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 from the setting of the Sobolev space W 1,2 (R) to more general Besov spaces B 1/p p,1 (R). The main result gives an estimate from below of the trace of a function from the Besov space on a uniformly distributed discrete subset. We also prove the corresponding result in the multivariate case and discuss some applications to irregular approximate sampling in critical Besov spaces.

R |ζ| 2 | f (ζ)| 2 dζ R |x| 2 |f (x)| 2 dx ≥ f 4 L 2 16π 2 ,
where f ∈ L 2 (R) and f (ζ) = R f (x) exp(-2πixζ) dx. It is frequently refereed to as a restriction for a simultaneous good localization of a function and its Fourier transform around the origin. It can also be read as an inequality preventing smooth functions with bounded norm (in some homogeneous Sobolev space) to be well concentrated, since

R |ζ| 2 | f (ζ)| 2 dζ = f ′ 2 L 2 = f 2 Ẇ 1,2 .
Here we use standard notation, W s,p (R) = {f ∈ L p : (I -∆) s/2 f ∈ L p } for s ≥ 0 and p ≥ 1 and define the (homogeneous) norm in W s,p (R) by f Ẇ s,p = ∆ s/2 f L p for f ∈ W s,p (R).

The Heisenberg inequality was further generalized by Cowling and Price:

Theorem (Cowling-Price, [START_REF] Cowling | Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality[END_REF]). Let p, q ∈ [1, ∞] and a, b > 0. There exists a constant K such that

(1.1) |x| a f L p + |ξ| b f L q ≥ K f L 2 for all f ∈ L 2 (R) if and only if a > 1 2 - 1 p and b > 1 2 - 1 q .
If this is the case, let γ be given by

γ a - 1 2 + 1 p = (1 -γ) b - 1 2 + 1 q
then there exists a constant K such that

|x| a f γ L p |ξ| b f 1-γ L q ≥ K f L 2 .
Again, when q = 2,

|ξ| b f L 2 (R) = f Ẇ b,2 .
In [START_REF] Strichartz | Uncertainty principles in harmonic analysis[END_REF] R. Strichartz obtained a number of uncertainty inequalities in Euclidean spaces, connecting smoothness of a function to its concentration on a suitably uniformly distributed set. His starting point was the following:

Theorem (Strichartz,[START_REF] Strichartz | Uncertainty principles in harmonic analysis[END_REF]). Let {a j } ∞ -∞ be a sequence of points with a j+1a j ≤ b, lim j→±∞ a j = ±∞, and let f ∈ W 1,2 (R).

If j |f (a j )| 2 ≤ (1 -ε) 2 b -1 f 2 L 2 then f ′ 2 L 2 ≥ cε 2 b -2 f 2 L 2 .
Our aim here is to extend this result to L p -smoothness setting as the Cowling-Price Theorem extends the classical Heisenberg Inequality. To be able to consider the values of a functions f at some points, we assume that the function possesses some smoothness. For the classical case of L 2 -norm we need at least derivative of order 1/2. The embedding theorem suggests that we would require at least 1/p-smoothness for L p -norms. The right scale turns out to be that of Besov spaces. Our main result gives bounds (also from below) on the trace of functions from Besov spaces on some uniformly distributed union of subspaces. Note also that Paley-Wiener spaces are included in Besov spaces so that our results cover some results in sampling theory, though with non-optimal density. In particular, it implies the following statement. 

E ⊂ R m is a discrete set such that ∪ x∈E [x -b, x + b] m = R m
and each point belongs to at most D distinct sets in this union, the following inequality holds

C 1 f L p ≤ b m/p G |f (x)| p dH d-m (x) 1/p ≤ C 2 f L p .
We remark that the right hand side inequality follows from localization and trace properties of the Besov spaces, the aim is to prove the left hand side estimate. However our argument gives both inequalities simultaneously and in particular provides a quite simple proof of the classical trace estimate. We consider the critical Besov spaces for which the trace inequality holds, the result does not hold in the spaces B s p,q with s < m/p. The concentration principle says that a function satisfying the conditions above cannot have too many gaps, the precise statement is given by the left hand side inequality above. We also rewrite the result as sampling inequalities for functions in the corresponding Besov spaces and apply it to give estimates for irregular approximate sampling. Similar one-dimensional approximation results for the case of regular samples were obtained recently in [START_REF] St | Approximate sampling theorem and the order of smoothness of the Besov space, Harmonic analysis and nonlinear partial differential equations[END_REF].

