) and
p = po. Using the complementary slackness condition we may reformulate (21) as

po — Ajv; =0,

for some v € R”, where v; = 0 or signv; = —(A*pg); for j € J\ I, and v; = 0 for
j € [0, P—1]\ J. Inverting this relation, we obtain v; = (A%A;)"(n),, and the stated
conditions hold.
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Conversely, let (J,s;) C [0, P — 1] x {—1,1} (not necessarily equal to ext®(ay))
such that (7,sign((ao);)) C (J,ss) and that the conditions of the lemma hold, with
vy = (A%5A;) sy, Then, setting p = —A vy, we see that || A*plle < 1, Ajp = sign(ay)r,
and (21) holds with the complementary slackness when setting uy; = 1 max(v;,0),
u_j = 3 max(—v;,0) for j € J and uy ; = 0 for j ¢ J. Then p = p, and the equivalence

is proved. O

As mentioned above, the minimal norm certificate governs the (signed) support of
the solution at low noise regimes insofar as the latter is contained in the extended signed
support. The following theorem shows that, in the generic case, both signed supports
are equal.

Theorem 1. Let ag € R\ {0} be an identifiable signal , J = ext(ay) such that A; has
full rank, and v; = (A%A;)"Vsign(ng.;). Assume that for all j € J\ I, v; # 0. Then,
there exists constants CV > 0, C? > 0 (which depend only on A, I and sign(aos))

such that for A < CW r?elln laos| ) and all w € H with ||w]| < CPN the solution
of (Px(y)) is unique, supp(ay) = J and it reads
ax.g = ag. + AJw — MA5A;) " sign(no,s),
where AT = (A5 A;) 1A%,
Proof. We define a candidate solution a by
ay=apy+ATw— vy, aj=0

and we prove that a is the unique solution to (Py(yo + w)) using the optimality
conditions (15) and (16).

We first exhibit a condition for sign(a,) = sign(ny,s). To shorten the notation, we
write s; = sign(no ;). Since for i € I, ag; # 0, the constraint sign(a;) = s; is implied
by

|RIAT |o2|w] + Jvr]ocA < T, where T = 1{161}1 lag,r| >0,

and Ry : u — uy is the restriction operator. As for K = J\ I, for all k € K ag =0

but we know from Lemma 1 that sign(vy) = —sj. The constraint sign(ax) = sk is thus
implied by
AY < i :
AT abuol < A (i o]
————
>0

Hence, we have signa; = signny s = s, and by construction supp(a) = J with
A% (y — Ad) = Asy. (22)

To ensure that a is the unique solution to (Py(y)) with y = yo + w, it remains to
check that

|A%e(y — Ad) |0 < A (23)
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Since we have
y—Ad=w— As(A5A) T A0 + AAS(AGAS) sy = Preasy + A s,
we see that (23) is implied by

”A* cPker(AL*])

2,00 W] = AL = 10,7 o0) <0

where by construction |1y jefs < 1.
Putting everything together, one sees that a is the unique solution of (Py(y)) if the
following affine inequalities hold simultaneously

def.
= |R; AT &
c|w| 4+ ceA < T where “ . |R1 AT | oo.2, (24)
C2 = |UI||007
HwH < 03)\ where C3 déf‘ (HRKA‘J]FHooQ)il (inlll;l ‘Uk‘) > O’ (25)
€
4 = | 4P|
ca|w| —esA <0 where 4 de_ﬂ Jedker(A%) 112,009 (26)
cs = 1 —|no,sefoe > 0.

Hence, for [[w| < min(cs, &)\ and (%"_62))\ < T, the first order optimality
conditions hold. O

Remark 3 (Comparison with the analysis of Fuchs). When J = I, Theorem 1 recovers
exactly the result of Fuchs [26]. Note that this result has been extended beyond the
' setting,see in particular [35, 34] for a unified treatment of arbitrary partly smooth
convex regularizers. For this result to hold, i.e. to obtain I = J, one needs to impose
that the following pre-certificate

nrg = A*A;r’*S[ (27)

is a valid certificate, i.e. one needs that |ng | < 1. This condition is often called the
irrepresentability condition in the statistics literature (see for instance [37]). It implies
that the support I is stable for small noise. Unfortunately, it is easy to verify that for the
deconvolution problem, in general, this condition does not hold when the grid stepsize
is small enough (see [21, Section 5.3]), so that one cannot use the initial result. This
motivates our additional study of the extended support ext(ag) D I, which is always
stable to small noise. While this new result is certainly very intuitive, to the best of
our knowledge, it is the first time it is stated and proved, with explicit values of the
stability constant involved.

Remark 4. Theorem 1 guarantees that the support of the reconstructed signal a, at low
noise is equal to the extended support. The required condition v; # 0 in Theorem 1 is
tight in the sense that if v; = 0 for some j € J \ I, then the saturation point of 7, may
be strictly included in J. Indeed, it is possible, using similar calculations as above, to
construct w such that supp a, C J with A and ||wl|s/\ arbitrarily small.
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3. Lasso on thin Grids

In this section, we focus on inverse problems with smooth kernels, such as for
instance the deconvolution problem. Our aim is to recover a measure my € M(T) from
the observation yy = ®mg or y = ®mg + w, where ¢ € C*(T x T) (k > 2), w € L*(T)
and

Ve e T, (&m)(x) / o(z,y)dm(y), (25)

so that @ : M(T) — L*(T) is a bounded linear operator. Observe that @ is in fact
weak™ to weak continuous and its adjoint is compact (see Lemma 6 in Appendix).

Typically, we assume that the unknown measure my is sparse, in the sense that it
is of the form my = Ef/v:l ap %o, for some N € N* here ag, € R* and the 2, € T are
pairwise distinct.

The first approach we study is the one of the (discrete) Basis Pursuit. We look for
measures that have support on a certain discrete grid G C T, and we want to recover the
original signal by solving an instance of (Py(yo)) or (Px(y)) on that grid. Specifically,
we aim at analyzing the behavior of the solutions at low noise regimes (i.e. when the
noise w is small and \ well chosen) as the grid gets thinner and thinner. To this end, we
take advantage of the characterizations given in Section 2 with H = L?(T), regardless
of the grid, and we use the Beurling LASSO (3) as a limit of the discrete models.

3.1. Notations and preliminaries

For the sake of simplicity we only study uniform grids, i.e. g <

{ih ;i € [0, P — 1]} where h = + is the stepsize. Moreover, we shall consider sequences
of grids (G, )nen such that the stepsize vanishes (h,, = Pin — 0 asn — +00) and to ensure
monotonicity, we assume that G,,,; C G,,. For instance, the reader may think of a dyadic
grid (i.e. h, = ’;—2) We shall identify in an obvious way measures with support in G,
(i.e. of the form Efial aydrn, ) and vectors a € R,

The problem we consider is a particular instance of (Px(y)) (or (Po(yo))) when
choosing A as the restriction of ® to measures with support in the grid G,

A P, — (gp(-,O),...,gp(-,(P— l)hn)>. (29)

More explicitely, on the grid G,,, we solve

1 2 n
min Ly gl + Nal, Prw)
and min |af; such that ®g,a = yo. (P (yo))
acRn

We say that a measure mgy = Zf/v:l 0,0z, (With ag, # 0 and the w,’s pairwise
distinct) is identifiable through (P§(yo)) if it can be written as my = Zflal a;0;p, and
that the vector a is identifiable using (P§(vo)).
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def.

As before, given a € R we shall write I(a) = {i € [0, P, — 1] ; a; # 0} or simply
I when the context is clear.
The optimality conditions (16) amount to the existence of some py € L*(T) such
that
max |[(®*py)(kh,)| <1, and (P*py)(Ih,) = sign(arr), (30)

0<k<P,—1

AD*py + @ (Pay —y) = 0. (31)

Similarly the optimality condition (17) is equivalent to the existence of p € L*(T) such
that
* < * — : .
omax  [(@p)(kha)| <1 and  (®7p)(Ihn) = sign(ao,s) (32)

Notice that the dual certificates are naturally given by the sampling of continuous
functions n = ®*p : T — R, and that the notation n(Ih,) or (®*p)(Ih,) stands for
(n(ihy,))ier where I = I(ag) (and similarly for iy, = ®*p, and I(ay)).

If mp is identifiable through (P{(yo)), the minimal norm certificate for the
problem (PF(yo)) (see Section 2) is denoted by 7, whereas the extended support on G,
is defined as

ext, mg = {t € G, ; my(t) = £1}. (33)

From Section 2, we know that the extended support is the support of the solutions at
low noise.

3.2. The limit problem: the Beurling lasso

It turns out that Problems (P} (y)) and (P} (yo)) have natural limits when the grid
gets thin. Embedding those problems into the space M(T) of Radon measures, the
present authors have studied in [21] their convergence towards the Beurling-1.ASSO used
in [15, 10, 6, 31].

The idea is to recover the measure mgo using the following variants of (Py(y))
and (Po(yo)):

1
in —|y— ®m|* + \m|(T .
mglﬁlAr(lT)QHy m|* 4 Alm|(T), (P ()
and  min |m|(T) such that ®m =y, (P5°(yo))
meM(T)

where |m|(T) refers to the total variation of the measure m

m|(T) 2 sup { [z s v € ) and o < 1} . (34)

Observe that in this framework, the notation |||~ stands for sup,cr [¢(t)|. When m
is of the form m = Zivzl a,r, where a,, € R* and z, € T (with the z,’s pairwise
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distinct), |m|(T) = 32, |a, |, so that those problems are natural extensions of (Py(y))
and (Py(yo)). This connection is emphasized in [21] by embedding (P} (y)) and (P§(yo))
in the space of Radon measures M(T), using the fact that

sup {/Tw(sc)dm(:c) € O(T), Wk € [0, Py — 1] [o|(khn) < 1}

_ { lally if m = P g,

+00 otherwise.

We say that my is identifiable through (Pg°(yo)) if it is the unique solution
of (P§°(yo)). A striking result of [10] is that when ® is the ideal low-pass filter and
that the spikes my = Zf/v:l oo, are sufficiently far from one another, the measure
my is identifiable through P§°(yo).

The optimality conditions for (P°(y)) and (Pg°(yo)) are similar to those of the
abstract LASSO (respectively (15), (16) and (17)). The corresponding dual problems
are

. y 2
f H— _ D5
Jnf 152, (DX ()
resp.  sup (yo,p), (D5°(v0))
peC>®
where C® = {pe L*(T); [|®*pllo < 1}. (35)

The source condition associated with (P§°(yo)) is of particular interest. It amounts to
the existence of some p € L?(T) such that

12"plloc <1 and (®*p)(zo,) = sign(ap,) for all v € {1,..., N}. (36)

Here, ||®*p||o = sup,er |(P*p)(t)|. Moreover, if such p exists and satisifies |(®*p)(t)| < 1
forall t € T\ {zo1,...,z0n}, and @, has full rank, then my is the unique solution
to (P$°(yo)) (i.e. mg is identifiable).

Observe that in this infinite dimensional setting, the source condition (36) implies

the optimality of mg for (P§°(yo)) but the converse is not true (see [21]).
Remark 5. A simple but crucial remark made in [10] is that if mg is identifiable
through (Pg°(yo)) and that suppmy C G,, then mg is identifiable for (P{(yo)).
Similarly, observe that the source condition for (Pg°(yo)) implies the source condition
for the (Pg(vo))-

If we are interested in noise robustness, a stronger assumption is the Non Degenerate
Source Condition which relies on the notion of minimal norm certificate for (Pg°(yo)).
When there is a solution to (Dg°(yo)), the one with minimal L? norm, pg°, determines
the minimal norm certificate ng° = ®*p. When my is a solution to (P§(yo)), the
minimal norm certificate can be characterized as

ne. = ®*py°  where (37)

pi = axgmin (ol 5 19°ple <1 (#'9)(z0,) = signlan,). 1 S v <N (39)
peL?(T
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As with the discrete LLASSO problem, a notion of extended (signed) support ext*,, may
be defined and the minimal norm certificate governs the behavior of the solutions at low
noise (see [21] for more details).

