Travelling waves for diffusive and strongly competitive systems: relative motility and invasion speed
 Léo Girardin, Grégoire Nadin

To cite this version:

Léo Girardin, Grégoire Nadin. Travelling waves for diffusive and strongly competitive systems: relative motility and invasion speed. European Journal of Applied Mathematics, 2015, 10.1017/S0956792515000170 . hal-01135087

HAL Id: hal-01135087

https://hal.science/hal-01135087

Submitted on 24 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TRAVELLING WAVES FOR DIFFUSIVE AND STRONGLY COMPETITIVE SYSTEMS: RELATIVE MOTILITY AND INVASION SPEED

LÉO GIRARDIN, GRÉGOIRE NADIN

Abstract

Our interest here is to find the invader in a two species, diffusive and competitive Lotka - Volterra system in the particular case of travelling wave solutions. We investigate the role of diffusion in homogeneous domains. We might expect a priori two different cases: strong interspecific competition and weak interspecific competition. In this paper, we study the first one and obtain a clear conclusion: the invading species is, up to a fixed multiplicative constant, the more diffusive one.

1. Introduction

Competitive reaction - diffusion systems have been widely studied in the last few years. This mathematical model is motivated by numerous applications: ecology, chemistry, genetics, etc. In general, the mathematical formulation of this problem is, for some spatial domain Ω (non-necessarily bounded), some $n \in \mathbb{N}$ and some positive constants $\left(d_{i}, r_{i}, a_{i}, k_{i, j}\right)_{i, j \in\{1, \ldots, n\}}$:

$$
\begin{equation*}
\forall i \in\{1, \ldots, n\} \quad \partial_{t} u_{i}=d_{i} \Delta_{x} u_{i}+u_{i}\left(r_{i}-a_{i} u_{i}-\sum_{j \neq i} k_{i, j} u_{j}\right) \text { in } \Omega \times(0,+\infty) \tag{1.1}
\end{equation*}
$$

One tough question is how their solutions and, when it exists, the long-time steady state, depend on the diffusion rates $\left(d_{i}\right)_{i \in\{1, \ldots, n\}}$. Asymptotically, how do the species (if we see this as continuous approximation of a population dynamics problem) represented by the densities $\left(u_{i}\right)_{i \in\{1, \ldots, n\}}$ share the domain Ω ? Basically, in the neighbourhood of any spatial point x, two cases may occur: either only one species persists (exclusion case) or two or more persist (coexistence case). In the exclusion case, the only persistent species is called invading species. A priori, all the parameters participate in the determination of this invader: number of species n, heterogeneity of Ω, boundedness of Ω, boundary conditions, intrinsic growth rates $\left(r_{i}\right)_{i \in\{1, \ldots, n\}}$, interspecific competition rates $\left(k_{i, j}\right)_{i, j \in\{1, \ldots, n\}}$, intraspecific competition rates $\left(a_{i}\right)_{i \in\{1, \ldots, n\}}$ and of course diffusion rates $\left(d_{i}\right)_{i \in\{1, \ldots, n\}}$.

The dependency on diffusion rates is a very open general problem. Previous works show clearly that a very general result is for the moment inachievable and that we are due to consider in each study a specific case for the other parameters of the problem. A key work in this area is the paper by Dockery et al. [6]. They proved that, when Ω is bounded, heterogeneous, with Neumann boundary conditions and when $k_{i, j}=1$ for all $i, j \in\{1, \ldots, n\}$, the less motile species - that is the one with the lower diffusion rate - is the invading species. Their result relies deeply on the
heterogeneity, the basic idea being that each species loses the individuals trying to invade unfavorable areas while, in favorable areas, the competition helps the more concentrated one, that is the less diffusive one.

We leave the extension of Dockery's result for different $\left(k_{i, j}\right)_{i, j \in\{1, \ldots, n\}}$ to others and wonder if a similar result can be obtained in homogeneous domains (bounded or not).

Actually, it is quite tough to guess heuristically what could happen in homogeneous domains. Indeed, on one hand, the more diffusive species might be able to ignore its competitors long enough and invade the whole territory while eliminating the competitors slowly. On the other hand, the more concentrated species - that is the less diffusive one - might benefit from the maxim "unity is strength" and eliminate slowly the dispersed competitors and, asymptotically, invade the domain. It is well-known that diffusion tends to bring unexpected results. In any case, if something can revert the invasion, we expect it to be the competition. With this in mind, we decide to focus first on the infinite competition limit which should amplify the effects of competition.

Many papers limit their study to the case $n=2$ (and so will we) because then the system becomes monotonic and is therefore much simpler to study than the general case. We will not use the monotonicity explicitly but it will be the underlying mechanism behind many results.