The remaining of the paper is organized as follows. We start by recalling the main facts on Besov spaces that we use. Section 2 is then devoted to the one-dimensional version of Theorem 1.1 and some corollaries. In section 3 we prove the main result in higher dimensions and apply it to sampling theory.

1.2. Preliminaries on wavelets and Besov spaces. We recall very briefly the basics of multiresolution wavelet analysis (for details see for instance [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]). For an arbitrary integer N ≥ 1 one can construct functions ψ 0 ∈ C N (R) (called the scaling function) and ψ 1 ∈ C N (R) (called the mother wavelet), with (i) ψ 0 , ψ 1 ∈ C N (R) and are real valued;

(ii) for ℓ = 0, 1, m = 0, . . . , N and k ≥ 1 there exists

C k such that |∂ m ψ ℓ (x)| ≤ C k (1 + |x|) -k ; (iii) the set of functions ψ 1 j,k : x → 2 j/2 ψ 1 (2 j x -k), j, k ∈ Z forms an orthonormal basis for L 2 (R). (iv) ψ 1 has N vanishing moments R x k ψ 1 (x) dx = 0 for k = 0, . . . , N -1.
We will then say that ψ 1 is N -regular. Now, in higher dimension d ≥ 2, we introduce

0 d = (0, . . . , 0), 1 d = (1, . . . , 1) and L d = {0, 1} d \ {0 d }.
An orthonormal basis of L 2 (R d ) is then obtained by tensorization: for λ = (k, l) ∈ Z d × {0, 1} d with k = (k 1 , . . . , k d ) and l = (l 1 , . . . , l d ) we define

ψ j,λ (x) = d i=1 ψ lj j,ki (x). Any function f ∈ L 2 (R d ) can then be written as f = (j,λ)∈Z×Z d ×L d c j,λ ψ j,λ with c j,λ = R d f (x)ψ j,λ (x) dx.
Let s > 0, 1 ≤ p; q ≤ ∞. Assume that ψ 1 is at least [s] + 1-regular. According to [START_REF] Bourdaud | Ondelettes et espaces de Sobolev[END_REF][START_REF] Kyriazis | Wavelet coefficients measuring smoothness in H p (R d )[END_REF][START_REF] Meyer | Ondelettes et opérateurs[END_REF], the homogeneous Besov space Ḃs p,q (R d ) can be defined as the space of all locally integrable functions such that the Besov norm

(1.2) f Ḃs p,q (R d ) =    j∈Z   2 (s-d/p+d/2)j   λ∈Z d ×L d |c j,λ | p   1 p    q    1 q
is finite. An alternative definition is as follows [START_REF] Peetre | New thoughts on Besov spaces[END_REF][START_REF] Triebel | Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures, and related means[END_REF][START_REF] Triebel | Theory of function spaces III[END_REF]. Fix an arbitrary non-negative smooth

function ρ supported in {y ∈ R d : 1 2 < |y| < 2} such that, for y = 0, j∈Z ρ(2 -j y) = 1.
Denote by F the Fourier transform an S ′ (R d ) (the space of tempered distributions) and by F -1 the inverse Fourier transform. Then Ḃs p,q (R d ) is the space of all tempered distributions such that

(1.3)   j∈Z 2 jsq F -1 ρ(2 -j •)F [f ] q L p (R d )   1 q .
Moreover, this quantity defines an equivalent norm to f Ḃs p,q (R d ) . Using this norm, we see that there is a constant C such that, if supp

F (f ) ∩ {|ξ| < b} = ∅ then f Ḃs p,q (R d ) ≥ Cb s-s ′ f Ḃs ′ p,q (R d ) if s > s ′ . On the other hand, if we write P W p b = {f ∈ L p : supp F (f ) ⊂ [-b, b]} for the closed subspace of L p with distributional Fourier transform supported in [-b, b], then P W p b ⊂ B s p,q
for every s > 0 and q ≥ 1. Note that Besov spaces are also related to Sobolev spaces in the following way for p ≥ 1 and ε > 0, q ′ ≥ q > 0 W s+ε,p ֒→ Ḃs p,q ֒→ Ḃs p,q ′ ֒→ W s-ε,p . Functions in the Besov space B d/p p,1 (R d ) coincide with continuous ones almost everywhere. We will take the continuous representative. The trace of a function in

B d/p p,1 (R d ) on a subspace M of codimension r belongs to B r/p
p,1 (M ). We refer the reader to [START_REF] Triebel | Theory of function spaces III[END_REF] and references there for the details; interesting results on local regularity of functions from the critical Besov spaces can be found in [START_REF] St | On the regularity of functions in critical Besov spaces[END_REF].