Definition 2. Let mq = Y., 0,0, an identifiable measure for (P5°(yo)), and
nee € C(T) its minimal norm certificate. We say that mg satisfies the Non Degenerate
Source Condition if

(] ‘7]80<t)| <1 fOT’ all t I~ T\{SEOJ, .. ..T07N},
o " (xg,) #0 forallve{1,...,N}.

The Non Degenerate Source Condition might seem difficult to check in practice.
The following proposition shows that it is in fact easy to check numerically on the
vanishing derivatives precertificate.

Definition 3. Let mg = >0, 0,04, an identifiable measure for (Pg°(yo)) such that

'z, = (@xo <I>’mo> has full rank. We define the vanishing derivatives precertificate as

def.
ny = ®*pyy where

i angmnin {[pls ; (9°p)(r0.) = sign(0n,), (@) (0,) = 0, 1< v < N} (39)
peL?(T)

The following proposition shows that this precertificate is easily computed by
solving a linear system in the least square sense.

Proposition 3 ([21]). Let my = Y. | (0,02, an identifiable measure for the
problem (P§°(yo)) such that Iy, has full rank.
Then, the vanishing derivatives precertificate can be computed by

nee def. O*pl  where pyy et Fjo’* (s1gn(()ozo7_)> , (40)

and T* =Ty (T% Tyy) ™t Moreover, the following conditions are equivalent:

(i) mg satisfies the Non Degenerate Source Condition.
(11) The vanishing derivatives precertificate satisfies:

o (1) <1 forallte T\{zo1,...zon},
o X" (xo,) #0 forallv e {1,...,N}.

And in that case, n° is equal to the minimal norm certificate ng°.
Remark 6. Using the block inversion formula in (40), it is possible to check that
Py = &7 sign(ag,) — T, (), "TI, )~ @), "7 " sign(ao,), (41)

where II is the orthogonal projector onto (Im®,,)*. If we denote by p% the vector
introduced by Fuchs (see (27)), which turns out to be

pr = argmin {[plz; (®"p)(zo,) = sign(a,), 1 <v <N},
PELA(T)

we observe that pif = p¥ — Hq)/ro<q);:o*ﬂq)/mo)_1q);o*p%°-
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Remark 7. At this stage, we see that two different minimal norm certificates appear:
the one for the discrete problem (P{(yo)) which should satisfy (32) on a discrete grid
Gn, and the one for gridless problem (P§°(yo)) which should satisfy (36). One should
not mingle them.

3.8. The LLASSO on thin grids for fized A > 0

As hinted by the notation, Problem (P3°(y)) is the limit of Problem (P} (y)) as

the stepsize of the grid vanishes (i.e. n — +o00). Indeed, we may identify each
vector @ € R with the measure m, = 3 ."5" axdrn, (s0 that |all; = |ma|(T))
and embed (PY(y)) into the space of Radon measures. With this identification, the
Problem (P?(y)) I'-converges towards Problem (P°(y)) (see the definition below),
and as a result, any accumulation point of the minimizers of (P} (y)) is a minimizer
of (P (1)
Remark 8. The space M(T) endowed with the weak™ topology is a topological vector
space which does not satisfy the first axiom of countability (i.e. the existence of a
countable base of neighborhoods at each point). However, each solution m} of (P} (y))
(resp. m3° of (P°(y))) satisfies

Alm3|(T) < Am3|(T) + 5|®m3 — yl* < 5[yl (42)
Hence we may restrict those problems to the set
detl. 1
x % L e M) Al(T) < 1ol

which is a metrizable space for the weak* topology. As a result, we shall work with
the definition of I'-convergence in metric spaces, which is more convenient than working
with the general definition [14, Definition 4.1]). For more details about T'-convergence,
we refer the reader to the monograph [14].

Definition 4. We say that the Problem (P} (y)) I'-converges towards Problem (P5°(y))
if, for all m € X, the following conditions hold

o (Liminf inequality) for any sequence of measures (m™),en € XV such that
supp(m”™) C G,, and that m™ weakly* converges towards m,
n—-+o0o

1 1
lim inf <)\|m”|(T) + 5 lom" — yI\Q) > Aml(T) + S| @m yl*.

o (Limsup inequality) there exists a sequence of measures (m™),en € XV such that
supp(m™) C G,,, m"™ weakly* converges towards m and

. . 1, 1
imsup (Alm|(T) + 18" = yI?) < Apnl(T) + 3l o1,

n—-+o0o
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The following proposition shows the I'-convergence of the discretized problems
toward the Beurling LLASSO problem. This ensures in particular the convergence of
the minimizers, which was already proved in [32].

Proposition 4. The Problem (P} (y)) I'-converges towards (Ps°(y)), and
i _inf (P} (1)) = inf (P (w)). (43)

FEach sequence (m%)nen such that m% is a minimizer of (PY(y)) has accumulation
points (for the weak*) topology, and each of these accumulation point is a minimizer

of (PX(y))-

In particular, if the solution my to (P°(y)) is unique, the minimizers of (P} (y))
converge towards m.

Proof. The liminf inequality of Definition (4) is a consequence of the lower semi-
continuity of the total variation and the L? norm (since ® is weak* to weak continuous,
dg m™ — y weakly converges towards dm — y):

. . n 1 n 2
tmint (N |(T) + g0 — o)
. n L. . n
> Mﬂﬂi&fqm |(T))+§1%T£igf (lem™ —y]?)
1
> Ajm|(T) + 5 |@m — y|*

As for the limsup inequality, we approximate m with the measure m" =
s Ok, where by = m([khy, (k + 1)hy,)). Then, for any ¢ € C(T),

Pn,—1
/T dm — / van| =32 /{khm(m)hn)(wx) - w<khn>>dm|

< wy () [m|(T),

where wy, : = Sup|_y < [¥(x) — ¥ (2')| is the modulus of continuity of ¢. Therefore,

lim,, 4 oo (M™, ) = (m,¢), and m™ weakly™ converges towards m. Incidentally, observe
that |m™|(T) < |m|(T), so that using the liminf inequality we get lim,, . |m™|(T) =
|m/|(T). Moreover, by similar majorizations, one may prove that ®m" converges strongly
in L?(T) towards ®m. As a result lim,_, o, |[®Pm™ — y|? = |[®m — y|?, and the limsup
inequality is proved.

Eventually, from (42) we deduce the compactness of X, hence the existence of
accumulation points, and [14, Theorem 7.8] implies that accumulation points of (m?%),en
are minimizers of (P°(y)), as well as (43). O

The weak™® convergence of the minimizers of (P}(y)) can be described more
accurately by studying the dual certificates p, and looking at the support of the solutions
m% to (PY(y)) (see [21, Section 5.4]). One may prove that m?% is generally composed of
at most one pair of Dirac masses in the neighborhood of each Dirac mass of the solution
to (Ps°(y)). More precisely,

N
oo A
m)\ - v=1 Oé)‘yyéxk,u
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Proposition 5. Let A > 0, and assume that there exists a solution to (Ps°(y)) which
15 a sum of a finite number of Dirac masses: mY = f/V:Al @xy0z,, (where o, # 0).
Assume that the corresponding dual certificate n° = ®*p satisfies |n°(t)| < 1 for all

te']I‘\{xl,...,xN}.
Then any sequence of solution my = S 0" ay ;. to (PR(y)) satisfies

lim sup (supp(my)) C {z1,...xn}.

n—-4o0o

If, moreover, m$° is the unique solution to (Ps°(y)),

i (supp(m§) = {z1.... 2. (44)

If, additionally, (n3°)"(x,) # 0 for somev € {1,..., N}, then for alln large enough,

the restriction of m% to (x, —r,x, + 1) (with 0 < r < %min,,,,,/ |5y — rur|) is a sum

of Dirac masses of the form ay 0, + G itve,,O(+e;)hn With € € {—=1,1}, ax; # 0 and
sign(ay ;) = sign(ay,). Moreover, if axiic,, # 0, sign(ayite,,) = sign(ay,).

We skip the proof as it is very close to the arguments of [21, Section 5.4]. Moreover
the proof of Proposition 13 below for the C-BP is quite similar.

3.4. Convergence of the extended support

Now, we focus on the study of low noise regimes. The convergence of the extended
support for (PJ(yo)) towards the extended support of (Pg°(yo)) is analyzed by the
following proposition.

From now on, we assume that the source condition for (P§°(yo)) holds, and that
suppmgy C G, for n large enough (in other words, yo = ®g, ay for some ay € Rf), so
that mo = S0, @0,i04,, is a solution of (Pg(yo)). Moreover we assume that n is large
enough so that |zg, — zg,/| > 2h, for V' # v.

Proposition 6 ([21]). The following result holds:

lim 7y = ng°, (45)

n—-+o00

in the sense of the uniform convergence (which also holds for the first and second
derivatives). Moreover, if mq satisfies the Non Degenerate Source Condition, for n
large enough, there exists ™ € {—1,0,+1}" such that

ext™" (mqg) = supp™ (mo) U (supp® (mo) + "), (46)

where supp™ (mo) + €"hy = {(w0, + %, 15 (20,)) ; 1 < v < N}

That result ensures that on thin grids, there is a low noise regime for which
the solutions are made of the same spikes as the original measure, plus possibly one
immediate neighbor of each spike with the same sign. However, it does not predict
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which neighbors may appear and where (is it at the left or at the right of the original
spike?).

The following Theorem refines that result by giving a sufficient condition for the
spikes to appear in pairs (i.e. €, = 1 for 1 < v < N). Moreover, it shows that the
value of " does not depend on n, and it gives the explicit positions of the added spikes
gy, for 1 <v < N.

Theorem 2. Assume that the operator 'y, = (@xo <I>’mo> has full rank, and that
mg satisfies the Non-Degenerate Source Condition. Moreover, assume that all the
components of the natural shift

def.

p = (11, )~ O @ sign(mo (o)) (47)

are nonzero, where 11 is the orthogonal projector onto (Im ®,,)~*.
Then, for n large enough, the extended signed support of mg on G, has the form

ext™" (mo) = { (., sign(ao,)) h<ven U {(@ + el sign(ao) brcvcn (48)
where e = sign (diag(sign(ayg))p) - (49)

In the above theorem, observe that ®7: TI®] is indeed invertible since I'y, has full
rank.

Corollary 1. Under the hypotheses of Theorem 2, for n large enough, there exists
constants CY > 0, Cc® > 0 such that for A < oM miny<,<n ||, and for all
w € LA(T) such that |||y < C'A, the solution to (Pi(y)) is unique, and reads

N
my = Zu:l(aA,Vélvo,y + Bk,uéxo’qughn), where

Q) Qg + * -1 Qo
= P — AN, Dy )
(6)\> ( 0 ) + extn U ( extyp tn) S1gn (()éo)

where  ext, (mo) = {x, hicwen U{z, + euhn br<oen,
e = sign (diag(sign(ao))p) ,

Sign(a)\,u) = Sign(ﬁk,u) = Sign(ao,u)-

Proof of Theorem 2. We define a good candidate for 7 and using Lemma 1 we prove
that it is indeed equal to ng when the grid is thin enough.
To comply with the notations of Section 2, we write

P,—1

N
E 0,0z, = E o kOkh,
v=1 k=0

and we let I = {i € [0, P, — 1] ; ag; # 0}. Moreover, for any choice of sign (&;)ic; €
{—1,+1}", we set J = U, {i,i+ e} and s; = (s;)jes where s; = s;,, = sign(ap,)
for i € I. Since |zg, — zo,/| > 2h, for v/ # v, we have Card J =2 x Card [ = 2N.
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Recalling that A = (gp(-, 0),...0( (P, — 1)hn)), we consider the submatrices

A <¢(.,ihn)> = (gp(-,xm), ...gp(-,xovN)> and A o (go(-, (z’+€i)hn)>

i€ el
so that up to a reordering of the columns A; = (A 1 An 1). In order to apply Lemma 1,

we shall exhibit a choice of (g;);c; such that A; has full rank, that v = (A%A;)"'s,
satisfies sign(v;) = —s; for j € J\ I and ||A%5.Ajv]le < 1.
The following Taylor expansion holds for Ay as n — oo:

Aps = A + hu(Bo+ O(hy)),  with Ay = A; = ®,,
and By = ((32)<P('a9€0,1) (52)90(-,%,1\/)) diag ((€i,), - - (€in))
= (I);:o diag <<€i1>7 cee <€iN>> :

By Lemma 8 in Appendix, the Gram matrix A%A; is invertible for n large enough,

(A5A,) <‘”> - < (diag(Es, ... &) 7y ) +0(1),

SI —(diag(eiy,s - - €iy)) " 'p

and

where p is defined in (47), where II is the orthogonal projector onto (Im ®,,)*, and for
v € [1, N], i, refers to the index ¢ € I such that ih, = wo,. Therefore, v, ; has the
sign of — diag(e;,, ..., )p, and it is sufficient to choose ¢;, = s;, X sign(p,) to ensure
that signv,; = —s s for n large enough.