When $n=2$, the PDE system can be rewritten:

$$
\begin{cases}\partial_{t} u=d_{1} \Delta_{x} u+u\left(r_{1}-a_{1} u-k_{1} v\right) & \text { in } \quad \Omega \times(0,+\infty) \\ \partial_{t} v=d_{2} \Delta_{x} v+v\left(r_{2}-a_{2} v-k_{2} u\right) & \text { in } \quad \Omega \times(0,+\infty)\end{cases}
$$

When there is no diffusion at all, this system becomes an ODE system. Then, the steady state $(u, v)=(0,1)($ resp. $(u, v)=(1,0))$ is stable when $\frac{k_{1} r_{2}}{r_{1} a_{2}}>1$ (resp. $\frac{k_{2} r_{1}}{r_{2} a_{1}}>1$), unstable when $\frac{k_{1} r_{2}}{r_{1} a_{2}}<1$ (resp. $\frac{k_{2} r_{1}}{r_{2} a_{1}}>1$). Our interest lies in the bistable case and more precisely in the so-called "weak competition case" where $\frac{k_{1} r_{2}}{r_{1} a_{2}}$ and $\frac{k_{2} r_{1}}{r_{2} a_{1}}$ are larger than 1 but close to 1 . In the monostable case, only one species is a "strong" competitor.

The infinite competition limit ($k_{1} \rightarrow+\infty$ and $\frac{k_{1}}{k_{2}}$ constant) has been studied by Dancer et al. in 1999 in the case of bounded domains with Neumann boundary conditions [5] (they also investigated Dirichlet conditions five years later [4]). They obtained a free boundary Stefan problem and, under regularity assumptions, a spatial segregation with an explicit condition on the interface. In 2007, Nakashima and Wakasa [14] studied the generation of interfaces for such systems and obtained a similar free boundary condition.

It is worth mentioning that the spatial segregation in multi-dimensional domains for elliptic PDE yields highly non-trivial issues. It can be either approached as a free boundary problem (Dancer [5], Quitalo [15]) or as an optimal partition problem (Conti [2, 3]), but in both cases it is really a problem in itself, which requires additional assumptions on the initial conditions and a lot of work.

Therefore, our interest goes to unbounded homogeneous domains. Reaction diffusion studies in such domains usually conjecture the existence of propagation fronts and, when their existence can be rigorously proved, derive from them some information on the dynamics of the system and the long-time steady state. Here, it is important to recall that the main underlying assumption with propagation fronts is that, when the initial conditions are well-chosen, the solutions of the PDE
asymptotically "behave like" the travelling wave solution. We refer to Gardner [9] for such results for finite k. We will not treat this aspect of the problem in this paper but will indeed investigate travelling wave solutions.

A straightforward consequence of the travelling wave approach is that it reduces the multi-dimensional $\Omega \times \mathbb{R}_{+}^{\star}$ to \mathbb{R}. The problem becomes one-dimensional, that is an ODE problem, and thus all the free boundary issues vanish. Our hope is to find a similar spatial segregation limit, with an explicit condition on the interface connecting the invasion speed of the travelling wave to the diffusion rates. We know from Gardner [9] and Kan-On [11] that the invasion speed is constant and bounded by the Fisher - KPP's speeds [12] of the species. Can we use the infinite competition limit to derive its sign and therefore know which species invades the other? Will unity be strength?

It is important to remark that the invasion speed is not linearly determined here. Actually, a linearization near $(0,1)$ or $(1,0)$ yields no condition at all on the invasion speed and the linearized speed cannot be defined as usual. As far as we know, the linear determinacy for competition - diffusion systems is useful only with a specific class of monostable problems (Huang [10], Lewis [13]).

In the next section, we fully expose the problem, enunciate our final result and recall that the problem is well-posed. The third and main section is dedicated to a compactness result and the convergence to a limit problem which is similar in many ways to the one Dancer et al. obtained. Eventually, the last section explicits the relation between the speed and the diffusion rates.

2. Formulation of the problem and main theorem

In this first section, we present the PDE problem studied in this article, give its ecological interpretation and enunciate our main result. We also check quickly that the problem is well-posed.

2.1. Model.

2.1.1. Reaction - diffusion system. We first consider the following one-dimensional Lotka - Volterra competition - diffusion problem:

$$
\left\{\begin{array}{cc}
\partial_{t} \mu=d_{1} \partial_{x x} \mu+\mu\left(r_{1}-a_{1} \mu-k_{1} \rho\right) & \text { in } \mathbb{R} \times(0,+\infty) \\
\partial_{t} \rho=d_{2} \partial_{x x} \rho+\rho\left(r_{2}-a_{2} \rho-k_{2} \mu\right) & \text { in } \mathbb{R} \times(0,+\infty)
\end{array}\right.
$$

where $d_{1}, d_{2}, r_{1}, r_{2}, a_{1}, a_{2}, k_{1}, k_{2}$ are positive constants with ecological meaning (diffusion rates, intrinsic growth rates, intraspecific competition rates, interspecific competition rates). We assume, without loss of generality, that $\frac{k_{2} a_{2}}{r_{2}^{2}} \geq \frac{k_{1} a_{1}}{r_{1}^{2}}$.