Sampling and uncertainty in dimension one

2.1. Localization inequalities. First, we prove one-dimensional version of Theorem 1.1 to demonstrate the main ideas avoiding technical complications. In the next section we outline the changes that should be done in multivariate case. The proof is rather classical and shares some features with Stricharz's original approach but employs wavelet decomposition. For applications of similar techniques to irregular sampling see e.g. [START_REF]Gröchenig Reconstruction algorithms in irregular sampling[END_REF][START_REF]Gröchenig Irregular sampling of wavelet and short-time Fourier transforms[END_REF].

Proposition 2.1. Assume that f ∈ B 1/p p,1 (R), for some p ≥ 1. If {a n } n∈Z is an increasing sequence, lim ±∞ a n = ±∞, a n+1 -a n ≤ b and n∈Z |f (a n )| p ≤ (1 -ε) p b -1 f p L p , then f Ḃ1/p p,1
≥ cεb -1/p f L p , where c depends on p only.

Moreover, there is a constant C, depending only on p, such that,

if b ≤ Cε f L p f Ḃ1/p p,1
p and a j are as above with b/2 ≤ a j+1a j ≤ b then

1 2b 1/p f L p ≤ n∈Z |f (a n )| p 1/p ≤ 5 2b 1/p f L p . Proof. Let ψ be a wavelet function such that ψ(x) = 0 when |x| > R (ψ = ψ 1 from the previous section). Write f = j∈Z k∈Z f, ψ j,k ψ j,k ,
where ψ j,k are defined as above. It follows from the estimates below that the series converges uniformly. For each n ∈ Z, let

I n = [(a n-1 +a n )/2, (a n +a n+1 )/2], then b n = |I n | ≤ b.
Fix some n and let x ∈ I n . Then

f (x) -f (a n ) = j∈Z k∈Z f, ψ j,k ψ j,k (x) -ψ j,k (a n ) = j∈Z 2 j/2 k∈Z f, ψ j,k ψ 0 (2 j x -k) -ψ 0 (2 j a n -k) . If ψ(2 j x -k) = 0 then 2 j x -R ≤ k ≤ 2 j x + R. Write Z x (j) = {k : 2 j x -R ≤ k ≤ 2 j x + R}, Z x (n, j) = Z x (j) ∪ Z an (j), Z(n, j) = x∈In Z x (j),
and note that

|Z x (j)| ≤ 2R + 1, therefore |Z x (n, j)| ≤ 4R + 2. Now, (2.4) |f (x) -f (a n )| ≤ j∈Z 2 j/2 max k |ψ(2 j x -k) -ψ(2 j a n -k)| k∈Zx(n,j) | f, ψ j,k | ≤ (4R + 2) 1/p ′ j∈Z 2 j/2 max k |ψ(2 j x -k) -ψ(2 j a n -k)|E n,j ,
the last inequality follows from Hölder's inequality with the notation

1 p + 1 p ′ = 1 and
(2.5)

E n,j =   k∈Z(n,j) | f, ψ j,k | p   1/p . Further, we obtain |Z(n, j)| ≤ 2R + 1 + 2 j b and if |n -m| > 2 1-j Rb -1 + 1 then Z(n, j) ∩ Z(m, j) = ∅.
Therefore, for each j, each k ∈ Z belongs to at most 2 1-j Rb -1 + 2 different Z(n, j)'s. We choose j 0 such that 2 -j0 ∈ (b, 2b], and set

M j := sup k∈Z |{n : k ∈ Z(n, j)}|.
Then we get (2.6)

M j ≤ 2 1-j Rb -1 + 2 ≤ C if j ≥ j 0 Cb -1 2 -j if j < j 0 ,
where C depends on R only.