With that choice of ¢, it remains to prove that ||A%.Ajv| < 1. Let us write
P = Ao = AT T It is equivalent to prove that for k € J¢, |®*p,(kh,)| < 1.

Sr
Using the above Taylor expansion and Lemma 8 in Appendix, we obtain that
lim P, = Ag”"s; — IIBo(BIIBy) "' By Ay sy

n—s-+oo
= &/ " sign(ag,.) — I, (P, "TIP, )~ P} "OF*sign(a,.)
=y (by (41)).
Hence, ®*p,, and its derivatives converge to those of 7y° = 73°, and there exists
r > 0 such that for all n large enough, for all 1 < v < N, ®*p, is strictly concave (or
stricly convex, depending on the sign of n5*"(x¢,)) in (xo, — 7,0, + 7). Hence, for
t € (w0 —1,%0,+7)\ [Zow, Toy + €iw) hin], we have |®*p,(t)| < 1. Since by compactness

N
max{|n§°(t)| ;te T\ U(:po,y —T,xo,y+r)} <1

v=1

we also see that for n large enough

N
max {\cb*ﬁn(tﬂ cteT\ U(:L’O,,, — T, Toy +r)} < 1.

v=1
As a consequence, for k € J¢ |®*p,(kh,)| < 1, and from Lemma 1, we obtain that
d*p,, = ny and Uivzl{x07,,, Toy + €ipyhn} is the extended support on G,. d
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3.5. Asymptotics of the constants

To conclude this section, we examine the decay of the constants 07(11)’ c® in
Corollary 1 as n — +oo. For this we look at the values of ¢q,...,c5 given in the
proof of Theorem 1.

By Lemma 8 applied to @exs,, (mo) = (CIDIO Dyy + hn (P, + O(hn))>, we see that

Cin = NRIPL, oyl ~ h—H(‘I)fOH@fo)*lq)foHHoo,m (50)
of. " — ST 1
c2n " [0tk = || Ri( @2, ng) Pestn o)) <> |~ 1ol (51)
def. 4 (. mingex |pk|
C3,n - (”RK(beth(mO)”OO?Q) (Ikrél}(l |'Uk|) ~ H((I)I* H(I)/* ),1(1)/* HH 2' (52)
xo o y) o,

However, the expressions of ¢4 and c¢5 lead to an overly pessimistic bound on the signal-
to-noise ratio. Indeed the majorization used in (2.2) is too rough in this framework: it
does not distinguish between neighborhoods of z(,’s, where the certificate is close to 1,
and the rest of the domain.

Proposition 7. The constants CS,C\? in Corollary 1 can be chosen as o) = O(hy)
and C? = O(1), and one has

() - ()= () -

Proof. The proof of (53) follows from applying (50) and (51) in the expression for )
and f8y provided by Corollary 1. Let w = ®*ITw, where II is the orthogonal projector
onto (Im @, )+ = ker ®% . In order to ensure (23) we may ensure that :

|w(Ghn) + Ang (Ghn)| = A <0, (54)

for all j € J¢ (that is (jh, ¢ ext,(mo)).
By the Non-Degenerate Source Condition, there exists » > 0 such that for all
ve{l,...,N},

3
vt € (2o, =1 @0, 1), |05 (H)] > 0.95 and |(ng*)"(6)] > 7[(n5°)" (o,

and by compactness SUPpy | < 1. Since n§ — ng° (with uniform

_1(@o,p—r,20,0+T) |770OO
convergence of all the derivatives), for n large enough,

1
Vv € {L. . N}, V€ (2o, =, 20, +7), 5 (8)] > 0.9 and |(ng)" ()] > 51(n6°)" (z0,0)].
(with equality of the signs) and

def.

sup no| < k=
T\Uivzl (zo,v—7,x0,+T)

DO | =

( sup Ino°| + 1) < 1.
T\UpZ 1 (@0, —7,0,0+7)



Sparse Spikes Deconvolution on Thin Grids 23

First, for j such that jh, € T\ UY_, (0, — 7,0, + 7), We see that it is sufficient
to assume |®* | 2|w|2 < (1 — k)X to obtain (54).

Now, let v € {1,..., N} and assume that 1n5°(z,) = 1 (so that (n§°)"(zo,) < 0)
and that €, = 1, the other cases being similar. We make the following observation: if
a function f: (—r,+r) — R satisfies f”(t) < C for some C < 0 and f(0) = f(h,) =0,
then f(t) < $t(t — hy) <0 for t € (—r,0] U [hy, 7).

Notice that w = ®*ITw is a C? function which vanishes on ext,(mg) (hence at zg,
and xo, + h,), and that its second derivative is bounded by [(®”)*|co2]w]2. Moreover,

16 (z0.) = 16 (20, 4+ hn) = 1 and sup (e oo m (16)" < 5(03°)" (20,,) < 0. Thus, for

foly 10" (o)
NS @)

as to get
1\ * 1 oo\
W) LA — 1) < <n<q>’> ool + A% (7 (xo,u)) (= 20,)(t — 20 — ) < 0

for t € (o, — 1,20, Uxoy + hny o, + 7).
On the other hand, the inequality —w(t) — A(n§ () +1) < 0 holds for | ®*|« 2|w|2 <
1.9X\. As aresult (54) holds for all j such that jh,, € (x¢, —r, x¢,+7), provided that the

signal-to-noise ratio satisfies % < ¢, where ¢ > 0 is a constant which only depends on

min, [(76°)" (Zo.)], [P oc.2s [(®7)"[oo,2 and SUPR\ (¥ (1,1 g, 1) [16°]- I Other words,

v=1

, we may apply the observation to w(- — zo,) + A(n§(- — x¢,) — 1) so

including the condition involving ¢3,,, we may choose o = min(cs,,c) = O(1). O

4. Abstract analysis of the Lasso with cone constraint

This section studies a simple variant of the LLASSO with cone constraint in an
abstract setting. The results stated here shall be useful in Section 5, since this variant
turns out to be the Continuous Basis-Pursuit when the degradation operator is a
convolution with an impulse response and its derivative. Similarly to Section 2, we
consider in this section observations in an arbitrary Hilbert space H.

4.1. Notations

Given a parameter h > 0, we consider the cone generated by the vectors (1, %) and
(17 _%>7
o h
Chd:f‘{(c,d)eRxR;c>O and —c§+|d|<0}. (55)

We also define the cone C! as the set of vectors (a,b) € RY x RY such that for all
ke [0, P—1] (ag, bx) € Cp.

Now, given a vector (ag,by) € Ci (i.e. Vk € [0, P — 1], ao > %|box|), we observe
yo = Aag + Bby, where A : R” — H and B : R — H are linear operators, or its noisy
version y = yo + w where w € H. To recover (ag,by) from y or yo, we consider the
following reconstruction problems:

o1
min |y — Aa — Bb|3 + Alal, (Qx(y))
(a,p)eckt 2
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and for A = 0,

min _|a|; such that Aa + Bb = yq. (Qo(yo))
(a,b)GC}IL3

Our main focus is on the support recovery properties of (Q)(y)). Precisely, we split
the “support” of (a,b) € C}" into several parts:

I = supp(a) = {i € [0, P—1]; a; > 0} (56)
= 1@y (57)

er. . 2 detl. . 2
Where[(r)d:f{ze[;ai+ﬁb¢>0}, [(l)g{zel;ai—ﬁbl->0}. (58)

Observe that in general I®) N IM £ (. If (ay,by) is a solution of (Qx(y)), we
say that we have exact support recovery provided that I®)(ay, b)) = 1™ (ag,by) and
IW(ay, b)) = IW(ag, by).

Remark 9. The notation 1™, I® which might seem a bit obscure at this point, shall
become clearer in the next section. It turns out that when considering the Continuous
Basis-Pursuit on a grid with stepsize h > 0, points i in 1™ correspond to Dirac masses
which “tend to be on the right”, that is they do not coincide with the left half-grid point
th — ﬁ Similarly, points in I correspond to Dirac masses which “tend to be on the
left”, as they do not coincide with the right half-grid point th+ 3 h Infact, ifi € I\ IO,
and if i € IV \[(r),
it correponds to a Dirac mass at the left half-grid point: 9, . IfieI®WnI0 it

r)
correponds to a Dirac mass which may belong “freely” to the interval (ih — % th + %)

it correponds to a Dirac mass at the right half-grid point: 52h Y

4.2. Parametrization as a positive LLASSO

To characterize the solutions of (Qx(y)) and (Qo(yo)), it is convenient to
reparametrize the problem as a LLASSO with positivity constraint. Indeed, let us write
for all ¢ € [0, P — 1],

A; \ det. 1 1 r; T 1 a; + %bl
— or = — . (59)
(bz) (h - ) (l> <l> 2 ( - hb>
In the following, we define the linear map

()-()

It is clear that (a;,b;) € Cp if and only if r;
(a,b) € CP,

[y

0 and /; > 0. Moreover, given

I°={iefo,P-1]; (r, 1) = (0,0}, IW={ie]o,P—-1]; r; >0},
and 1M ={ic[o,P-1]; ;> 0}.
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Therefore, Problems (Qx(y)) and (Qo(yo)) are respectively equivalent to the LASSO
and Basis Pursuit with positivity constraint:

2
1 r -
e (W T
(eI X (Rs )P (l) Ty A 2 (Qx(y))
and min r such that A "= (Q( )
(r)e®4)Px(Ry)P l 1 h l = Yo, olYo

where A, = (A + %B A— %B) ‘R?P 5 H.

Observe that there is “support recovery” of (ag, by) through (Qx(y)) if and only if
there is support recovery of (rg,ly) through (Qx(y)). But precisely, as we shall explain
below, the characterization of minimizers and the support recovery properties of the
LASSO with positivity constraint (Q,(y)) are quite similar to those exposed in Section 2.

The regularization term may be written as J : R — R U {400}, where for all
(r,1) € R x RY,

T { SSP i+ 1) ifry>0and ;>0 forall i € [0, P — 1],
’ +00 otherwise.
P-1 P-1
= i)+ Y i),
=0 =0

T if x >0,

ith j(x) g< 1} =
with  j(z) = sup {qz ; ¢ < 1} {+oo otherwise.

Hence, the subdifferential of J is the product of the subdifferentials 0j(r;) and 9j(l;)
for 1 <i < P —1, where
: 1} ifx>0
0 = { ’
i) { (—00,1] ifz=0.
That is quite similar to the subdifferential of | - | at z € R which is —1, [-1,1] or 1 if
x <0,z =0 or x > 0 respectively, and one may adapt all the results of Section 2 to
the LAssO with positivity constraint. It essentially amounts to replacing the conditions
7] < 1 with maxn < 1 (and similarly for strict inequalities) wherever they appear.

We leave the detail to the reader, and in the following, we use those results freely to
derive the properties of the LASSO with cone constraint (Q,(y)).

4.3. Optimality conditions

Applying the results (or their straightforward adaptations) of Section 2 to (Qx(y))
and (Qo(yo)), then composing by Hj,, we immediately get the following results.
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Proposition 8. Let y € H, (ax,by) € CF, and I = I(ay,by). Then (ay,by) is a solution
o (Qx(y)) if and only if there exists gy € H such that

h h
max ((A* + EB*)q)\) <1, and max ((A* — §B*)q)\) <1, (61)
(Afe + EBj(r))QA =10, and (Ajw — 531(1))@\ = 1w, (62)

A<g>%+<ggcmu+3m—w:o (63)

Similarly, (ag,bo) € CF is a solution to (Qo(yo)) if and only if Aag+ Bby = yo and there
exists ¢ € H such that

h h

max ((A* + 53*)(1) <1, and max ( — §B q) (64)
o h

(Ao + 5Bw)a = L, and (Ajg — 5Bw)e < 1, (65)

where I = I(ag, by).