Let $k=\frac{k_{1} r_{2}}{a_{2} r_{1}}>0, \alpha=\frac{k_{2} a_{2} r_{1}}{k_{1} a_{1} r_{2}}>0, d=\frac{d_{2}}{d_{1}}>0, r=\frac{r_{2}}{r_{1}}>0$ and

$$
\left(u_{k}, v_{k}\right):(x, t) \mapsto\left(\frac{a_{1}}{r_{1}} \mu\left(\sqrt{\frac{d_{1}}{r_{1}}} x, \frac{1}{r_{1}} t\right), \frac{a_{2}}{r_{2}} \rho\left(\sqrt{\frac{d_{1}}{r_{1}}} x, \frac{1}{r_{1}} t\right)\right)
$$

We get:

$$
\left\{\begin{array}{ccc}
\partial_{t} u_{k}=\partial_{x x} u_{k}+u_{k}\left(1-u_{k}\right)-k u_{k} v_{k} & \text { in } & \mathbb{R} \times(0,+\infty) \\
\partial_{t} v_{k}=d \partial_{x x} v_{k}+r v_{k}\left(1-v_{k}\right)-\alpha k u_{k} v_{k} & \text { in } & \mathbb{R} \times(0,+\infty)
\end{array}\right.
$$

As soon as $k>1$ (which will always be assumed thereafter), $\frac{\alpha k}{r}>1$, that is the system is bistable. Indeed, the free assumption $\frac{k_{2} a_{2}}{r_{2}^{2}} \geq \frac{k_{1} a_{1}}{r_{1}^{2}}$ we made earlier ensures that $\frac{\alpha}{r} \geq 1$.

A priori, the parameters k, α, d and r can take any positive value. Let $\mathcal{P}(k, \alpha, d, r)$ denote this generic PDE problem. Our interest lies in the limit, as $k \rightarrow+\infty$, of the set of problems $\{\mathcal{P}(k, \alpha, d, r)\}_{k>1}$ (associated to a given $\left.(\alpha, d, r)\right)$ (hence the notations u_{k} and v_{k}).

Moreover, going back to the initial parameters, this means that we actually consider a larger class of ecological problems than just $k_{1} \rightarrow+\infty$ and $\frac{k_{1}}{k_{2}}$ constant. Indeed, the only restrictions are that $\frac{d_{2}}{d_{1}}, \frac{r_{2}}{r_{1}}$ and $\frac{k_{2} a_{2}}{k_{1} a_{1}}$ are fixed along the whole class. For example, the limit $k \rightarrow+\infty$ may correspond to:

- k_{2} proportional (with a fixed constant along the whole class) to k_{1} and $k_{1} \rightarrow+\infty$ with a_{1} and a_{2} fixed (along the whole class);
- $k_{1} \rightarrow+\infty$ and a_{1} proportional to $\frac{1}{k_{1}}$ with a_{2} and k_{2} fixed;
- a_{2} proportional to a_{1} and $a_{1} \rightarrow 0$ with k_{1} and k_{2} fixed.
2.1.2. Travelling wave system. Searching for a travelling wave of the variable $\xi=$ $x-c_{k} t$, where $c_{k} \in \mathbb{R}$ is the unknown invasion speed, the problem rewrites eventually:

$$
\left\{\begin{array}{cll}
-u_{k}^{\prime \prime}-c_{k} u_{k}^{\prime}=u_{k}\left(1-u_{k}\right)-k u_{k} v_{k} & \text { in } & \mathbb{R} \tag{2.1}\\
-d v_{k}^{\prime \prime}-c_{k} v_{k}^{\prime}=r v_{k}\left(1-v_{k}\right)-\alpha k u_{k} v_{k} & \text { in } & \mathbb{R} \\
u_{k}(-\infty)=1, u_{k}(+\infty)=0 & & \\
v_{k}(-\infty)=0, v_{k}(+\infty)=1 & & \\
u_{k}^{\prime}<0 & \text { in } & \mathbb{R} \\
v_{k}^{\prime}>0 & \text { in } & \mathbb{R}
\end{array}\right.
$$

It is well-known that natural selection tends to differentiate the niches of competing species. The travelling wave solution corresponds to the case where u_{k} lives essentially in the left half-space while v_{k} lives essentially in the right half-space. In such a situation, it seems obvious that one species might chase the other and invade the abandoned territory. The whole point of this article is to determine this species, or equivalently, the sign of the invasion speed. Indeed,
(1) $c_{k}>0$ iff u_{k} chases v_{k};
(2) $c_{k}<0$ iff v_{k} chases u_{k};

Of course, we aim to find a result depending on the value of d. Thus in the following pages, when we focus on the dependency of c_{k} on d, we write $c_{k, d}$; otherwise, when d is fixed, we simply write c_{k}.
2.2. "Unity is not strength" theorem. Our main result follows.

Theorem 2.1. $\left(d \mapsto c_{k, d}\right)_{k>1}$ converges locally uniformly in $(0,+\infty)$ to a continuous function $d \mapsto c_{\infty, d}$ which satisfies:
(1) $c_{\infty, d}=0$ if $d=\frac{\alpha^{2}}{r}$;
(2) $c_{\infty, d} \in(0,2)$ if $d \in\left(0, \frac{\alpha^{2}}{r}\right)$;
(3) $c_{\infty, d} \in(-2 \sqrt{r d}, 0)$ if $d>\frac{\alpha^{2}}{r}$.

