
Security features
in the OpenBSD operating system

Matthieu Herrb & other OpenBSD developers

INSA/LAAS-CNRS, 22 janvier 2015



Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



About myself

PhD in Robotics, Toulouse University, 1991
Research Engineer at CNRS/LAAS
System software

system administration and security officer for LAAS
robots systems software integration

OpenBSD and X.Org contributor
Member of the tetaneutral.net associcative local ISP

http://www.tetaneutral.net


OpenBSD...

Unix-like, multi-platform operating system
Derived from BSD 4.4
Kernel + userland + documentation maintained together
3rd party applications available via the ports system
One release every 6 months
Hardware architectures: i386, amd64, alpha, arm, macppc, sparc, sparc64, sgi, vax...



“Secure by default”

Leitmotiv since 1996
Adopted since by most OS
Non required services are not activated in a default installation.
Default configuration of services providing security
Activating services require a manual action of the administrator
Keep a working (functional, useful) system

→ only a few remote vulnerabilities in more than 15 years.



Objectives

Provide free code (BSD license...)
Quality
Correctness
Adhering to standards (POSIX, ANSI)
Providing good crypto tools (SSH, SSL, IPSEC,...)

→ better security.



Current version

OpenBSD 5.6 released Nov. 1, 2014.
New stuff :

LibreSSL, OpenSSL fork
New getentropy(2) system call
PIE by default on more architectures
OpenSMTPd, a new privilege separated SMTP daemon is now the
default
removed unsafe algorithms from OpenSSH protocol negociation
lots of unsafe code removal (Kerberos, sendmail,...)
...



Increasing resilience to attacks

Provide an unpredictable resource base with minimum permissions
Random stack gap
Program segments mappings randomization

> shared libraries ASLR, random ordering
> PIE
> mmap ASLR

increased use of the ELF .rodata section
malloc randomizations

Where it is possible to spot damage, fail hard
stack protector
stack ghost
atexit/ctor protection



Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



Random numbers in OpenBSD

“libc needs high quality random numbers
available under any circumstances” – Theo de Raadt

in the kernel
in threads
in chroots
in ENFILE/EMFILE situations
in performance critical code

Most important characteristic : Ease of use



Random numbers in OpenBSD: kernel



Use of random numbers in the kernel

random PIDs
VM mappings (including userland malloc/free requests)
network packets creation (sequence numbers)
pf NAT and other operations
port allocation
scheduler decisions
userland arc4random() reseeding via getentropy(2)

Slicing the random stream between many users:
→ resistance to backtracking and prediction.



Random numbers in userland

Per-process stream, with re-seeding:
too much volume of data has moved
too much time elapsed
when a fork() is detected

Slicing between several users occurs too :
malloc(3)
DNS
ld.so
crypto

More than 1000 call points in the libraries and system utilities.



Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



ASLR

stackgap: random offset in stack placement
mmap()
shared libraries
PIE executables by default, including static binaries on most architectures





Randomness in mmap()

Address returned by mmap():

If MAP_FIXED is not specified: returns a random address.

(traditional behaviour: 1st free page after a base starting address)



Randomness in malloc()

> 1 page allocations: mmap() → random addresses.
< 1 page allocations: classical fixed block allocator,
but random selection of the block in the free list.

⇒ heap attacks more difficult.



Protecting dynamically allocated memory

[Moerbeek 2009]

Activated by /etc/malloc.conf→ G
Each bigger than one page allocation is followed by a guard page
⇒ segmentation fault if overflow.
Smaller allocations are randomly placed inside one page.



Propolice / SSP

gcc patches initially developped by IBM Tokyo Research Labs
(2002).

Principle : put a “canary” on the stack, in front of local variables
check it before return.
if still alive: no overflow
if dead (overwritten): overflow → abort()

Only when there are arrays in local variables

Adopted by gcc since version 4.1.
Enabled by default in OpenBSD..

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

Arrays

Canary

Arguments

Frame ptr

return @

Local

Local
scalar

variables



W^X

Principle of least privilege.

Write exclusive or execution right granted on a page..
easy on some architectures (x86_64, sparc, alpha): per page ’X’ bit
harder or others (x86, powerpc): per memory segment ’X’ bit
impossible in some cases (vax, m68k, mips)

In OpenBSD 5.7: WˆX inside the kernel for x86_64

(PaX on Linux...)



Privileges reduction

Completely revoke privileges from privileged (setuid) commands, or commands
launched with privileges, once every operation requiring a privilege are done.
Group those operations as early as possible after start-up.
Examples:

ping
named



Privileges separation

[Provos 2003]
Run system daemons:

with an uid 6= 0
in a chroot(2) jail

additional helper process keeps the privileges but do paranoid checks on all his
actions.