Clearly, for x, a ∈ I n we have

|ψ(2 j x -k) -ψ(2 j a -k)| ≤ 2 ψ ∞ , 2 j |x -a| ψ ′ ∞ .
Then there exists a constant C that depends only on ψ such that

(2.7) |f (x) -f (a n )| ≤ C j≥j0 2 j/2 E n,j + C j<j0 2 3j/2 |x -a n |E n,j .
Taking the L p -norms over x ∈ I n and applying the triangle inequality, we get

In |f (x)| p dx 1/p -|f (a n )|b 1/p n ≤ In |f (x) -f (a n )| p dx 1/p ≤ C j≥j0 2 j/2 b 1/p E n,j + C j<j0 2 3j/2 b 1+1/p E n,j .
It remains to take the ℓ p norm in n to obtain

f L p (R) - n∈Z b n |f (a n )| p 1/p ≤ n∈Z In |f (x)| p dx -|f (a n )| p b n 1/p ≤ C j≥j0 2 j/2   n∈Z k∈Z(n,j) | f, ψ j,k | p   1/p b 1/p +C j<j0 2 3j/2   n∈Z k∈Z(n,j) | f, ψ j,k | p   1/p b 1+1/p .
We have also

n∈Z k∈Z(n,j) | f, ψ j,k | p ≤ M j k∈Z | f, ψ j,k | p ,
and applying (2.6), we get

f L p (R) - n∈Z b n |f (a n )| p 1/p ≤ C j≥j0 2 j/2 k∈Z | f, ψ j,k | p 1/p b 1/p +C j<j0 2 (2-1/p)j k∈Z | f, ψ j,k | p 1/p b.
Finally, notice that if j ≤ j 0 then 2 (1-1/p)j ≤ Cb 1/p-1 , hence

f L p (R) - n∈Z b n |f (a n )| p 1/p ≤ C j∈Z 2 j/2 k∈Z | f, ψ j,k | p 1/p b 1/p (2.8) = C f Ḃ1/p p,1 b 1/p since 1 2 = s - 1 p + 1 2 when s = 1/p. The inequality f Ḃ1/p p,1 ≥ cb -1/p ε follows since b n ≤ b. Further, if C f Ḃ1+1/p p,1 b 1/p ≤ 1/2 f L p (R) and b n = (a n+1 -a n-1 )/2 ≥ b/2 then 1 2b 1/p f L p (R) ≤ n∈Z |f (a n )| p 1/p ≤ 5 2b 1/p f L p (R) .

Some corollaries. As a first application of this proposition, let us establish the following version of the Uncertainty Principle:

Corollary 2.2. Let p ≥ 1 and α > 0. Let f ∈ L p then there exists c that depends only on p and α such that

|x| α/p f L p (R) f α Ḃ1/p p,1 ≥ c p f 1+α L p (R) .
Note that a stronger version has been recently obtained by J. Martin and M. Milman in [START_REF] Martin | Isoperimetric weights and generalized uncertainty inequalities in metric measure spaces[END_REF], see the lines following inequality (5.13) in [START_REF] Martin | Isoperimetric weights and generalized uncertainty inequalities in metric measure spaces[END_REF].

Proof. We may assume that f p = 1. Suppose that |x| α/p f p = A then for any b > 0

|x|>b/4 |f (x)| p dx ≤ (4b -1 ) α |x|>b/4 |x| α |f (x)| p dx ≤ 4 α b -α A p . But |x|>b/4 |f (x)| p dx = b/4 -b/4 j∈Z\{0} |f (x + jb/2)| p dx, therefore there exists a ∈ (-b/4, b/4) such that j∈Z\{0} |f (a + jb/2)| p ≤ 4 α b -1-α A p .
We choose b such that 4 α b -α A p = 1/2. Then by the proposition above we obtain

f Ḃ1/p p,1 ≥ Cb -1/p = CA -1/α .
This implies the required inequality.

We will now show some sampling estimates for functions in certain Besov spaces:

Corollary 2.3. Let f ∈ B 1/p p,1 ( 
R) and a = {a j } be a sequence as above.

(i) If S 1 (f, a) is the piece-wise linear interpolant of f at a. Then f -S 1 (f, a) L p ≤ Cb 1/p f Ḃ1/p p,1 . (ii) There exists a bandlimited function g ∈ [-cb -1 , cb -1 ] such that f -g L p ≤ Cb 1/p f Ḃ1/p p,1 and f (a j ) -g(a j ) ℓ p ≤ C f Ḃ1/p p,1
.