The corresponding dual problems are given by

,}2}5 H (Ex(y))
sup(y, q) (&o(y))
qeD
def. h
where D g e max (g + 55l < 1, (66

Again, if the inequalities outside the support are strict, it is possible to ensure the
uniqueness of the solution.

Proposition 9. Under the hypotheses of Proposition 8, if ((A +2B)w (A-— %B)I(1)>
has full rank and if qx (resp. q) satisfies

h
Yk € Ic, (A Q)\)k —+ 5 (B*(D\)]J < 1, (67)
vie IO\NI®, (A + 2B <1, (68)
Vie ID\IO, (4" — gB*)qA)i <1, (69)

then (ax,by) (resp. (ag,bo)) is the unique solution to (Qx(y)) (resp. (Qo(vo)))-

4.4. Low noise behavior of C-BP

The Theorem of Fuchs [26] for the Lasso (see Remark 3) extends to this setting as
follows.
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Proposition 10. Let (ag,by) € CI'\ {0} such that

A ((A+5B)w (A= 5B)o)
has full rank, and let

of . 2 , 2 ,
T d:f min {bO,i + ﬁaw , 2 € [(r)<b0, ao)} U {bO,i — ECLQ,Z‘ 2 € [(1) (bo, CLQ)} . (70)

Then there exists constants CV) > 0,0 > 0 such that for A < COT, |lw|| < CP\,
the solution to (Qx(yo +w)) is unique, satisfies I (by, ay) = I (by, ag), IV (by, ay) =
IW(by, ag), and it reads:

<a)\> = <a0> + thl,J{w — )\Hh(/i;;/ih)_ls,
by bo

where Hy, is defined in (60).

In general, the conditions of Proposition 10 do not hold, and the support at low
noise is strictly larger than (I®)(ag,bg), I (ag,by)). This support is governed by the
minimal norm certificate.

Definition 5 (Minimal norm certificate). Let (ag,by) € C}'. Its minimal norm certificate

. def. A* + QB*
860 = | 4u i o
(A - 3B

extended support is ext™ (ag, by) = (ext™ (ag, by), extM(ag, b)), where

qo where qo is the solution to (Ey(y)) with minimal L* norm. The

ext®(ao, o) = {3 € [0. P =115 (4" + 5 = 1. ()
extWaa ) = {1 € 0. P= 105 (4= 55, =1} (72

From the optimality conditions, if (ag,by) is a solution of (Qg(yo)) then I® C
ext™ (ag, by) and IV C ext® (ag, by) (where I = I(ag,bp)), and gy can be characterized

as
. A* + bpr
qo = argmin {|IQ||2 ; (A* N i3*> q€ 0J(ro,lo)} : (73)
2

qEH

Lemma 2. Let J®,JO c [0, P — 1], and (ap,by) € CF. Assume that (1, 1V) =
(I (ag, bo), IV (ag, by)) is such that

[(r) - J(r), [(1) C J(l) and Ah e ((A + %B)J(r) (A — %B)J(D)

1
has full rank. Define (Z‘](r)> (A AL Ls where s 2| | e RIOHIVL Then,
J
1

(J®), JWY s the extended support of (ag,by) if and only if the following two conditions
hold:
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e forallje JO\NI® u; >0, and for all j € JV\ TV, v; > 0.

h *
(A— 53)30)6 Uy
Moreover, in that case, the minimal norm certificate is given by
Go = —An* (A5 Ap) s

The proof is identical to the one of Lemma 1, therefore we omit it. We are now in

® max

position to describe the behavior of (Q)(y)) at low noise in the generic case:
Theorem 3. Let (ag,by) € (Ry)%\ {0} be an identifiable signal, (J®),JV) =
ext™ (ag, by) such that A, & ((A+%B)J(r) (A—%B)J(1)> has full rank.  Let
1

<u‘](r)> (A A s where s | | e ROV and assume that for all

Uy 1
§€JONIW w; >0, and that for all j € JV\ IV, v; > 0.

Then, there ezists constants CY >0, C? > 0 such that for

2 2
)\ < C(l) min {boﬂ‘ + anﬂ‘ ; ’L - I(r)(ao, bo)} U {boﬂ‘ — anﬂ‘ ; Z - I(l)(a,o, bo)} (74)

and |wly < CPN, the solution (ay,by) to (Qa(y)) is unique, 1T (ay,by) = J©,
IW(ay,by) = JVY, and it reads

<‘”> — <“°> + HyAfw — NH (AL AR) s,
by bo

where Hy, is defined in (60).

5. Continuous-Basis Pursuit on thin grids

Facing the same inverse problem as in Section 3, but this time assuming that each
a, (1 < v < N) is positive, we aim at recovering mg using the Continuous Basis-
Pursuit proposed in [23]. Given a grid G, as in Section 3, the goal is to reconstruct

a measure m = » . " @;0ip,+¢, Where t; € [, %] which estimates mgy. Applying a

Taylor expansion and setting b; = t;a;, the authors of [23] are led to solve

o1 n
min Sy — g,a — @G, bJ* + Aal (Qx())

(ab)ecym

min_ [a|; such that ®g a+ O b= yo. (Q8(yo))
(ab)ecym

which are particular instances of (Qx(y)) and (Qy(yo)). The dual problems are

respectively:
2
LI e (&)
sup (Yo, q) (&5 (40))

qeD™
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where D" % {qeﬁmr); i <<1>*q><khn>+%|<<1>*q>'<khn>|<1}, (75)

ke[o, P,—1]
To study the behavior of the solutions to these problems as n increases, we aim at
applying the results of the previous section, and in particular Lemma 2, in the setting

where # = L*(T) and (A, B) = (®g,, 5 ).

5.1. The positive Beurling 1LASSO

The situation with the continuous basis pursuit on thin grids is quite similar to
the situation of the LLAsso. Still, the non-negativity constraint on the components
(ax)o<k<p, Passes to the limit, and the appropriate limit model is the positive Beurling
LASsO,

1
i |y — ®m|* + Am(T S
meI/r\l/ll}rl(T) 2”y |+ dm(T), (W)
d i T h that dm = 0
an me%l?(ﬁr) m(T) such that ®m = y,, (Q5 (%))

where M™(T) refers to the space of positive Radon measures. The indicator function
of positive measures plus the total mass may be encoded in the quantity:

m(T) + taet(ry(m) = sup {/T@Z)(t)dm(t) ; ¢ € C(T) and I?EE%TX@/)(t) < 1} : (76)

As a result, the characterization of optimality, the notions of minimal norm certificates
and extended support may be adapted from Section 3.2 in a straightforward manner,
replacing condition |||l < 1 by sup,er p(t) < 1 where u = ®*q for ¢ € L*(T). For
instance, up to the addition of a constant, the dual problems to (Q(y)) and (QF°(vo))
are respectively:

e (EF )
Sup (y0,9) (&5°(vo))
where D™ = {q c L*(T) ; %%X(q)*q)(t) < 1} : (77)

5.2. The limit problem for thin grids

To consider the limit of (Q%(y)), let us recall that we obtain a measure from the
vector (a,b) € Ci" by setting

Pp—1

m = Z aiéihn‘f'bi/ai (78)
i=0
with the convention that b;/a; = 0 if a; = 0. It should be noticed that b;/a; € [—%", %"]
We rely again on the notion on I'-convergence to express the convergence
def.

of (Q%(y)) towards (QF(y)). As before, we may restrict the problems to X, =
{m e M*(T) ; Alm|(T) < 5|y|*} which is metrizable for the weak* topology.
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Definition 6. We say that the Problem (Q%(y)) I'-converges towards Problem (Q3°(y))
if, for all m € X, the following conditions hold

e (Liminf inequality) for any sequence of measures (m™),eny € XY of the form (78)
with (a™,b™) € C,f” such that m™ weakly™ converges towards m,

1
1mnm(Mm"m1+4@% ) B b — yF)>Am@3+§@m—wW-

o (Limsup inequality) there exists a sequence of measures (M"),en € Xi\f of the
form (78) with (a™,b™) € C,f" such that m™ weakly* converges towards m and

n—-+4o0o

1
lim sup ()\Ha(” |1 + —”(I)gn ") 4 q)ﬁjnb(") — yH2) < Am(T) + 5”(1)7” —yl*.

Proposition 11. The Problem (Q}(y)) I'-converges towards (Q3°(y)), and
lim_inf (Q4(y)) = inf (O3 (). (79)

Fach sequence (mY),en such that m% is a minimizer of (Q%(y)) has accumulation
points (for the weak™) topology, and each of these accumulation points is a minimizer
of (X (y))-

In particular, if the solution m$® to (Q3°(y)) is unique, the whole sequence (m%),en
converges towards ms°.

Proof. The proof is the same as for Proposition 4 with minor adaptations, observing
that ||a™]|; = m,(T). For the liminf inequality, let (m™),cx be of the form (78) which
weakly* converges towards m. We notice that @'gnb(”) =9 (Zf:"g ! bg")éihn), and

hy (= I
7"(2@?”) <2A( ly um) -0,
=0

7=

Pp—1

Z b Zhn

so that @ b (strongly) converges towards 0 in L?(T). Moreover, ®g, a™ =
@(Zf"o ! a( )5,~hn) and for all v € C(T),

Pn—1 Pn—1
} : (n) } :

a@' 5ihn+bi/ai - al Zhn7
=0 i=0

Pp—-1

Z a; ' (Y(ihy, + b;/a;) — ¢<Zhn))|

Pn—l
Z alw, ( ") —0

where wy, 1 t = SUp|r_y < [¥(2) — ¥(2')] is the modulus of continuity of ¥. As a result,

ZiP:TLO_ ! agn)éihn —m® >0 and ZZP”O Yal n)5,hn weakly* converges to m. Hence, ®g, a™

weakly converges towards ®m in L*(T). To sum up, ®g,a™ + @ b™ — y weakly

converges towards ®m — y and we conclude as before.

For the limsup inequality, the only difference is in the construction of m™ for the

limsup inequality: it is sufficient to choose al™ = m([khy, (k + 1)hy,)) and b = 0 for

all k € [0, P, — 1] 0
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5.3. Asymptotics of the support: generalities

Though Proposition 11 states the convergence of the solutions of (Q%(y)) towards
those of (Q(y)), it does not describe the supports of the solutions. We now study
the convergence of those supports using dual certificates and the optimality conditions
(Proposition 8). In this context, a dual certificate is determined by a function
pu = ®*q € C(T) where ¢ € L*(T), and

h h
I® = {z efo, P, —1]; b; > —7"6%} C {z c[o, P, —1]; (u—i— 7%) (ihy) = 1},

h h
0 = {ie [0, P, —1] ; b; < 7%} C {ie [0, P, —1] ; <u—7"u’) (ihy) = 1}.

To sum up, we shall exploit the following observations
e if (u+ 2y/) (ih,) = 1 but (p— "24/) (ih,) < 1, a spike may appear at ih, + &,
o if (u—224/) (ihy) =1 but (p+ 224/) (ih,) < 1, a spike may appear at ih, — %,
o if (,u + %",u/) (ih,) = 1 and (u — %",u/) (thy,) = 1, a spike may appear anywhere in
the interval [ih, — 22 ih, + 22].
The following lemma is central in our analysis. We consider a sequence of functions
(1" )pen and for 0 < r < %miny;ﬁy/ |z, — x|, ve{l,..., N}, we study:

def. hn ,
Sinlr) = {tegn“<%—7“aﬂfu+r); (M"+7M") (t) = 1},

def. hn ,
S (r) = {tégnﬂ(xu—r,a:y+r); <M"—7M") (t) = 1}.

Lemma 3. Let (zy,...,7y5) € TV pairwise distinct, and let {"}nen € (C3(T))N be a
sequence of functions which converges uniformly towards some pu> (and similarly for the
derivatives) such that for allv € {1,..., N}, p>=(z,) =1 and for allt € T\{z1,...,zx},
pue(t) < 1.