Remark 2.2. This result is profoundly unexpected! It does not suffice to compare d to 1 or α to $1 . v$ can loose even if r is large and u can loose even if α is large, for example. This should yield interesting insight into ecological applications.

2.3. Well-posedness and regularity of the problem.

Theorem 2.3. For any $k>1$, there exists a unique c_{k} such that there exist solutions u_{k} and v_{k} of the problem (2.1). It is enforced that $c_{k} \in(-2 \sqrt{r d}, 2)$, $u_{k} \in \mathcal{C}^{\infty}(\mathbb{R})$ and $v_{k} \in \mathcal{C}^{\infty}(\mathbb{R})$. We can moreover assume exactly one of the following normalization hypotheses:

- $u_{k}(0)=v_{k}(0)$,
- $u_{k}(0)=\frac{1}{2}$,
- $v_{k}(0)=\frac{1}{2}$,
and if we do so, u_{k} and v_{k} are unique.
Proof. The well-posedness and the bounds for c_{k} are proven by Gardner in [9] and also by Kan-On in [11] (actually, Gardner only showed $c_{k} \in[-2 \sqrt{r d}, 2]$ but KanOn showed indeed $c_{k} \in(-2 \sqrt{r d}, 2)$ which will be important in the end). It is worth mentioning that their papers actually proved that the problem is well-posed without any monotonicity condition and that the monotonicity is indeed enforced.

Since $u_{k}, v_{k} \in L^{\infty}(\mathbb{R})$ and $u_{k}^{\prime}, v_{k}^{\prime} \in L^{1}(\mathbb{R})$, the regularity just follows from $W^{k, p_{-}}$-estimates and Sobolev's injections.

Remark 2.4. The extremal speeds $-2 \sqrt{r d}$ and 2 are the invasion speeds of respectively v_{k} when $u_{k}=0$ and u_{k} when $v_{k}=0$. This is a well-known result from Fisher, Kolmogorov, Petrovsky and Piscounov [12].

3. Limit Problem

Here we show that $\left(u_{k}\right),\left(v_{k}\right)$ and $\left(c_{k}\right)$ converge when $k \rightarrow+\infty$ and formulate the limit problem.
3.1. Existence of limit points. First, $\left(c_{k}\right)$ is relatively compact and therefore, by the Bolzano - Weierstrass theorem, has a limit point $c \in[-2 \sqrt{r d}, 2]$.

If $c \leq 0$, we fix for any $k>1$ the normalization $u_{k}(0)=\frac{1}{2}$. On the contrary, if $c>0$, we fix for any $k>1 v_{k}(0)=\left(\frac{1}{2}\right)$. This choice will be explained later on. In either case, this implies that the functions $k \mapsto u_{k}$ and $k \mapsto v_{k}$ are well-defined.

Proposition 3.1. For any $i \geq 1$, let $K_{i}=[-i, i]$. (u_{k}) and (v_{k}) are relatively compact in $\mathcal{C}\left(K_{i}\right)$.

Proof. Our aim here is to use Ascoli's theorem. To that end, let us show that each u_{k} is Hölder-continuous with a constant independent of k.

There exists a positive function $\chi \in \mathcal{D}(\mathbb{R})$ such that $\chi(x)=0$ if $x \notin[-i-1, i+1]$ and $\chi(x)=1$ if $x \in[-i, i]$.

For any $k>1$, if we multiply the equation defining u_{k} by $u_{k} \chi$ and then integrate, we get:

$$
\int\left(-u_{k}^{\prime \prime} u_{k} \chi-c_{k} u_{k}^{\prime} u_{k} \chi\right)=\int u_{k}^{2} \chi-\int u_{k}^{2}\left(u_{k}+k v_{k}\right) \chi
$$

The third term is obviously negative. An integration by parts yields:

$$
\int u_{k}^{\prime 2} \chi-\int \frac{u_{k}^{2}}{2} \chi^{\prime \prime}+c_{k} \int \frac{u_{k}^{2}}{2} \chi^{\prime} \leq \int u_{k}^{2} \chi
$$

Finally, since $\int u_{k}^{\prime 2} \chi \geq \int_{-i}^{i} u_{k}^{\prime 2}$ and $\left\|u_{k}\right\|_{L^{\infty}} \leq 1$, we have:

$$
\left\|u_{k}^{\prime}\right\|_{L^{2}\left(K_{i}\right)}^{2} \leq \int\left(\chi+\frac{\left|c_{k}\right|}{2}\left|\chi^{\prime}\right|+\frac{1}{2}\left|\chi^{\prime \prime}\right|\right)
$$

Then we use Ascoli's theorem: the family $\left(u_{k}\right)$ is bounded in $L^{\infty}\left(K_{i}\right)$ and uniformly equicontinuous in K_{i} therefore it is relatively compact in $\mathcal{C}\left(K_{i}\right)$. The exact same proof works for $\left(v_{k}\right)$.