If in addition f ∈ B s p,∞ for some s > 1/p then f -g L p ≤ C s b s f Ḃs p,∞ and f (a j ) -g(a j ) ℓ p ≤ C s b s-1/p f Ḃs p,∞ .
Proof. The first statement follows directly from the proof of the theorem. Clearly,

|f (x) -S 1 (f, a)(x)| ≤ max{|f (x) -f (a n+1 )|, |f (x) -f (a n )|} for x ∈ [a n , a n+1 ].
Thus integrating (2.4) we obtain the required inequality.

To prove the second statement, let us now assume that ψ 1 is regular and band-limited to some interval [-Ω, Ω]. Let f ∈ Ḃ1/p p,q and write f = j∈Z k∈Z f, ψ j,k ψ j,k .

Let j 0 be such that 2 j0 ≤ b -1 ≤ 2 j0+1 and define

g = j≤j0 k∈Z f, ψ j,k ψ j,k and h = f -g. Then h Ḃ1/p p,q ≤ C f Ḃ1/p p,q
. Further we have

h L p ≤ C   j>j0 2 (-1+p/2)j k | f, ψ j,k | p   1/p ≤ C2 -j0/p   j>j1 2 pj/2 k | f, ψ j,k | p   1/p ≤ Cb 1/p j>j0 2 j k | f, ψ j,k | p 1/p and thus h L p ≤ Cb 1/p h Ḃ1/p p,q ≤ Cb 1/p f Ḃ1/p p,q
. Moreover, if we assume that f ∈ B s p,∞ for some s > 1/p then

h Ḃ1/p p,1 ≤ C s b s-1/p h Ḃs p,∞ ≤ C s b s-1/p f Ḃs p,∞ and h L p ≤ Cb s f Ḃs p,∞
. Now, we apply (2.8) to h and obtain

n∈Z |h(a n )| p 1/p ≤ C b -1/p h L p + h p Ḃ1/p p,1
.

The required inequalities follow.

Some results on regular smooth spline interpolation in such Besov spaces were obtained in [START_REF] St | Approximate sampling theorem and the order of smoothness of the Besov space, Harmonic analysis and nonlinear partial differential equations[END_REF], we discuss a different sampling for the multivariate case in the next section.

Multivariate concentration inequality and irregular sampling

3.1. Localization inequalities in higher dimensions. Similar argument as in the previous section gives the sampling inequalities of Theorem 1.1 formulated in the introduction for functions with small norms in appropriate homogeneous Besov spaces. Example of spaces of functions with homogeneous Besov norms controlled by the corresponding Lebesgue norm are bandlimited functions or more generally functions in shift-invariant subspaces, see [START_REF] Aldroubi | Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces[END_REF][START_REF] Aldroubi | Gröchenig Nonuniform sampling and reconstruction in shift-invariant spaces[END_REF]. Sampling of bandlimited functions from irregular point sets is a well developed topic, see for example [START_REF] Feichtinger | Iterative reconstruction of multivariate band-limited functions from irregular sampling values[END_REF][START_REF] Feichtinger | Irregular sampling theorems and series expansion of band-limited functions[END_REF][START_REF]Gröchenig Reconstruction algorithms in irregular sampling[END_REF][START_REF]Gröchenig Irregular sampling of wavelet and short-time Fourier transforms[END_REF][START_REF] Lyubarskii | The recovery of irregular sampled bond limited functions via tempered splines[END_REF][START_REF] Madych | An estimate for multivariate interpolation, II[END_REF][START_REF] Pesenson | A reconstruction formula for band limited functions in L 2 (R d )[END_REF]; new interesting results on sampling from trajectories can be found in [START_REF] Gröchenig | On minimal trajectories for mobile sampling of bandlimited fields[END_REF]. We obtain the sampling inequalities under much milder smoothness assumptions and reduce the questions of approximate sampling of functions in Besov spaces to those of bandlimited functions.

Let us now describe the general setting of our sampling sets. Our aim here is to provide a description of sampling sets that are intuitive and easy to check rather than a fully general definition that would be too complicated to check in practice. Let 1 ≤ m ≤ d be an integer and b, C 0 > 0 be real.