(i) Then
. n ho
limsupst e G, ; p"(t) + — ") =1p C{x1,...,2n}. (80)
n—-+4o00 2
In particular there exists ng € N such that for n > ng
L N N
- fnyni — — (r) ) _
{t € gn ;M (t) + 9 |lu (t)| - 1} - H (Smu(r) U Sn,u(r)) - VLJl('IV T, Ty + T)'

Assume moreover that for alln € N and all t € G,, p"(t) + 2|u™ ()] < 1. For each
ve{l,...,N}:

(ii) If (u>)"(x,) # 0, then there exists ng € N such that forn > ng, each set Sy(f,),(r) and
S (r) is of the form 0, {ihn}, or {ihy, (i + 1)ha}, and if both sets are nonempty:

max S (r) < min SO, (7).
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(iii) If (u=°)®(x,) # 0, then there exists ng € N such that for each n > ng, S&H(r) =0
or S,SI)I,(T) = (.

(iv) If (=)D (x,) £ 0, the set of n € N such that STY(r) = {(in — 1)hn, inh,} and
SW,(r) = {inhn, (in + 1Ry} (with the same i, € [0, P, — 1]) is finite.

Proof. Observe that both u" + %" w" and p" — %" 1" converge uniformly towards > as

n — +oo (and similarly for the derivatives).

(i) For all 7 € (0,7), by compactness, sup {u>(t); t € T\ U(z, — 7,2, +7)} < 1.
Thus by uniform convergence there exists ng € N such that for all n > ny,
(ur+2pm) <1lon T\ U, (z, — 7,2, + 7), and the first claim is proved.

(ii) If moreover (u>)"(x,) # 0, it is in fact negative. Choosing 7 € (0,7) small enough
and then n large enough, we may assume that p"" < —kg in (x, —7, x,+7), for some
ko > 0, and by (80) that Sy(f,),(r)USy(Ll)y(r) C (z,—7,z,+7). By uniform convergence,
pn” + 2 n®| <~k for p large enough, so that both functions p + 2 u" and
p" — 2" are strictly concave in (z, — 7, z, + 7). This implies that Sy(f,),(r) (resp.
SW,(r)) is of the form 0, {ihy,}, or {ihn, (i + 1)hy}.

Observe also that p" + Zep™ — (p* — Z2y™) = h,p™. Since the function p™ is
strictly decreasing in (z, — 7, z, + 7), it vanishes at most once. If Sy(f,),(r) # () and
S,(LI)V(T) # (), it must change sign in (z, — 7,2, + 7) and thus it vanishes exactly
once, at some ¢ € (z, — 7, x, + 7). Then for t € (z, — 7, §),

P s

(= ) e) = (o ) 6) — B (1) < 1= B (1) < 1

so that min S\ (r) > &. Similarly max S (r) < €.

(i) By contradiction, assume that the set of n’ € N such that S,(f?y(r) # 0 and
S(l,)
exists in, jn € [0, P, — 1] (denoted hereafter i, j) with ih, € S,(;Z('rm), jhy, € S,
Combining the Taylor expansions of u™ and (u")" around ih,, (resp. jh,), we get

(r) # 0 is infinite. We may extract a subsequence n = n/(m) such that there

L2 27+ D) = 22+ D)

1 1 1
= )+ )1 = ) ) (3= 5 ) O s
[\ ;,1 _ *

=0

1—t)3 (1—1)?

1
4 n(4)/,; ( _
+ hy, /0 1" (ihy, + thy) ( 3 T )dt, and

13 0(( — D)+ 2 07((G = D)

2
. o 1 it - 1 1 n(3) /-
= 1" (§hn) = o™ (Gha) (1 = 5) ™ () (5 —~ 5) —h 2" ()
[\ ;’1 4 -

=0

+ hn4/01 1" (jh, —thy,) (“ —4° _ d_ t)Q) dt

3! 21 x 2
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where qy, is defined in (96). Now, let n — +o0. By (80), ih,, — z, and jh, — z,,
and using the uniform convergence of (u™)*) towards (u®)®), dividing by h,*,
we obtain respectively 0 > —(u®)®(2,) x & and 0 > (u*)®)(z,) x &, thus
(1) () = 0.

(iv) Assume by contradiction, that the mentioned set is infinite. For such n, a Taylor
expansion at ih, yields (we write i for 4,):

L= (G D) = B2+ Db

_ ,un('ihn) + %Nm(ihn) +’7/3hn3Mn(3)(ihn) ‘|"74hn4un(4)(ihn)

-~

=1

! 1—t)* (1—1t)?
+hn5/ 1" (ih, + thy,) <( -9 )dt, and
0

J/

41 3l x 2

L= (0 Dha) (6 1))

: b i n(3)/: n(d) [
= 1) = o i) b5 i) + a0 )
=1
1 4 3
5 n(5) (. (1-¢" (A-19
+ hy, /0 pw"™ (ihy, + thy) < 1 D dt,

with v, = 4 — m Summing both equalities, dividing by h,* and taking the
limit n — 400 yields (u>®)®(z,) = 0.
[

This other lemma focusses on the limit of the sets D" defined in (75).

Lemma 4. As n — +oo, the sets D" converge towards D> defined in (77) (in the
sense of set convergence).

Proof. We observe that E™ C D™ C F", where
n def. 2 * hy, * N/
g {y e 2(n) s @0 + i@ ol <1},

e e L*(T); max ®*q(kh,) <1

{oerm mx aatin) <

so that it suffices to prove that E™ and F™ converge towards D°°. On the one hand, it is
clear that D> = ("), oy F", and the sequence F" is non-increasing. On the other hand,
it is possible to check that D> =, .y £, and the sequence E™ is non-decreasing. As
a consequence, the claimed set convergences hold. O
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5.4. Asymptotics of the support for fixed A > 0

Let us recall that the dual problem to (Q%(y)) is the projection onto the closed
convex set

D fg e ) @) + @)l <1

Since the set convergence of D™ (see Lemma 4) implies the convergence of the
projections onto D™ (see [29], or [21] for a direct proof in a similar context), we obtain:

Proposition 12. Let ¢¢ (resp. ¢3°) be a solution of (EX(y)) (resp. (E5°(y))), and
px = gy (resp. py = ®*q3°). Then

lirf qy = qY° for the L*(T) strong topology,
n——+0o0
(k) oo(k)

lirf pr = ps " in the sense of the uniform convergence, for all k € N.
n—-+00

The following proposition states that in the generic case, one may observe up to two
pairs of spikes for each spike of the solution of the positive Beurling-lasso. As before, r
is chosen such that 0 < r < %min,,;,g,,/ |z, — .

Proposition 13. Let A > 0, and assume that there exists a solution to (O (y)) which
is a sum of a finite number of (positive) Dirac masses: m® = Z]VV:1 a,0,, where a,, > 0.
Assume that p$e satisfies |pu(t)| < 1 for allt € T\ {xy,...,zn}.

Then any sequence of solution m} = Zf:”o_l ax,i0ihntby/ar: 10 (QX(Y)) satisfies

lim sup (suppmy) C {z1,...zn}.
n——+oo

If, moreover, m$° is the unique solution to (9 (y)),

lim (supp(my)) ={z1,...2n}. (81)

n—-+o00o

If, additionally, (13°)" (x,) # 0 for somev € {1,..., N}, then for alln large enough,
the restriction of m% to (v, — r,x, + 1) is a sum of Dirac masses whose configuration
is given in Table 1, and if (u)® (z,) # 0, then only the cases indicated with (*) may
appear.

Proof. By Proposition 12, we know that the dual certificates p§ converge towards ps°.
By Lemma 3 and the optimality conditions, we have thus limsup,_,, (supp(m%)) C
{z1,..., 2N} If m$ is the unique solution, assume by contradiction that
liminf(supp(m%)) € {zi1,...,2nx}. Then there is some v, some € > 0 such that (up
to a subsequence) (supp(m%))N(z, —e,x, +¢) = 0. This contradicts the I'-convergence
result (Prop. 11) which ensures that m% converges towards m$°® for the weak™* topology.
As a result lim,, oo (supp(my)) = {1, ..., zn}.

If (u$°)"(x,) # 0, Lemma 3 ensures that the sets Sy(f,),(r) and ST(LI),,(T) are of the
form @, {ih,}, or {ih,, (i + 1)h,}. Moreover, since lim,,_, (suppm?y) = {x1,...,zn}
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Num.ber Saturations of the . . .
of Dirac certificates Possible Dirac Locations
masses (Sn.v/Snv)
{ihn}/0 or 0/{ihn} ihn + en 2, with e, € {—1,1} (%)
One
{ihn}/{ihn} ihn + t;, with — "o <t < o
{(¢ — 1)hn,ihn}/0
or ((ifen)thre%,ithren%), with e, € {—1,1} (*)
0/{ihn, (i + 1)hn}
Two {ihn}/{ihn} (ifn + 2 o — 22), i <
{ihn}/{3hn, (i + Dhn}
or ((i—en)hn-i-enhT"Jhn—f—ti),ene{—171}7—%<t1<h7"
{G@ = Dhn,ihn}/{ikn}
{ihn}/{ihn, G+ Dha} (it + B = 22, G+ Db = B2, with i <
Three {(i — Do, ihn}/{ihn} ((z — Dhn + B ik + B2 b, — %ﬂ) with i < j
_ _ o A o hn) _hn o4 o ha
{(i = Db, ihn}/{ihn, (i + 1hn} ((z—l)hn B i+ ti, (6 4 1)hn — ) “ha B
Four {(i—=Vhn,ihn}/{jhn, G+ Dhn} ((ifl)thr%",ithr%",jhn* B (G4 Dhn — %ﬂ),iq

Table 1: Number of Dirac masses that may appear if (u°)”(z,) # 0. For the sake of
the simplicity of the table, and since we focus on the saturations of dual certificates, we
regard sums like i, 41, /2 + O(i41)hn—hn/2 @8 “two” Dirac masses.

we must have S0 (r) # 0 or S5, (r) # (). Using the fact that max S (r) < min S V( ),
one may check that the only possible saturation points of z§ + %2 p%" and pff — 2% are
given in Table 1. The optimality conditions of Proposition 8 imply that m?Y is at most
a sum of Dirac masses at those locations.

If (u)®(x,) # 0 the third point of Lemma 3 implies that for n large enough,
SEL(r) = 0 or STU(r) = @ (but not both). Hence there are at most two (successive)
saturations, produced either by p% 4 4% or by pf — fayn. O

Remark 10. Proposition 13 states that the support of the C-BP on thin grids actually
depends on the properties of the dual certificate u3° of the (positive) Beurling LASSO.
The condition (43°)"(x,) # 0 seems to be overwhelming, if not generic, and it is ensured
for instance if A is small and the Non-Degenerate Source Condition holds (see [21]). As
for the condition (u*)®)(x,) # 0, it also seems to be generic, as there is nothing to
impose (1)) (x,) = 0 in the positive Beurling LASSO. As a result, in practice, one
does not observe all the configurations given in Table 1, and only the cases indicated
with (%) appear, the case of two spikes being again overwhelming.

This means that when approximating the positive Beurling LAssO with the
Continuous Basis-Pursuit, one generally sees two spikes instead of one, and those spikes
are at successive half-grid points: (ih + 2, (i + 1)h+ %) or (ih — %, (i + 1)h — 2).
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5.5. Asymptotic of the low noise support

Now, we focus on the behavior of the Continuous Basis Pursuit at low noise. As
for the LLASSO, this analysis is more difficult in whole generality, since it involves the
minimal norm solutions of nonlinear problems, in which it is difficult to pass to the
limit. Therefore, we are led to assume that {x¢1,...,zon} C G,, and the measure now
reads mg = Zf:”(;l a0,i0;h,, -

The following property ensures that mg is a solution to (Qf(yo)) for each n large
enough.