It is now clear, by a standard diagonal extraction argument, that there exists a subsequence of $\left(u_{k}\right)$ (resp. $\left.\left(v_{k}\right)\right)$ which converges locally uniformly to a limit point u (resp. v).
3.2. Properties of the limit points. c, u and v are actually unique and true limits as it will be proven later on. For the moment, let us just consider extracted convergent subsequences, still denoted $\left(c_{k}\right),\left(u_{k}\right)$ and $\left(v_{k}\right)$.

Lemma 3.2. $u v=0$.
Proof. Multiplying by a test function $\varphi \in \mathcal{D}(\mathbb{R})$ and integrating the equation for u_{k} yields:

$$
\begin{aligned}
k\left|\int u_{k} v_{k} \varphi\right| & \leq \int u_{k}\left(1-u_{k}\right)|\varphi|+\left|c_{k}\right| \int u_{k}\left|\varphi^{\prime}\right|+\int u_{k}\left|\varphi^{\prime \prime}\right| \\
& \leq C\|\varphi\|_{W^{2,1}(\mathbb{R})}
\end{aligned}
$$

Hence $u_{k} v_{k} \rightarrow 0$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
Since $u_{k} v_{k} \rightarrow u v$ locally uniformly, we get indeed $u v=0$.
Remark 3.3. This kind of result is usually referred to as a segregation property. There is a lot of similar results in the literature.

Lemma 3.4. We have

$$
-\alpha u^{\prime \prime}+d v^{\prime \prime}-\alpha c u^{\prime}+c v^{\prime}=\alpha u(1-u)-r v(1-v)
$$

in $\mathcal{D}^{\prime}(\mathbb{R})$.
Proof. Multiply the equation for u_{k} by α and substract to it the one for v_{k}. The lefthandside converges trivially in $\mathcal{D}^{\prime}(\mathbb{R})$. The right-handside converges by dominated convergence.
Lemma 3.5. $u, v \in C(\mathbb{R})$ and $\alpha u-d v \in \mathcal{C}^{1}(\mathbb{R})$.
Proof. The continuity of u and v is immediate thanks to the continuity of each u_{k} and v_{k} and the locally uniform convergence.

Let $a, b \in \mathbb{R}$ such that $a<b$ and $I_{a}: C([a, b]) \rightarrow C([a, b])$ defined by $I_{a}(f)$: $x \mapsto \int_{a}^{x} f$. By continuity of u and v, it is quite obvious that the function

$$
\alpha c u-c v+I_{a}(\alpha u(1-u)-r v(1-v))-(\alpha c u(a)-c v(a))
$$

is continuous. But, thanks to the previous lemma, it is also equal in $\mathcal{D}^{\prime}((a, b))$ to $-\alpha u^{\prime}+d v^{\prime}$ up to an additive constant. Therefore $-\alpha u^{\prime}+d v^{\prime}$ is a well-defined function of $\mathcal{C}([a, b])$.

Lemma 3.6. u and v have finite limits at $\pm \infty$. Besides,

$$
0 \leq \lim _{+\infty} u \leq \lim _{-\infty} u \leq 1
$$

and

$$
0 \leq \lim _{-\infty} v \leq \lim _{+\infty} v \leq 1
$$

Proof. By locally uniform convergence, u and v are monotone, respectively nonincreasing and non-decreasing, and satisfy $0 \leq u, v \leq 1$.

Lemma 3.7. u and v cannot vanish simultaneously on a non-empty compact set.
Proof. Once again, we consider a non-empty compact set $[a, b]$. By monotonicity, if $u_{\mid[a, b]}=0$, then $u_{\mid[a,+\infty)}=0$. Similarly, $v_{\mid(-\infty, b]}=0$. It yields, in $\mathcal{D}^{\prime}((-\infty, a))$, $-u^{\prime \prime}-c u^{\prime}=u(1-u)$ and $\alpha u^{\prime}-d v^{\prime}=\alpha u^{\prime}$. Therefore u^{\prime} is continuous and, using $-u^{\prime \prime}-c u^{\prime}=u(1-u), u^{\prime \prime}$ is also continuous and the previous differential equation is satisfied pointwise.

Now, we get by induction that u is \mathcal{C}^{∞} in $(-\infty, a)$. Since it does not explode on the left of a, it is the restriction of a solution on a strictly larger interval. Since u is regular, $u^{\prime}(a)=0$ and by Cauchy - Lipschitz's theorem, u is identically null. By the same reasoning, v is also identically null.

To prevent u and v from being both null on the whole real line, either one of the two normalization sequences $\left(u_{k}(0)\right)_{k>1}=\left(\frac{1}{2}\right)$ and $\left(v_{k}(0)\right)=\left(\frac{1}{2}\right)$ combined with locally uniform convergence suffices.

Remark 3.8. We already knew that $u v=0$ everywhere. Thus the previous lemma ensures that, for any $a<b, u_{\mid[a, b]}=v_{\mid[a, b]}=0$ is not possible; one of the two densities has to be positive whereas the other has to be null.