First we take G to be a finite or countable union of dm dimensional C 1 manifolds (a countable set when m = d). To each a ∈ G we attach an m-dimensional manifold H a in a sufficiently regular way (e.g. H a may be defined through an implicit function). Each H a is endowed with a measure ν a that is absolutely continuous with respect to the corresponding Hausdorff (surface) measure on H a , ν a = ϕdH m Ha with C -1 0 ≤ ϕ ≤ C 0 , measures ν a depend on a also in a regular way, see (ii) below. We further assume that (i) for any a the diameter of H a is bounded in the following way b/2 ≤ diam(H a ) ≤ b,

(ii) for every measurable set E ⊂ R d sets E ∩ H a are ν a -measurable for H m-d -almost all a ∈ G and C -1 0 λ d (E) ≤ G ν a (E ∩ H a )dH m-d (a) ≤ C 0 λ d (E); this implies that for every f ∈ L 1 (R d ), (3.9) 1 C 0 R d |f (x)| dx ≤ G Ha |f (x)| dν a (x) dH d-m (a) ≤ C 0 R d |f (x)| dx, (iii) for every x ∈ R d , R > 0, (3.10) C -1 0 min(R, b) m ≤ ν a B(x, R) ∩ H a ≤ C 0 min(R, b) m , (iv) for every x ∈ R d , R > 0 (3.11) H d-m (G ∩ B(x, R)) ≤ C 0 R d-m max{1, Rb -1 } m . Example 3.1. (i) Let (a n ) n∈Z be an increasing sequence such that b 2 ≤ a n+1 -a n ≤ b then we can take G = ∪ n∈Z P n , where P n = R d-1 × {a n }, here m = 1. For a = (α, a n ) ∈ G we take H a = {α} × a n-1 + a n 2 , a n+1 + a n 2 . G G G G T c T c T c b/2 b b/2 a Ha Figure 1. Example (i) in dimension 2, G = R × {a n } (ii)
The hyperplanes P n can be replaced by more general manifolds. For instance, let (a n ) n∈Z be a sequences such that b 2 ≤ a n+1a n ≤ b and let f : R d-1 → R be smooth bounded function with bounded derivative. Let Pn = x ′ , f (x ′ ) + a n , x ′ ∈ R d-1 then we can take G = ∪ n∈Z Pn . Then if a = x ′ , f (x ′ ) + a n we can again set H a = {a + (0, t) :

|t| ≤ b + max |f |}. (iii) For each k ∈ Z d-1 , let f k : R → R d-1
be a smooth function such that f k takes its values in the ℓ ∞ -ball centered at bk of radius b/4 and such that the derivatives are uniformly bounded from above and below

C -1 0 ≤ f ′ k ≤ C 0 . Let P k = f k (x), x , x ∈ R ⊂ R d and G = k∈Z d-1 P k . To each f k (a)
, a ∈ G we associate H a to be the ℓ ∞ -ball centered at (bk, a) of radius b/4 endowed with the Lebesgue measure.

We will prove the following generalization of Theorem 1.1 Theorem 3.2. Suppose that 1 ≤ p ≤ ∞ and G as above. There exist constants δ,

C 1 , C 2 that depend only on d, p, m, D, C 0 such that if f ∈ B m/p p,1 (R d ), f Ḃm/p p,1 ≤ N f p , and b m/p < δN -1 then C 1 f L p ≤ b m/p G |f (x)| p dH d-m (x) 1/p ≤ C 2 f L p .
Proof. The proof repeats the one-dimensional argument from the previous section. We start with a smooth one-dimensional wavelet function supported on [-R, R] and construct

E ' b © b/2 Ha a G G G Figure 2. Example (iii) in dimension 3
a wavelet basis as outlined in the introduction. We have

f = j∈Z λ∈Z d ×L d f, ψ j,λ ψ j,λ .
Fix some a and let x ∈ H a . Then

f (x) -f (a) = j∈Z 2 dj/2 λ=(k,l)∈Z d ×L d f, ψ j,λ ψ 0,l (2 j x -k) -ψ 0,l (2 j a -k) . Write Z x (j) = {k ∈ Z d : 2 j x -k ∈ [-R, R] d }, Z x (a, j) = Z x (j) ∪ Z a (j), Z(a, j) = ∪ x∈Ha Z x (j),
and note that, |Z x (j)| ≤ C, where C depends on R only. We also define

E a,j =   λ∈Z(a,j)×L d | f, ψ j,λ | p   1/p . Further, it is not difficult to see that |Z(a, j)| ≤ C(1 + 2 jm b m
) and by (3.11) the following inequality holds

M j := sup k∈Z d H d-m {a ∈ G : k ∈ Z(a, j)}| ≤ C 0 2 -j(d-m) if j ≥ j 0 C 0 b -m 2 -dj if j < j 0 ,
where 2 -j0 ∈ (b, 2b] as before. Then (2.7) becomes

|f (x) -f (a)| ≤ C j≥j0 2 dj/2 E a,j + C j<j0 2 (d+2)j/2 |x -a|E a,j .
We take the L p (H a , ν a )-norms over H a . Then we apply the triangle inequality and get