Lemma 5. Assume that there exists a function u € Im®*, such that for all t €
T\ {xo1,...,zon}, 1(t) <1 and

W€ {1, N}, ulwo,) =1, 1'(2o,) £ 0, 1P (o) =0, 1P (a0,) >0, (82)

Then, for alln large enough, 1 is a dual certificate for mg = Z]VV:1 0,0z, for (25 (vo)),
and mq is a solution to (Qy(yo)). Moreover, if Iy, has full rank, this solution is unique.

Remark 11. The condition u® (zq,) = 0 is natural since our aim is to build a certificate
which is valid for all n, hence Lemma 3 applies with Sy(f,),(r) # () and S,(Tl),,(r) # ().

Proof. Let v € {1,...,N} and r, € (0,7) such that p"(t) < 0, and p® () > 0 in
(zo,, — T, To, + 1,,). We shall prove that p(kh,) + %[u/(kh,)| < 1 for all k such that
khy, € (xo, — 7y, 20, + 1) \ {Zo, }. To simplify the notation, we assume without loss of
generality that xo, = 0 and we write 7 = r,. The variations of x and its derivatives are
given by the table below:

t —7 0 7
/~L(4) +
1@ 0

L (=) <0 W'(7) < 0
H T —

1" (0)
\
W O
1

Let us observe that the function 6 : ¢ — p(t) — Lp/(t) is (strictly) decreasing in [0, 7),
since

vt € (0,7), 0'(t) = p' (u) — p"(t)) du < 0. (83)

7

(' (8) — 1" () =

O\é
(—~
9
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Hence, for all k such that kh, € (0,7),

ho, kh, k— 1)h,
k) = 52 (o) = k) 7,/(%) 4 . M ey <1 (84)
—0(khn)<6(0) <0

On the other hand, 6 is (strictly) increasing on (—, 0] since

L) —t / (1) du>0.  (85)

vt € (—7,0), 6(t) = 5

N)IP—‘

As a consequence, for all k such that kh, € (—7,0),

(k+ Dhn

kha
/ R (k) < 1. (86)

2

—0(khn)<0(0)=1 <0
Thus we see that p(kh,) + 2[4/ (kh,)| < 1 for all kh, € (—7,7) \ {0}, and we proceed
similarly on all the intervals of the form (x¢, —r,, o, +7,). By a compactness argument,
there exists a constant 8 < 1 such that u(t) < g for all t € T\, (€0, — 70, To, + 7).
For n large enough, the inequality (suptGT |1/ (t)]) < 1 — B holds, and we see that

p(khy) + 22|/ (khy,)| < 1 for all ¢ € ']T \ U (w0 — 70, o, + 7).
As a conclusion, we see that u is a valid certificate for (ag,0) (see the optimality

plkha) 24 (k) = (k) — 2 () +

conditions of Proposition 8), thus (ag,0) is a solution of (Qf(vo))- O

Now, we consider the limit of the minimal norm solutions of (£}'(yo)). In general,
they do not converge towards the minimal norm solution of (£5°(yo)), and we are led to
introduce a new variational problem to carry the study further.

Definition 7 (Third derivative precertificate). Given mg € M(T), we define the third
derwative precertificate as pr < D*gr where

qr i argmin {Hqu; Vie{l,...,N}, (P*¢)(z;) =1,

q€L?(T)
(@"g)/ (1) = 0 and (3°¢)® <i>=o}, (87)

whenever the above set is not empty.

It is clear that the set defined in (87) is a closed convex set. It is nonempty for
instance if the conditions of Lemma 5 hold. Note that ¢r corresponds to a quadratic
minimization under linear constraint, and can hence be computed by solving a linear
system,

I Ly 1 1
T F+ * N H~ * *H~ *\ — *P+ * N
qr = <(I)(3())*> 0 = aco7 < 0 ) - (I)g? ((I)gc? (I)g? ) 1(1)56? a:(; ( 0 )
0

Zo

= py — el (@f) TIof)") el py, (89)
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where II is the orthogonal projector onto (ImT'y,)*, and 'y, = <<I>$0 <I>;O>.

Definition 8 (Twice Non-Degenerate Source Condition). We say that mq satisfies the
Twice Non-Degenerate Source Condition (TNDSC) if qr in (87) is well defined and if
it satisfies, for ur = ®*qr,

Vit € T\{ZL‘QJ, R ,I‘OJ\[}, [LT(t) < ]_,
Vwe{l,...,N}, ph(zo,) <0 and ,ugfl)(xo,,,) > 0.

Observe that if the Twice Non-Degenerate Source Condition holds, the hypotheses
of Lemma 5 are satisfied and my is a solution to (Qg(yo)) for n large enough. In fact
the associated minimal norm certificates (which thus exist) converge towards pir.

Proposition 14. Let my € M(T) satisfy the Twice Non-Degenerate Source Condition
(and pr the corresponding Third derivative (pre)certificate). Let qf be the minimal norm
solution of (E8(yo)), and g = ®*q. Then,

liT q¢ = qr for the L*(T) strong topology, (90)
n—-+0o0

hT ,ug(k) = M(Tk) in the sense of the uniform convergence, for all k € N. (91)
n——+0o0

Proof. As mentioned above, the Twice Non-Degenerate Source Condition implies that
pr is a function admissible for Lemma 5, hence a certificate for (Qf(yo)). As a
result, ||¢7]]2 < |lgrll2 and the sequence (g§)nen is bounded in L*(T). We may
extract a subsequence qg/ which weakly converges towards some ¢ € L*(T), and then
1G]l2 < liminf,s o ||g8]l2 < ||gr|l2- Since ®* and ®*)* are compact (see Lemma (6) in
Appendix), we obtain that ugl(k) = (d*q )™ converges toward i = ®*§ for the (strong)
topology of the uniform convergence. We immediately obtain that fi(t) < 1forallt € T,
and fi(zo,) =1, fi(zo,) =0 forall v e {1,...,N}.

Moreover, applying Lemma 3 to ®*¢} (observing that z, € Sr(fl),(r) N S,(LI)V(T)), we
get fi® (z,) = 0. As aresult, G is admissible for (87), hence | gr||2 < ||||2- Thus in fact
llgr|l2 = |G|z and ¢r = G. Since the limit of the extracted subsequence does not depend
on the choice of the subsequence, in fact the whole sequence converges. Moreover, the
convergence is strong in L?(T) since lim,, s, ||q¢|l2 = |lqr]|2- O

As a consequence of the above convergence result, the third derivative precertificate
controls the extended support on thin grids.

Proposition 15. Let my € M(T) (with {x¢1,...2on} C Gn) such that the Twice
Non Degenerate Source Condition holds. Then, for n large enough, mg is a solution
to (QF(yo)) and its extended support is given by:

ext™ (mo) = | STL(r), and ext®(mo) = | J SU,(r), (92)

where
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° Sy%(r) is equal to {xo,} or {xo, — hn, T},
° S,(Tl),,(r) is equal to {xo,} or {xo., o, + hn}.

Moreover, one cannot have simultaneously Sy(fl('r) = {20y — hn, 2o, } and Sr(fl),(r) =
{xO,m xO,I/ + hn}

Proof. By Lemma 5, mg is a solution to (Qf(yo)) and pr is a solution to (E]'(yo)).
Applying Lemma 3 to pg, pr, we see that Sy(fl(r) is of the form @, {ih,} or
{(i —1)hy, ih,}, and that SO, (r) is of the form 0, {jhn} or {jhn, (j + 1)k, }, with i < j.
On the other hand, by the extremality relations between pg (solution of (£} (yo))) and
myg (solution of (Qf(vo))), o, € S,%(r) and g, € Sr(bl)y('r) As a consequence Sr(fl),('r)
is equal to {x¢,} or {0, — hn, 20, }, and ST(LI),,(T) is equal to {x¢,} or {xo,,zo, + hn}.

Now, since p+(0) # 0, the fourth point of Lemma 3 ensures that for n large
enough, one cannot have simultaneously Sy(f,),(r) = {xo, — hn, 70, } and SY(LI),/(’I“) =
{0, oy + - d

Remark 12. As Proposition 15 shows, for each original spike, at most one pair of spikes
appears at low noise : the original spike slightly shifted and either the immediate left
neighbor shifted by +h,,/2 or the immediate right neighbor shifted by —h,, /2.

We are now in position to provide a sufficient condition for the spikes to appear in
pair, with a prediction on the location of the neighbor.

Theorem 4. Assume that the operator <‘I)x0 P! Q);(,ff))) has full rank and that the

Twice Non Degenerate Source condition (Definiton 8) holds. Moreover, assume that all
the components of the natural shift

def. * T — * * ]]-N
o2 oo () 9
are nonzero. Then, for n large enough, and all v € {1,..., N},

If p, > 0, then Sr(fl),(r)
If p, <0, then S,(LI)V(T)

= {20y — hn, 20}, and Sr(zl)y(r) = {z0,}, (94)
={zo,}, and S,(LI)V(T) = {20, Top + hn}, (95)
so that the extended support of mqg on the grid G,, has the form

ext™ (mo) = {wo1, ..., von} U{zo, —hn; v €1, N| and p, >0}
ext) (mo) = {zo1, ..., von} U{zoy + hn; v €L, N] and p, <O0}.

Corollary 2. Under the hypotheses of Theorem 4, for n large enough, there exists
constants CSY > 0, C® > 0 such that for A < oM miny<,<n |ao,|, and for all
w € L*(T) such that |w]s < CPN, the solution to (Q%(y)) is unique, and reads

N
m)\ = ZU:I(aAyyéxO,u‘i’tV + /8)\7V51'0,y+5uhn)7 where

—hn/2 <t, < hn/2 and = —sign(p).
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Proof of Theorem 4. We proceed as in the proof of Theorem 2 by building a
good candidate for pf and using Lemma 2. To comply with the notations of
Lemma 2, let us write Zf/v:l @0,i0 = Zfial ao kOh,, and 1) ORI
fiel0, Pu—1]; ap, £ 0.

For any choice of shift (g)ie; € {—=1,+1}Y, we set JO = [0 y
{i+e;iel and g =—1}and JO =IO U{i+e;iel and & =+1}. Since
|20, — 20| > 2h, for V' # v and n large enough, we have Card J®) + Card JV =
3 x Card I = 3N. We shall find a choice of ¢ such that u; > 0 for all j € J® \ I, and
v; > 0 for all j € JV\ J, where

Zo,v

Vym Jm

U y(r ef. Tx 1 — ]]' r 1 ok
< J( )) def _(AhAh) 1 <1J( )> , Ah def ((A+ %B)J(r) (A— %B)J(l)>
AZ @5 and BE O .

In this particular case where I®®) = I® = [ all j in (J®\ I) U (JO \ I) may be
uniquely written as j = i + ¢; for some i € I, where ¢; € {—1,+1}. We may swap the

- L. U j(x A .
columns of A, so as to reformulate the condition [ 7" | = — (A Ap) M3y into
V)
1][ ]lN
o | = —(AA) | 1n |,
tr 1y

where A, = (AI + b By diag(e) Ar — "2 Brdiag(e) Arie — 2By diag(e)) and t; >
0 for all 7 € I. But a Taylor expansion yields

I, . I . -
Ary. — —Br,.diag(e) = &, +— @, diag(e) +(hn)373q);3) diag(e) + o(hn?’),
2 N~~~ 2 %0,_/ 0
=Ar =By diag(e)
where we defined
def. 1 1

T T k—Dix2 (96)

Hence, we may apply Lemma 9 to ®,,, @, diag(c) and 73(13;(,;?;) diag(e) so as to obtain

- 1 1
= — diag(e)p+o| — | .
! 73hn3 g( )p <hn3>
Therefore it is sufficient to choose ¢ = —sign(p) to make all the components of #;

nonnegative.
With that choice of ¢, it remains to prove that

(A+5B)5me 4 [uwsm
A <1

max
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Let us write ¢, = flh <u‘](r)>. Since <u‘](r)> = —(.»Zl;flh)*l]lg]v, we get ¢, = A,J{’*]I;J,N,

Uy Uy
and applying Lemma 9 to ®,,, ®/ diag(c) and 73<I>(m?;) diag(e), we see that g, converges
towards gr (using (88)).
By construction of ¢,,

h,
Vje JONI, (@G, + 5 (@) ) (Ghn) = 1,

By o
and Vje JU\I, (&G, — 7(@*%)’)@}%) =1, (97)

which may be summarized as

h,, N
Viel, (9*g, — 5i7(<1)*qn) V(@ +&i)hy) = 1.