Lemma 3.9. Neither u nor v can be positive everywhere.
Proof. If $c \leq 0$, the normalization sequence is $\left(u_{k}(0)\right)=\left(\frac{1}{2}\right)$. It ensures that u is not null. We define $\xi_{u}=\sup \{\xi \in \mathbb{R} \mid u(\xi)>0\} \in(-\infty,+\infty]$.

If $\xi_{u}=+\infty$ (that is, u positive everywhere), v is null.
In such a case, we have u decreasing, bounded between 0 and 1 , with limits at infinity, non-constant by normalization, and $-u^{\prime \prime}-c u^{\prime}=u(1-u)$ everywhere with $u \in \mathcal{C}^{\infty}(\mathbb{R})$.

This yields that $\lim _{-\infty} u=1$ and $\lim _{+\infty} u=0$. To that end, we use L'Hospital's rule.

Let $l=u(-\infty), G: \xi \mapsto \exp (c \xi)$ and $F=G u^{\prime}$ so that $F^{\prime}=G\left(u^{\prime \prime}+c u^{\prime}\right)=$ $-G u(1-u)$. F and G are differentiable in $\mathbb{R}, G^{\prime} \neq 0$ and $G \rightarrow+\infty$ as $\xi \rightarrow-\infty$; besides, $\frac{F^{\prime}}{G^{\prime}} \rightarrow-\frac{l(1-l)}{c}$. By L'Hospital's rule, $\frac{F}{G} \rightarrow-\frac{l(1-l)}{c}$, that is $u^{\prime}(-\infty)=$ $-\frac{l(1-l)}{c}$. In the end, necessarily, $l \in\{0,1\}$.

At $+\infty$, we use the other version of L'Hospital's rule, noticing that u^{\prime} is bounded in \mathbb{R}_{+}(easy to prove) and checking that F and G go to 0 . Eventually, by monotonicity, the limits are 1 at $-\infty$ and 0 at $+\infty$.

Thus u is a travelling wave for the Fisher - KPP equation with speed $c \leq 0<\sqrt{2}$, hence the contradiction [12].

If $c>0$, we just apply this reasoning to v with normalization $\left(v_{k}(0)\right)=\left(\frac{1}{2}\right)$.
Corollary 3.10. The two quantities $\sup \{\xi \in \mathbb{R} \mid u(\xi)>0\}$ and $\inf \{\xi \in \mathbb{R} \mid v(\xi)>0\}$ are real and equal. Up to translation, we can assume it to be 0 . By continuity of u and $v, u(0)=v(0)=0$.

Lemma 3.11. We have:

- $u \in \mathcal{C}^{\infty}((-\infty, 0) \cup(0,+\infty))$,
- $v \in \mathcal{C}^{\infty}((-\infty, 0) \cup(0,+\infty))$,

Besides, we can extend u^{\prime} and v^{\prime} by continuity on the left and on the right respectively and obtain $u^{\prime}(0)=\lim _{\xi \rightarrow 0, \xi<0} u^{\prime}(\xi)$ and $v^{\prime}\left(\xi_{v}\right)=\lim _{\xi \rightarrow 0, \xi>0} v^{\prime}(\xi)$ which are finite and satisfy $-\alpha u^{\prime}(0)=d v^{\prime}(0)>0$.

Proof. u is identically zero on $(0, \infty)$ so $u_{\mid(0,+\infty)}$ is trivially \mathcal{C}^{∞}. In $(-\infty, 0)$, it is a weak, and then regular (same routine), solution of $u^{\prime \prime}+c u^{\prime}+u(1-u)=0$.

Eventually, just recall that $\alpha u-d v \in \mathcal{C}^{1}(\mathbb{R})$. If its derivative at 0 is zero, by the same kind of Cauchy - Lipschitz reasoning, $u=v=0$ everywhere.
Remark 3.12. The relation $\alpha u^{\prime}(0)+d v^{\prime}(0)=0$ is essentially the free boundary condition obtained by Nakashima and Wakasa in [14].
Lemma 3.13. $\lim _{-\infty} u=1$ and $\lim _{+\infty} v=1$.
Proof. Same as before.
Lemma 3.14. $c \in(-2 \sqrt{r d}, 2)$, that is $c \notin\{-2 \sqrt{r d}, 2\}$.
Proof. Let us assume, for example, $c=-2 \sqrt{r d}$. Let $\xi^{\star}>0$ such that $v\left(\xi^{\star}\right)=\frac{1}{2}$.
We know from Fisher and KPP [12] that $c=-2 \sqrt{r d}$ is the maximal speed for wich there exists a travelling wave $v_{K P P}$ positive, going from 0 at $-\infty$ to 1 at $+\infty$, which satisfies

$$
-d v_{K P P}^{\prime \prime}-c v_{K P P}^{\prime}=r v_{K P P}\left(1-v_{K P P}\right)
$$

