
HAL Id: hal-01135109
https://hal.science/hal-01135109v1

Submitted on 12 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SVVAMP: Simulator of Various Voting Algorithms in
Manipulating Populations

François Durand, Fabien Mathieu, Ludovic Noirie

To cite this version:
François Durand, Fabien Mathieu, Ludovic Noirie. SVVAMP: Simulator of Various Voting Algorithms
in Manipulating Populations. [Research Report] Inria. 2015. �hal-01135109�

https://hal.science/hal-01135109v1
https://hal.archives-ouvertes.fr


SVVAMP: Simulator of Various Voting Algorithms in Manipulating Populations

François Durand
Paris Dauphine University

Fabien Mathieu and Ludovic Noirie
Alcatel-Lucent Bell Labs France

Abstract

We present SVVAMP, a Python package dedicated to the
study of voting systems with an emphasis on manipula-
tion analysis.

Introduction
History of voting theory has been marked by the discovery
of several paradoxes, such as Gibbard–Satterthwaite impos-
sibility theorem on manipulation (Gibbard 1973; Satterth-
waite 1975). Since no reasonable voting system can avoid
these paradoxes totally, their likeliness of occurrence under
various probability assumptions or in real-life elections has
been studied at length. However, there remain open ques-
tions in the domain, especially about the relative perfor-
mance of various voting systems according to different cri-
teria and under different sets of assumptions on the prefer-
ences of the voters.

Recently, interesting results were published about algo-
rithmic issues linked to voting systems and their manipula-
tion (Bartholdi and Orlin 1991; Xia et al. 2009; Walsh 2010;
Zuckerman, Procaccia, and Rosenschein 2009; Zuckerman,
Lev, and Rosenschein 2011; Gaspers et al. 2013). However,
to the best of our knowledge, there was no publicly available
software building on these existing techniques, in particular
for the study of manipulability.

This observation led us to develop SVVAMP (Simulator of
Various Voting Algorithms in Manipulating Populations), a
Python package designed to study voting systems and their
manipulability.

Voters’ preferences can be imported from external files
or generated by a variety of probabilistic models. SVVAMP
currently implements more than 20 voting systems, and its
object-oriented design facilitates the implementation of new
voting systems. Special attention has been paid to Coali-
tional Manipulability (CM) and its variants. Algorithms for
Condorcet efficiency, Individual Manipulability (IM) and In-
dependence of Irrelevant Alternatives (IIA) are also imple-
mented.

Functionalities
SVVAMP can investigate multiple manipulation-related cri-

teria for a large set of populations and voting systems.

Importing / creating populations
Populations in SVVAMP can be described through ordinal or
cardinal preferences. Cardinal preferences are transparently
converted to rankings whenever necessary. Importing a pop-
ulation from an external file is straightforward: SVVAMP can
read simple CSV files containing the utilities of the popu-
lation or files using the PrefLib format (Mattei and Walsh
2013). To generate artificial random populations, SVVAMP
implements a variety of probabilistic models (cultures):

Spheroid, Cubic Uniform and Ladder, three extensions of
the Impartial Culture.

Gaussian Well and Euclidean Box, two geometric mod-
els, which can be for instance used to produce single-peaked
populations.

Von Mises–Fisher, which is similar to Mallows’
model (Mallows 1957), but outputs cardinal preferences.

For any given population, SVVAMP can produce basic
analysis: existence of a Condorcet winner, Borda and Plu-
rality scores, . . .

Implemented Voting Systems
SVVAMP currently implements more than 20 voting sys-

tems: Approval, Range Voting, Majority Judgment, Plu-
rality, Anti-Plurality, Borda Rule, Simplified Dodgson
method, Kemeny method, Maximin, Baldwin method, Nan-
son method, Tideman’s Ranked Pairs, Schulze method, IRV-
like multi-rounds systems (Instant-Runoff Voting, Exhaus-
tive Ballot, Instant-Condorcet Runoff Voting, . . . ), Two-
Round System, Coombs method, Bucklin method and Iter-
ated Bucklin method. For more details, please refer to the
documentation or (Tideman 2006).

Studying Manipulability
For any given election (combination of a population and a
voting system), SVVAMP can decide, in addition to the sin-
cere winner w of the election, the following issues:

Independence of Irrelevant Alternatives (IIA): is w still
the winner when the election is held with any subset of the
candidates including w? IIA is a central notion in Arrow’s
celebrated impossibility theorem (Arrow 1950).

Individual manipulation (IM): can a voter v, by casting an
insincere ballot, secure an outcome c that she strictly prefers
to w (while other voters still vote sincerely).