Arguing as in the proof of point (iv) in Lemma 3 (replacing “1 = ...” with
“l > ...” and using that ugfl) (zo,) > 0), we may prove that for n large enough,
(PG + €35 (27G) ) (0 — £i)hn) < 1.
Then, by the same argument of compactness and local concavity as in point (ii) of
Lemma 3, we observe that
hn,

{k: efo, P, —1]; (®*G, + 7(cIfnjn)’)(/mn) > 1} c Jo,

{k; e [0, P, —1]; (G, — %(@*qn)’)(k:hn) > 1} c JO,

and those inclusions are in fact equalities. That precisely means that

(A+5B)jue -
" gn| < 1.
<<A - gB)J(l)c

Hence, by Lemma 2, ®*§, is the minimal norm certificate u{ and (J ®h,, JVh,) is

max

the extended support. This concludes the proof. O

5.6. Asymptotics of the constants

Again, we may examine the asymptotic behavior of the constants given in
Corollary 2. Those constants stem from Theorem 3 which is itself a variant of Theorem 1
for the LAssoO.

Replacing the constants ¢y, . .., c3 of the proof of Theorem 1 with the corresponding
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expressions for the C-BP, and using Lemma 9 we get

. S el 1l Tl
ein = | Rpcrp A ~ H( o) ) (98)

= (3] M (5) . o

. 1 ~ min; 713
C3n = (”R(J(”)\I(r))U(J(l)\l(l))‘Ah ||oo,2) (rflel}l ti) ~ ||((I>(3)’*H<I> 3)) 1o D
o o 00,2

where v, is defined in (96). As for ¢4, and ¢;,, like in the case of the LASSO, their
expression lead to a pessimistic bound for the low noise regime, and we are led to make

(100)

finer majorizations.

Proposition 16. The constants iV ,C @) in Corollary 2 can be chosen as iV = O(h,*)
and C?) = O(1), and one has

1(5)- () Lmo (i) o

Proof. The proof of (101) follows from (98) and (99). Using the reformulation (Q,(y))
of the C-BP as a (positive) LASSO, we have to ensure that (23) holds, or more precisely,

(A* + %B*)(J(r))c
— Aa — Bb
<(A* — B ) e (v 40— B)

2

<A\

max

where A = &g, B = & . Let A, = <(A +2B)m (A- %B)J(l)), 1T be the
orthogonal projector onto ker fl;; = (Im /Alh)L, and w = ®*ITw. Since
Yy — Aa— Bb=w — Ah(/i;fih)*lfizw -+ )\Ah(A;;Ah)ilﬂgN = f[w + )\AZ’*]LO,N,

we are led to check that

(W + M) (Ghm) + (@ 4+ M) () < A for all j € (J)E, (102)
B, ‘
(W + M) (jhn) = (w0 = M) (hn) < A for all j € (JV)T, (103)
where ! = (A Aj) )1y yields the minimal norm certificate

(g + %5 415)(Gn) (A+5B)"\ e iy

= Ar Ap) sy,
Q%—%w@@w (A= iy | i) o
Given 0 < r < %min#y/ |20, — xo,|, let N(r) def. U, (0, — 7,20, + 1) be a

neighborhood of the zy,’s. By the Twice Non-Degenerate Source condition, we may
choose r > 0, such that
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By compactness, ks = SUPyem\ N () Hr(t) < 1.
Let us recall that pf — pr in the sense of the uniform convergence (and similarly
for the derivatives). As a result, for n € N large enough,

k k 1+k
sup (2)"(6) <~ <0, inf (V@) > 250, swp ) < <1, (104)
teN(r) 2 teN(r) 2 teT\N(r) 2
h, k 1—k
B ) e < B and B <
Now, we assume that Hw"2 is small enough, so that
k
”((I)(lc))*”OOQHw‘b _1’ for k € {2’3}’ ||((I>(4))*”002”w”2 < _2’
A DY 4
-
and  [(@%)* ] ”7“1”2 o for k € {0,1), (105)

Then, using the fact that and [w™®|(¢) < [(®@®)*]s2|w]2 and h, < 1, we obtain

’)(t)<1.

Thus it remains to prove that for each v € {1,..., N},

w n
(X*No)

w I
sup (5 g+
teT\N(r)

I,
<)\ + py + — 5 ()\ +,u0)) (t) <1forte (xg, —r ,zo, +T)\Snfl),(r), (106)

ho,
and <§ + pg — 5 ()\ + pg) ) (t) <1lforte (xo, —1,z0,+1)\ Snl)y(r) (107)

We only deal with the case Sy(f,),(r) = {zo,}, S,(Tl),,(r) = {20, %o, + hy}, the symmetric
case being similar. Let f = sw(- — xop) + pg(- — 2o,). By definition of 11,
w(zoy) = W' (z0,) = w(@oy + hn) — 2w(zo, + hy) =0, so that

hn
FO)=1, f(0)=1, and f(hn) = = f'(hn) = 1. (108)
Moreover, from Eq. (104) to (105), and letting k; = %81, ko = %, we deduce that
h
vt e (—r,r), f'(t)+ §|f(3)(t)| < —k; <0, and fO(t)>ky >0, (109)

so that the strict concavity of f — & f” implies that (f — Zf)(¢t) < 1 for t €
(—=r,—h,) U (0,7).
It remains to prove that (f + 2 f)(t) < 1 for t € (—r,r) \ (—h,,0]. A Taylor

expansion of f and f’ yields (writing as usual 7, = 4 — m)

1= () = () = 1= 1(0) = 5(0) =k, 507 O(0) = h 0 f0(0) + Fah)

(.

Vv Vv
=0 =0
h,

1— <f<_hn> + 7.][./<_hn)) =1- f(O) + %f/a]) +hn373f(3)<0) - hn4/74f(4)<0) + R2<hn>

~~
=0
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Adding both equations we get

1= (f(=hn) + %f’(—hn» = =2k "9 f D (0) + (1 + Ro) () (110)
> 2(—74)kohy' 4+ (Ry + Ra)(hy), (111)

where

Ry + Ro(h) = hy,” /01(—f(5)(shn) + fO)(=shy)) (“ —s) (- S>3) ds,  (112)

4! 2 x 3!
1
with  1f P < 150 oo + 128) e = O(1) (113)
Hence,
h,
I (f(_hn) + ?f,(_hn)) 2 2(_74)k2 hn4 + O(hn5) > 0. (114)
———
>0

Moreover,by the strict concavity of f -+ 2 f'. we also deduce that (f + % f")(t) < 1 for
t € (=r,—h,]U(0,r), thus we get the local inequalities (106) and (107), hence the global
inequalities (102) and (103).

To conclude, the constants in the condition on % are O(1), and gathering the
asympotics for ¢y, o, c3,, We obtain ol — O(h,?), o = O(1). O

6. Numerical illustrations

In this section, we illustrate the usefulness of our analysis to gain a precise
understanding of the recovery performance of £*-type methods (LAssO and C-BP) for
both deconvolution and compressed sensing problems. The code to reproduce these
numerical experiments is available onlines.

6.1. Convergence of pre-certificates

In this section and in Section 6.2, we consider the deconvolution problems in the
case where ¢ is an ideal filter, i.e. whose Fourier coefficients

VkeZ, ¢k)= / o(t)e 2Rt
T
satisfy ¢(k) = 1if k € {—f., ..., f.} and ¢(k) = 0 otherwise. This allows us to
implement exactly the ® operator appearing in the LLASSO and C-BP problem since
Im(®) is a finite dimensional space of dimension ) = 2f, + 1, i.e. it can be represented
using a matrix of size (@, P) when evaluated on a grid of P points. In Figures 1 and 2
we used f. = 10.

I https://github.com/gpeyre/2015-IP-1lasso-cbp/



Figure 1: Display of ny° (red) and pr (blue) pre-certificate for different input positive
measures my (showed as black dots to symbolize the position of the Diracs).

Figure 1 illustrates for the case of two (N = 2) and three (N = 3) spikes
the behavior of the vanishing pre-certificate 1y (see Definition 3) useful to analyze
LAsso/BLASSO problems and of the pre-certificate pur (see Definition 7) useful to
analyze C-BP problems.

We first notice that for all the (positive) input measures (i.e. whatever the
spacing between the Diracs), ny° is always a non-degenerate certificate (in the sense
of Proposition 3), meaning that one actually has ny® = n3° (where the minimal norm
certificate n3° is defined in (37)). This empirical finding is the subject of another
recent work on the asymptotic of sparse recovery of positive measures when the spacing
between the Diracs tends to zero [16]. Since 7§° is non-degenerate, one can thus apply
Theorem 2 to analyze the extended support of the LASSO (see below Section 6.2 for a
numerical illustration).

For the C-BP problem, the situation is however more contrasted. We observe
that when the Dirac masses are separated enough (first row) then the pre-certificate
pr is a valid certificate, meaning the the Twice Non-Degenerate Source Condition (see
Definition 8) holds. This means that Theorem 4 can be applied to analyze the extended
support of C-BP (see Section 6.2 below for a numerical illustration). But when the
Dirac masses are too close (second and third rows), one has |ur|-~ > 1, so that one
cannot ensure the support stability of the C-BP solution with our result.

6.2. Extended support for deconvolution

We still consider the case of an ideal low pass filter. Figure 2 displays the evolution,
as a function of A (in abscissa) of the solutions ay of (P} (y)) and of (ay, by) of (Q%(y)).
We consider here the case of an input measure with two nearby Diracs (displayed as
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I‘ed/blue dots in the upper-left part of the Fionre) and when there is na noice ie =10
Each 1-D curve (either plain or dashed)
e.g. (ay);, for some index i (only non-zer

0 5% 1073 0 5x 1073

C-BP, ay (zoom) C-BP, % (zoom)

Figure 2: Display of the evolution as a function of A of the solutions of the LLASSO
and C-BP problems. Note that dashed curved have been (artificially) slightly shifted to
avoid that they overlap with the plain curve.

The solutions path A — ay (for LASSO) and A — (ay, by) (for C-BP) are continuous
and piecewise affine, which is to be expected since the regularizations (/! and ¢! under
conic constraints) are polyhedral. The upper-left plot in the figure displays the pre-
certificate 7{° (in magenta, see Definition 3) and pr (in green, see Definition 7).
This shows graphically that these two precertificates are non-degenerate (according to
Definitions 2 and 8) so that the results of Theorems 2 and 4 hold, hence precisely
describing the evolution of the solution on the extended support when A is small. On
these graphs, this corresponds to the first segment of the corresponding piecewise affine
paths.

The behavior for BP agrees with our analysis. As predicted by Theorem 2, there
exists a range of values 0 < A < A\g on which the solution is exactly supported on the
extended support J, which is composed of four spikes (the plain curve corresponds to the
support I and the dashed curve corresponds to J\I). Also, as predicted by Proposition 7
in the case w = 0, we verify that A\ = O(h,,) and that the Lipschitz constant of A\ — a,
is of order O(1/h,).
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In sharp contrast, the behavior for C-BP is less regular, since the range 0 < A < \g
on which the solution is supported on the extended support is shorter, as it can be clearly
seen on the zoom for very small values of X\. This is in agreement with Proposition 16
which shows that ) is of the order of O(h,*) and that the Lipschitz constant of
A= (ay, by) is of order O(1/h,*). On this range of small \, as predicted by Theorem 4,
the support of the solutions (which correspond to the extended support J described
in Theorem 4) is composed of one pair of neighboring spikes for each original spike.
For indices on the support ¢ € I, one has |(by):|/(ax); < h/2 (the constraint is non-
saturating, and the spike moves “freely” inside (ih — %, ih + 2)) while for indices on the
extended part i € J\I, one has |(by):|/(ax); = h/2 (the constraint is saturating, the
spikes are fixed at half-grid points). Another part of the path is interesting, for A not so
small (say A > A1), which is in fact the prominent regime in the non-zoomed figure. For
this range of A, there is still a pair of spikes for each original spike, but this time both
spikes saturate, on same side. This observation should be related to Proposition 13 and
Remark 10 which predict that, in the case where ) (1) # 0, the C-BP yields either
one spike or a pair of spikes with the same shift (the latter case is in fact overwhelming).