We normalize by fixing $v_{K P P}\left(\xi^{\star}\right)=\frac{1}{2}$. Let $f=v_{K P P}-v$.
First, we can easily check that f is in $\mathcal{C}(\mathbb{R}) \cap \mathcal{C}^{\infty}((-\infty, 0) \cup(0,+\infty))$ and satisfies

$$
-d f^{\prime \prime}-c f^{\prime}=r f(1-f)-2 r v f
$$

in $(0,+\infty)$.
For any $\xi>\xi^{\star}, 1-f(\xi)-2 v(\xi)=1-v_{K P P}(\xi)-v(\xi)<0$, with $f\left(\xi^{\star}\right)=0$. We can therefore apply the maximum principle to the operator

$$
d \bullet^{\prime \prime}+c \bullet^{\prime}+r(1-f-2 v) \bullet
$$

in any interval $\left(\xi^{\star}, b\right), b>\xi^{\star}$. Since $\lim _{+\infty} f=0$, it gives us that $f(\xi) \leq 0$ for any $\xi \in\left(\xi^{\star},+\infty\right)$. But we can also apply the minimum principle to the same operator, and we eventually get that f is identically zero in $\left(\xi^{\star},+\infty\right)$. This way, $f^{\prime}\left(\xi^{\star}\right)=0$, hence f is identically zero in $(0,+\infty)$, which is impossible since $f(0)>0$ and f is continuous in \mathbb{R}.
3.3. Limit problem. Let us sum up all these results in the following theorem.

Theorem 3.15. There exist locally uniform limits u and v of $\left(u_{k}\right)$ and $\left(v_{k}\right)$ respectively. They satisfy:
(1) $u, v \in \mathcal{C}(\mathbb{R}) \cap \mathcal{C}^{\infty}((-\infty, 0) \cup(0,+\infty))$;
(2) $\lim _{\xi \rightarrow-\infty} u(\xi)=1$;
(3) $\lim _{\xi \rightarrow+\infty} v(\xi)=1$;
(4) $u_{\mid \mathbb{R}_{+}}=0$;
(5) $v_{\mid \mathbb{R}_{-}}=0$;
(6) $u^{\prime} \leq 0$ in \mathbb{R}_{-}with $u^{\prime}(0)$ defined by left-continuity;
(7) $v^{\prime} \geq 0$ in \mathbb{R}_{+}with $v^{\prime}(0)$ defined by right-continuity;
(8) $-u^{\prime \prime}-c u^{\prime}=u(1-u)$ in $(-\infty, 0)$;
(9) $-d v^{\prime \prime}-c v^{\prime}=r v(1-v)$ in $(0,+\infty)$;
(10) $\alpha u^{\prime}(0)=-d v^{\prime}(0)$.

The behaviour of these limits is illustrated with the following figure.

3.4. Uniqueness of the limit points.

Theorem 3.16. For any $c>-2$, the problem

$$
\left\{\begin{array}{c}
-y_{c}^{\prime \prime}-c y_{c}^{\prime}=y_{c}\left(1-y_{c}\right) \quad \text { in } \quad(0,+\infty) \\
y_{c}(0)=0
\end{array}\right.
$$

admits a unique positive solution.
It satisfies $y_{c}^{\prime}>0$ in \mathbb{R}_{+}and $\lim _{\xi \rightarrow+\infty} y(\xi)=1$. Besides, $\gamma: c \mapsto y_{c}^{\prime}(0)$ is increasing and continuous.

Proof. This result was proved by Du and Lin in [7] (prop. 4.1) but wrongly stated. Indeed, the requirement in their theorem should be $c<2$, not $c \geq 0$ as stated in [7]. (Moreover, be aware that our statement is written with $-c y_{c}^{\prime}$ whereas their statement is written with $+c y_{c}^{\prime}$; so the requirement $c<2$ becomes here $c>-2$; besides, this also changes the monotonicity of γ.)

Let us clear all doubts by filling the gap in their proof, that is the beginning where they construct their subsolution.

- Case $|c|<2$: For all $\ell>0$, let y^{ℓ} the positive solution of

$$
\left\{\begin{array}{l}
-y^{\prime \prime}-c y^{\prime}=y(1-y) \quad \text { in }(0, \ell) \\
y(0)=y(\ell)=0
\end{array}\right.
$$

According to Berestycki [1] (theorem 4), such a solution exists if and only if the Dirichlet principal eigenvalue of the operator $-L$ on $(0, \ell)$ is negative: $\lambda_{1}(-L,(0, \ell))<0$, where L is the operator associated with the linearized equation near $y=0: L \phi:=\phi^{\prime \prime}+c \phi^{\prime}+\phi$. It is easy to compute:

$$
\lambda_{1}(-L,(0, \ell))=-1+c^{2} / 4+\pi^{2} / \ell^{2} .
$$

Hence, when $|c|<2$, one has $\lambda_{1}(-L,(0, \ell))<0$ when ℓ is large enough and thus we can construct y^{ℓ}. Vice-versa, if $|c| \geq 2, \lambda_{1}(-L,(0, \ell))>0$ and the solution does not exist (whereas Du and Lin claim it does for all $c \leq 0$).