Ha |f (x)| p dν a 1/p -|f (a)|ν a (H a ) 1/p ≤ C j≥j0 2 dj/2 b m/p E a,j + C j<j0 2 (d+2)j/2 b 1+m/p E a,j .
Next, taking the L p norm over each G, we have (3.12)

G Ha |f (x)| p dν a (x) dH d-m (a) 1/p -f (a)ν a (H a ) 1/p L p (G) ≤ C j≥j0 2 dj/2 b m/p E a,j L p (G) + C j<j0 2 (d+2)j/2 b 1+m/p E a,j L p (G) .
Futher, when j ≥ j 0 the estimate for M j above implies

E a,j L p (G) ≤ C 0 2 -j(d-m)/p   λ=(k,l) | f, ψ j,λ | p   1/p .
Then the first sum is the right hand side of (3.12) is bounded by Cb m/p f Ḃm/p p,1 .

For j < j 0 , we have

E a,j L p (G) ≤ C 0 b -m/p 2 -jd/p   λ=(k,l) | f, ψ j,λ | p   1/p .
We divide the second sum in the right hand side of (3.12) into two sums, where j 1 < j 0 will be fixed later,

C j<j0 2 (d+2)j/2 b 1+m/p E a,j L p (G) ≤ C   j<j1 + j0 j=j1   b2 j(d/2+1-d/p)   λ=(k,l) | f, ψ j,λ | p   1/p ≤ Cb j<j1 2 j f L p (R d ) + Cb max j1≤j<j0 {2 j(1-m/p) } f Ḃm/p p,1 ≤ Cb2 j1 f L p (R d ) + Cb 2 j0(1-m/p) + 2 j1(1-m/p) f Ḃm/p p,1
, where the constants depend on ψ and does not depend on j (it follows by a simple scaling argument). Since b2 j0 ∈ [1/2, 1], we obtain j<j0

2 (d+2)j/2 b 1+m/p E a,j L p (G) ≤ C2 j1-j0 f L p (R d ) + Cb m/p 2 m/p 1 + 2 (j1-j0)(1-m/p) f Ḃm/p p,1
.

In summary, (3.12) implies

(3.13) G Ha |f (x)| p dν a (x) dµ(a) 1/p -f (a)ν a (H a ) 1/p L p (G) ≤ C2 j1-j0 f L p (R d ) + Cb m/p C m,p f Ḃm/p p,1
, where C m,p = C 1 + 2 m/p 1 + 2 (j1-j0)(1-m/p) . Taking the lower bound in (3.9) and the upper bound in (3.10) we get

C -1 0 f L p (R d ) -C 1/p 0 b m/p f L p (G) ≤ C2 j1-j0 f L p + Cb m/p C m,p f Ḃm/p p,1
.

Choosing j 1 small enough to have C2 j1-j0 ≤ (2C 0 ) -1 we get

(2C 0 ) -1 f L p (R d ) -C m,p b m/p f Ḃm/p p,1 ≤ C 1/p 0 b m/p f L p (G) .
On the other hand, taking the upper bound in (3.9) and the lower bound in (3.10), (3.13) with j 1 = j 0 implies

C -1/p 0 b m/p f L p (G) -C 0 f L p (R d ) ≤ C f p + C(1 + 2 m/p+1 )b m/p f Ḃm/p p,1
.

The theorem follows immediately.

Remark. The result may be extended to sampling sets that do not exactly satisfy the requirements. For instance let {r n } n∈N be an increasing sequence of positive numbers, r n+1r n ∈ (b/2, b) and let G = ∪ n {x : |x| = r n } be the union of concentric spheres of radius r n . For a ∈ G, |a| = r n , we define

H a = ta, rn-1+rn 2 ≤ t ≤ rn+1+rn 2 for n ≥ 1 ta, 0 ≤ t ≤ r0+r1 2 
for n = 0 .

The right hand side of (3.9) does not hold and we have to replace it by while the left hand side of (3.9) still holds.