6.3. Extended support for compressed sensing

To show the usefulness of our “abstract” support analysis of the LASSO problem
(Section 4), we illustrate its use to analyze the performance of ¢! recovery in a
compressed sensing setup. Compressed sensing corresponds to the recovery of a high
dimensional (but hopefully sparse) vector ag € R from low resolution, possibly noisy,
randomized observations y = Bag + w € R?, see for instance [8] for an overview of the
literature on this topic. For simplicity, we assume that there is no noise (w = 0) and

@xP g g realization from the Gaussian matrix

we consider here the case where B € R

ensemble, where the entries are independent and uniformly distributed according to a

Gaussian A (0, 1) distribution. This setting is particularly well documented, and it has

been shown, assuming that ag is s-sparse (meaning that |supp(ag)| = s), that there are

roughly three regimes:

—Ifs<sy= WQ(P), then ag is with “high probability” the unique solution of (Py(yo))
(it is identifiable), and the support is stable to small noise, because ng (as defined
in (27)) is a valid certificate, |nr|~ < 1. This is shown for instance in [36, 20].

det.

-If s < s w, then ay is with “high probability” the unique solution
of (Po(yo)), but the support is not stable, meaning that nr is not a valid certificate.
This phenomena is precisely analyzed in [11, 1] using tools from random matrix theory
and so-called Gaussian width computations.

— If s > s1, then ap with “high probability” is not the solution of (Py(yo)).

We do not want to give details here on the precise meaning of with “high probability”,

but this can be precisely quantified in term of probability of success (with respect to

the random draw of B) and one can show that a phase transition occurs, meaning that

for large (P, @) the transition between these regimes is sharp.
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While the regime s < s is easy to understand, a precise analysis of the intermediate
regime sy < s < sp in term of support stability is still lacking. Figure 3 shows how
Theorem 1 allows us to compute numerically the size of the recovered support, hence
providing a quantification of the degree of “instability” of the support when a small noise
w contaminates the observations. The simulation is done with (P, Q)) = (400, 100).

The left cuve shows, as a function of s (in abscissa), the probability (with respect
to a random draw of ® and ay a s-sparse vector) of the event that aq is identifiable
(plain curve) and of the event that ng is a valid certificate (dashed curve). This clearly
highlights the phase transition phenomena between the three different regimes, and one
roughly gets that sy ~ 6 and s; ~ 20, which is consistent with the theoretical asymptotic
bounds found in the literature.

The right part of the figure, shows, for three different sparsity levels s € {14, 16, 18},
the histogram of the repartition of |J| where J is the extended support, as defined in
Theorem 1. According to Theorem 1, this histogram thus shows the repartition of
the sizes of the supports of the solutions to (P,(y)) when the noise w contaminating
the observations y = Bag + w is small and A is chosen in accordance to the noise
level. As one could expect, this histogram is more and more concentrated around the
minimum possible value s (since we are in the regime s < s; so that the support I of
size s is included in the extended support J) as s approaches sy (for smaller values,
the histogram being only concentrated at s since J = I and the support is stable).
Analyzing theoretically this numerical observation is an interesting avenue for future
work that would help to better understand the performance of compressed sensing.

Conclusion

In this work, we have provided a precise analysis of the properties of the solution
path of ¢!-type variational problems in the low-noise regime. This includes in particular
the LASsO and the C-BP problems. A particular attention has been paid to the support
set of this path, which in general cannot be expected to match the one of the sought
after solution. Two striking examples support the relevance of this approach. For
the deconvolution problem, we showed theoretically that in general this support is not
stable, and we were able to derive in closed form the solution of the “extended support”
that is twice larger, but is stable. In the compressed sensing scenario (i.e. when the
operator of the inverse problem is random), we showed numerically how to leverage our
theoretical findings and analyze the growth of the extended support size as the number of
measurements diminishes. This analysis opens the doors for many new developments to
better understand this extended support, both for deterministic operators (e.g. Radon
transform in medical imaging) and random ones.
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Figure 3: Left: probability as a function of s of the event that aq is identifiable (plain
curve) and of the even that its support is stable (dashed curve). Right: for several value
of s, display of histogram of repartition of the sizes |J| of the extended support J.
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Appendix A. Useful properties of the integral transform

Lemma 6. Let K € N* and assume that ¢ € CX(T x T). Then for all p € L*(T),
d*p € CK(T) and for all k € {0,1... K}

e, @pN) = @) el ypla)ds (A1)
T
Moreover, the adjoint operator

L3(T) — C/(T)

o) . ,
p o [o(0)Fo(z,y)p(z)dx

(A.2)

is compact for all k € {0,1,... K}.

Proof. The first part of the lemma is a standard application of the Lebesgue dominated
convergence theorem.
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As for the second part, it is a consequence of the Ascoli-Arzela theorem. Indeed,
let Br2(0,1) = {p € L*(T); ||pll2 < 1}, and F = {®*p; p € B2(0,1)}. Then F C C(T)
is bounded since

@Wwwﬂé¢A«®Vﬂx@f®¢ﬁ@@W®<xM@NWM

Moreover, it is equicontinuous since

0 p(a) — 0 p(a)] =

Awm%uwww@ﬁw%wm@> (A3)

< ez — 1,0, (A4)

where wg,r, is the modulus of continuity of (92)*¢. Thus Ascoli-Arzela’s theorem
ensures that ®*)*B;,(0,1) is relatively compact, hence the result. O

An interesting consequence of the above lemma is the following. Given any bounded
sequence {p, tnen in L*(T), we may extract a subsequence {p,s }.en which converges
weakly towards some p € L?(T). Then, the (sub)sequence ®*p,, converges towards ®*p
for the (strong) uniform topology, and its derivatives ®®*)*p,, also converge towards
®*)*j for that topology.

Appendix B. Asymptotic expansion of the inverse of a Gram matrix

In this Appendix, we gather some useful lemmas on the asymptotic behavior of
inverse Gram matrices.

Lemma 7. Let A: RY — L*(T), B: RN — R" be linear operators such that A has full
rank and B is invertible. Then (AB)" = B71AT.

Proof. 1t is sufficient to write
((AB)*(AB)) ' (AB)*) = BY(A*A) !B " B*A* = B A",
U

Lemma 8. Let A, B, By,: RY — L*(T) be linear operators such that B, = B+ O(h) for
h >0, and that (A B) has full rank. Let I1 be the orthogonal projector onto (Im A)*,

and let
def. A*
Gy <A*+hB,’;> (A A+hBh)
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and s € RY. Then for h > 0 small enough, G and B*I1B are invertible, and

¢ <§> 1 ( (B'IIB)"'B*A**s ) Lo, B

~ h \=(B'IB)"'B*At*s
+ 1 (BUB)"'B
(4 a+nB) =5 <_(B*HB)1B*H> +0(1), (B.2)
+,%
but (A At hBh> (2) — At*s — [IB(BIIB) ' B*A**s + O(h). (B.3)

0 hly
G- In 0 A*A A*Bp\ (In Iy
"Iy niy) \BrA B:;B,)\ 0 hiy)
Since (A B) has full rank, the middle matrix is invertible for h small enough, and
-1
o1 Iy —3In) [A*A A*B, In 0
o \o iy J\BiA BB, —iIy iy )

Writing (Z Z) E) <gfiﬁ g;g];), the block inversion formula yields

1
a b B at+a 'S tca! —a1pS!
c d a —S~tea™t St ’

where S = d —ca™'b = B;B), — BiA(A*A)"'A*B), = B;11B,

Proof. Observe that (A A+ hBh> = (A Bh> (IN [N> so that

is indeed invertible for small h since (A B) has full rank. Moreover, a~'bS—! =
AT By (B;IIBy) Y, and S™lca™! = (B;IIBy,) ' Bi AT,

T _l[ -1 —-1p¢qQ-1,.,—1
Now, we evaluate G;l (8> = ( N h N) (a s+a” b5 ca S). We obtain
S

0 %IN —S~tea™ts
(s 1 { S tea™ts 1 ( (B*IIB)"'B*A**s
S0 (s) h (—S‘lca_ls +00) h \ —=(B*IIB)"!B*A*™*s +0()

-1
+ (I —+Iy) [A*A A*B, A

Eventually, by L 7,(AA B): h )
ventually, by Lemma +hBy (0 %bv) (BZA B}, By, B;,

We obtain

Iy —iIy\ [A* — A*B,(B{IB,) ' Bl
—(ByI1B,) ' Bl
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and we deduce

+ 1 (BUB) B
(4 A+nB) =5 (_(B*HB)lB*H) +0(1),

+,%
and (A A+hBh) (2) - (A+v* _TIBy(BuIIB,) Bl AT HBh(B,’;HBh)‘1>

[N 0 S
—%IN %IN S

= At*s —IIB(B*IIB) 'B*A™*s + O(h).

O
Lemma 9. Let A, B,C,Cy,: RN — L*(T) be linear operators such that Cj, = C + o(1)
for h > 0, and that (A B C) has full rank. Let I1 be the orthogonal projector onto
(Im (A B))L, and let

(A+5B)
def.
G2 (A-iBy | (A+4B A-LB A+LB4IG).
(A+ 2B+ h3Cy)*

Then for h > 0 small enough, G;, and C*IIC are invertible, and

-1 lN 1 _IN T —1 ek T ﬂN 1
G || == | 0 |(ioe (A B) ol
]]-N IN

. —(C*TIC)'C* I .
(A+gB A-tp A+§B+h3ch) = 0 +0<ﬁ),
(CHIC) el

but
A+ tpe \ 7T 1y N\ N/
Ar —bp Iy | = (B*> ( g) —Tc(c*ne) e (B*> ( g)
A+ LB+ h3C;, Iy
+o(1).
Proof. Observe that
In In Iy

h
(A+gB A-!B A+gB+h30h>:(A B Ch>diag (1,§,h3) Iy —In Iy
0 0 Iy
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As a result, for h > 0 small enough G}, is invertible and

-1

iyl —Iy L o\ [AA AB A,
Gl= |1y —lIy 0 |diag <1,%,ﬁ) B*A B*B B'C,
0 0 Iy C:A CiB C:C

, 2 1 %IN %fN 0

X dlag (17 E, ﬁ) EIN —§[N 0

—Iy 0 Iy

the middle matrix being invertible from the full rank assumption on (A B ().

- et o (T T+ .
Moreover, writing I' e (A B) and (a b) e ( Ch), we obtain

c d i Croy,
1
A*A A'B AC, 1
—a-1pS1
B'A B'B B'C, :<—S?ca1 aSls )
CiA CiB CiCy
where v = a ! 4+ ¢S tleat, S ¥ d— calh = C;:I:[Ch, a 'St =

(T*T) ' T*CL (CEIICY) Y, S~ lea™ = (C3TIC,) ' CT(I*D) 7!, and II is the orthogonal
projector onto (ImT')*. Thus

]lN %IN %IN —IN -1 _ 1N
_ , 2 1 u —a 1S
Ghl ]lN = %[N _%[N 0 dlag <1, E’ ﬁ) (—Slcal Sil ) 0
1y 0 0 Iy 0
1
(00 —Ix u ( g) '
=— 10 0 0 +o0 (—)
3 h3
"o o Iy
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Eventually, one has

+
(A+%B A-LB A+LB+1C,)

Uy ik I,
=iy “iry 0 m%uﬁ?ﬁ)@ a)
0 0 Iy

I
|
o o o

0 Iy
—(C*T1IC)~'C* I

: 0 vo(55)
=3 N 5 o\ 73 )
h (C*IIC) e+ h

and
+,% ]lN
(A+%B A-LB A+5B+1C) | Ly
1y
AN AT ON A I )
=\ dlag<1aﬁ7ﬁ) sIn —5In —In 1y
h 0 0 Iy Ty
~ - - ~ 1
= [F*’* — HCh(C,’;HCh)’lC,’;FJ“*] ( 6V>
T+ % In 1 *T7 —1 T+ * 1y
=" 0 - cere)—-c 0 +o(1)
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