A dozen of daemons are protected this way.



Example: X server

Main X server

unprivileged

unprivileged

privileged

Child

Main X server

Main X server

Main loop

Init 2

Init 1

request

ack

request

descriptor

kill_parent

open_device

privileged

Forkrevoke
privileges



Example: OpenSMTPd



Securelevels

No fine grained policy:
too complex, thus potentially dangerous.

Three levels of privileges
kernel
root
user

Default securelevel = 1:
File system flags (immutable, append-only) to limit root access.
Some settings cannot be changed (even by root).
Restrict access to /dev/mem and raw devices.



Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



Threats on protocols

Internet: favours working stuff over security.

easy to guess values
forged packets accepted as valid
information leaks
use of time as a secret ??



Protection Principle

Use data that are impossible (hard) to guess wherever arbitrary data are allowed, even if no
known attack exists.

counters
timestamps
packet, session, host... identifiers

But respect constraints and avoid breaking protocols:
non repetition
minimal interval between 2 values
avoid magic numbers



Randomness in the network stack

Use:
IPID (16 bits, no repetition)
DNS Queries (16 bits, no repetition)
TCP ISN (32 bits, no repetition, steps of 215 between 2 values)
Source ports (don’t re-use a still active port)
TCP timestamps (random initial value, then increasing at constant rate)
Id NTPd (64 bits, random) instead of current time
RIPd MD5 auth...



PF: more than one trick in its bag

Packet Filter
Stateful filtering and rewriting (NAT) engine
Scrub to add randomness to packets:

TCP ISN
IP ID
TCP timestamp
NAT : rewriting of source ports (and possibly addresses)

Also protects non-OpenBSD machines behind a pf firewall.



Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



OpenSSL & Heartbleed

for years no one really looked at the OpenSSL code
those who had a glance ran away (too horrible)
so everyone blindly trusted the OpenSSL project
then came Heartbleed, made people look again
OpenBSD decided that the only way out was to fork



LibreSSL - goals

Keep the OpenSSL API
Important : remove layers of wrappers around system primitives
malloc wrappers where hiding bugs from valgrind/OpenBSD’s malloc
Printf-like wrappers may have hidden format string bugs
Review the public OpenSSL bug database : dozen of valid bug reports sitting for years
Fix random number generator → getentropy()
Fix many (potential) interger overflows → reallocarray()
Portable version for Linux, MacOSX, Windows,...

http://www.libressl.org/

http://www.libressl.org/


libTLS

new API
hides implementation details (no ASN.1, x509,... structures)
safe default behaviour (hostnames/certificates verification,...)
privilege separation friendly (committed today)
example use in OpenSMTPd, relayd, httpd...
still under active development

http://marc.info/?l=openbsd-cvs&m=142191799331938&w=2


Agenda

1 Introduction

2 Random numbers

3 Increasing resilience

4 Network level protection

5 LibreSSL

6 Conclusion



Conclusion

Lots of progress since the beginning.
Contributed to fix bugs in many 3rd party applications.
Often Copied (good).
Still lots of issues to address...



Bibliography

http://www.openbsd.org/papers/index.html

arc4random - randomization for all occasions, Theo de Raadt, Hackfest 2014, Quebec City.
LibreSSL - An OpenSSL replacement, the first 30 days and where we go from here, Bob Beck, BSDCan 2014.
Exploit mitigation techniques - An update after 10 years, Theo de Raadt, ruBSD 2013, Moscow.
OpenSMTPD: We deliver!, Eric Faurot, AsiaBSDCon 2013.
Time is not a secret: Network Randomness in OpenBSD, Ryan McBride Asia BSD Conference 2007
Security issues related to Pentium System Management Mode, Loïc Duflot, CansecWest 2006.
Preventing Privilege Escalation, Niels Provos, Markus Friedl and Peter Honeyman, 12th USENIX Security Symposium,
Washington, DC, August 2003.
Enhancing XFree86 security, Matthieu Herrb LSM, Metz 2003.

http://www.openbsd.org/papers/index.html
http://www.openbsd.org/papers/hackfest2014-arc4random/index.html
http://www.openbsd.org/papers/bsdcan14-libressl/index.html
http://www.openbsd.org/papers/ru13-deraadt/
http://2013.asiabsdcon.org/papers/abc2013-P4B-paper.pdf
http://www.openbsd.org/papers/asiabsdcon07-network_randomness/index.html
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf
http://www.peter.honeyman.org/u/provos/papers/privsep.pdf
http://www.openbsd.org/papers/xf86-sec.pdf


Questions ?


	Introduction
	Random numbers
	Increasing resilience
	Network level protection
	LibreSSL
	Conclusion