Then the proof of the theorem shows that

C 1 f L p (R d ) ≤ b m/p G |f (x)| p dH d-m (x) 1/p ≤ C 2 f L p (R d ,ν)
where ν is the measure dσ(ζ) max(1, r d-1 ) dr (in polar coordinates). We then apply the left hand side of this inequality to f α where α is a smooth function such that α = 0 in a ball B(0, ε) and α = 1 outside the ball B(0, 1/4 

|f (x)| p dH d-m (x) 1/p = G |α(x)f (x)| p dH d-m (x) 1/p ≤ C 2 ψf L p (R d ,ν) ≤ C αf L p (R d ) ≤ C f L p (R d ) .
Therefore the theorem also holds in this case.

A similar reasoning also applies to a spiral. Let r k be as previously and let ρ be a smooth (strictly) increasing function such that ρ(2kπ) = r k . Let G ⊂ R 2 be the curve given in polar coordinates by ρ, that is G = {ρ(θ)(cos θ, sin θ), θ ∈ [0, +∞)}. If θ ∈ [2kπ, 2(k + 1)π] we attach to a = ρ(θ)(cos θ, sin θ) the manifold H a = t(cos θ, sin θ), r k-1 ≤ t ≤ r k+1 (with the convention r -1 = 0).

Irregular sampling.

Let us now outline how the above results fit into existing general sampling procedures. Suppose that f ∈ B m/p p,1 (R d ) and G is the union of dmdimensional subspaces as in the theorem, then we have the trace operator bounded in the following way

T G : B m/p p,1 (R d ) → L p (G), T G f L p (G) ≤ C b -m/p f L p (R d ) + f B m/p p,1 (R d ) .
Assume further that we are given a bounded operator S G : L p (G) → L p (R d ) that interpolates band-limited functions. More precisely, we assume that there is an A > 0 such that

S G u L p (R d ) ≤ Ab m/p u L p (G)
and if g is bandlimited with ĝ(x) = 0 when x ∈ [-cb -1 , cb 

f -S G (T G f ) L p (R d ) ≤ h L p + g -S G (T G g) L p (R d ) + S G (T G h) L p (R d ) ≤ g -S G (T G g) L p (R d ) + h L p (R d ) + Ab m/p h L p (G) .
Applying the theorem we see that the last two terms are bounded by C(1+A)b m/p f B m/p p,1

.

If we further assume better smoothness for f , f ∈ B s p,∞ with s > 1/p, then they are even bounded by C s (1+A)b s f B s p,∞ . Thus sampling of functions in Besov spaces can be reduced to sampling of bandlimited functions. This was done in [START_REF] St | Approximate sampling theorem and the order of smoothness of the Besov space, Harmonic analysis and nonlinear partial differential equations[END_REF] for the case of dimension one and regular samples. We allow irregular sample sets and to claim the correct order of converges of reconstructions, f -S G (T G f ) p ≤ Cb m/p f B m/p p,1 , we need the constants A and B be uniform, i.e., they may depend only on p, m, d and D but not an the specific geometry of the set G.

It can be checked that for example the (iterative) sampling algorithm provided in [START_REF] Aldroubi | Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces[END_REF] can be applied, where the L 2 -estimates can be replaced by L p -estimates, related inequalities can be found in [START_REF] Feichtinger | Irregular sampling theorems and series expansion of band-limited functions[END_REF][START_REF] Pesenson | Plancherel-Polya-type inequalities for entire functions of exponential type in Lp(R d )[END_REF]. Let G = Γ× R m as above, and let Λ = (bZ) m . We consider Λ G = Γ× Λ, it is a discrete separated set in R d . The usual averaging operator V : L p (G) → l p (Λ G ) is bounded, V (u) l p (ΛG) ≤ b (m-d)/p u L p (G) . Let {β j } be a smooth bounded partition of unity adapted to {B(x, 2b)} x∈Λg (see for example Definition 4.2 in [START_REF] Aldroubi | Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces[END_REF]). We define A : l p (Λ G ) → L p by Ac = j c j β j and A 1 = AV T G . Then by Lemma 4.1 in [START_REF] Feichtinger | Iterative reconstruction of multivariate band-limited functions from irregular sampling values[END_REF] choosing c small enough we can guarantee that I -P χ A 1 is a contraction on L p ∩ F -1 (L 2 ([-cb, cb] d ), where P χ : L p → L p is defined by P χ f = (F ) -1 (χ f ) as above. Then there exists N depending only on p, m, d, c such that S G = N k=0 (I -P A 1 ) k P χ AV G satisfies the required uniform estimates.
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