Coalitional manipulation: can a subset of voters, by cast-
ing insincere ballots, secure an outcome c that they strictly
prefer to w (while other voters still vote sincerely).

Ignorant-Coalition Manipulation (ICM), Unison-
Manipulation (UM) and Trivial Manipulation (TM), three
alternative types of coalitional manipulation.

Technical details
Algorithms
Determining manipulability, especially CM, can be compu-
tationally challenging (for example, it is NP-complete for
Borda Rule, Maximin, Coombs method and IRV).

SVVAMP is the first publicly available software imple-
menting state-of-the-art algorithms (Xia et al. 2009; Zuck-
erman, Procaccia, and Rosenschein 2009; Zuckerman, Lev,
and Rosenschein 2011; Gaspers et al. 2013; Walsh 2010)
and original heuristics. By default, it tries its most precise
algorithm among those running in polynomial time (exact
computation can be specified). Approximations convention-
ally return nan if they cannot decide.

SVVAMP also embeds brute force algorithms to pro-
vide exact computation for any voting system (only recom-
mended for small instances).

Architecture
SVVAMP is written in a modular way. For instance, testing

CM is defined in class Election and calls a set of specific
sub-functions. Each of these sub-functions can be overrid-
den in the subclass implementing a specific voting system,
while keeping the others. This facilitates the definition of
new voting systems.

These generic methods defined in SVVAMP allow devel-
opers to quickly define a new voting system, only by its rule,
and already benefit from generic manipulation algorithms,
which makes SVVAMP easily extensible.

Voting systems also come with special attributes that rep-
resent a variety of properties that are used to avoid unneces-
sary computations. For instance, if a voting systems verifies
the Condorcet criterium and if a population admits a Con-
dorcet winner, then SVVAMP immediately concludes that the
corresponding election meets the IIA criterium.

Also note that SVVAMP tries to be as lazy as possible. For
example, if asked to determine if an election is CM, it will
first perform some preliminary checks based on election’s
properties, then it will cycle through the candidate until it
finds a manipulation. If later one wants to get the list of
candidates for which a manipulation is possible, SVVAMP
resumes the computation where it stopped.

Performance
SVVAMP is designed to run large scale experiments on reg-

ular computers. To give an order of magnitude, a full study
of all voting systems on 10 000 populations drawn with the
Spheroid culture, with V = 33 voters and C = 5 candidates
takes less than one half-hour on a 2.3 GHz personal laptop.

Available code
SVVAMP is a free software, under GNU General Public Li-

cense version 3. Its documentation includes installation pro-
cedure, tutorials, reference guide and instructions for new
contributors. It is available at:

https://svvamp.readthedocs.org.
We hope that it will be useful to researchers, teachers and

students interested in voting theory.

Acknowledgment
The work presented in this paper has been carried out at
LINCS (http://www.lincs.fr).

References
Arrow, K. 1950. A difficulty in the concept of social welfare.
The Journal of Political Economy 58(4):328–346.
Bartholdi, J., and Orlin, J. 1991. Single transferable vote
resists strategic voting. Social Choice and Welfare 8:341–
354.
Gaspers, S.; Kalinowski, T.; Narodytska, N.; and Walsh,
T. 2013. Coalitional manipulation for Schulze’s rule. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 431–438.
Gibbard, A. 1973. Manipulation of voting schemes: A gen-
eral result. Econometrica 41(4):587–601.
Mallows, C. 1957. Non-null ranking models. Biometrika
114–130.
Mattei, N., and Walsh, T. 2013. Preflib: A library of prefer-
ence data. In Proceedings of Third International Conference
on Algorithmic Decision Theory (ADT 2013).
Satterthwaite, M. 1975. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for vot-
ing procedures and social welfare functions. Journal of Eco-
nomic Theory 10(2):187–217.
Tideman, N. 2006. Collective Decisions And Voting: The
Potential for Public Choice. Ashgate.
Walsh, T. 2010. Manipulability of single transferable vote.
In Computational Foundations of Social Choice, number
10101.
Xia, L.; Zuckerman, M.; Procaccia, A.; Conitzer, V.; and
Rosenschein, J. 2009. Complexity of unweighted coalitional
manipulation under some common voting rules. In Interna-
tional Joint Conference on Artificial Intelligence, 348–353.
Zuckerman, M.; Lev, O.; and Rosenschein, J. 2011. An algo-
rithm for the coalitional manipulation problem under Max-
imin. In The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, 845–852.
Zuckerman, M.; Procaccia, A.; and Rosenschein, J. 2009.
Algorithms for the coalitional manipulation problem. Artifi-
cial Intelligence 173(2):392–412.