- Case $c \geq 2$: It suffices to remark that, for example, if y_{1} is a solution of the previous Dirichlet problem for some $c_{1} \in(-2,2)$, then y_{1} is a subsolution for the Dirichlet problem with any speed $c>c_{1}$.

In either case, the subsolution is now properly constructed and we can continue the proof as in [7] and conclude.

Remark 3.17. We need to change a bit u and v before pursuing in this direction. Let us consider $\tilde{u}: \xi \mapsto u(-\xi)$ and $\tilde{v}: \xi \mapsto v\left(\sqrt{\frac{d}{r}} \xi\right) . \tilde{u}$ is a solution of the problem

$$
\left\{\begin{array}{c}
-\tilde{u}^{\prime \prime}+c \tilde{u}^{\prime}=\tilde{u}(1-\tilde{u}) \quad \text { in } \quad(0,+\infty) \\
\tilde{u}(0)=0
\end{array}\right.
$$

\tilde{v} is a solution of the problem

$$
\left\{\begin{aligned}
-\tilde{v}^{\prime \prime}-\frac{c}{\sqrt{r d}} \tilde{v}^{\prime} & =\tilde{v}(1-\tilde{v}) \quad \text { in } \quad(0,+\infty) \\
\tilde{v}(0) & =0
\end{aligned}\right.
$$

Besides, $c \in(-2 \sqrt{r d}, 2)$ so $-c>-2$ and $\frac{c}{\sqrt{r d}}>-2$, therefore we can apply the theorem.

Corollary 3.18. For any $d>0$, there exists a unique (u, v, c) satisfying the limit problem (and may thereafter be called $\left(u_{\infty, d}, v_{\infty, d}, c_{\infty, d}\right)$).
Proof. The equality $-\alpha u^{\prime}(0)=d v^{\prime}(0)$ rewrites $\alpha \gamma(-c)=\sqrt{r d} \gamma\left(\frac{c}{\sqrt{r d}}\right)$. Now we consider the two functions $x \mapsto \alpha \gamma(-x)$ and $x \mapsto \sqrt{r d} \gamma\left(\frac{x}{\sqrt{r d}}\right)$. They necessarily have an intersection point since c exists. But as they are respectively decreasing and increasing, this intersection point is unique.

The uniqueness of c implies by the previous theorem the uniqueness of u and v.

Corollary 3.19. The sequences $\left(c_{k}\right),\left(u_{k}\right)$ and $\left(v_{k}\right)$ have a unique limit point each. Hence the pointwise convergence of $\left(c_{k}\right)$ and locally uniform convergence of $\left(u_{k}\right)$ and $\left(v_{k}\right)$ are fully proved and there is no need to consider extracted subsequences anymore.

Proof. Recall that, in any metric space, a sequence whose image is relatively compact and which has a unique limit point converges to this limit point.

Remark 3.20. It is now clear that the sum up theorem of the previous section gives sufficient but far from necessary conditions for uniqueness. For any c, u and v are unique iff they are positive and satisfy points $4,5,8$ and 9 and then the uniqueness of c is just a consequence of point 10 .

Proposition 3.21. The convergence of $\left(d \mapsto c_{k, d}\right)_{k>1}$ to $d \mapsto c_{\infty, d}$ is locally uniform.

Proof. Actually, one can see easily that the whole proof of pointwise convergence of $\left(d \mapsto c_{k, d}\right)_{k>1}$ holds if we do not fix a priori d. It suffices to have $d \in\left[D_{1}, D_{2}\right]$, with $D_{2}>D_{1}>0$ fixed, so that we can replace bounds like $-2 \sqrt{r d}$ by $-2 \sqrt{r D_{2}}$.

4. Dependency of the invasion speed on the diffusion rates

This last section is where we derive from the limit problem the result: how does the invasion speed c depend on the diffusion rate d ? Thanks to the convergence of $\left(c_{k}\right)$ to c, we will then be able to extend it to c_{k} (for k large enough).

Theorem 4.1. We have:

- if $d=\frac{\alpha^{2}}{r}, c_{\infty, d}=0$;
- if $d>\frac{\alpha^{2}}{r}, c_{\infty, d} \in(-2 \sqrt{r d}, 0)$;
- if $d<\frac{\alpha^{2}}{r}, c_{\infty, d} \in(0,2)$.

Proof. The sign of $c_{\infty, d}$ is actually a simple consequence of the relation $\alpha \gamma(-c)=$ $\sqrt{r d} \gamma\left(\frac{c}{\sqrt{r d}}\right)$. Indeed, let us prove that $r d<\alpha^{2}$ implies $c_{\infty, d}>0$. Indeed, if $r d<\alpha^{2}$, then $\frac{\sqrt{r d}}{\alpha}<1$ and as $\gamma\left(\frac{c}{\sqrt{r d}}\right)>0$, we get $\frac{\sqrt{r d}}{\alpha} \gamma\left(\frac{c}{\sqrt{r d}}\right)<\gamma\left(\frac{c}{\sqrt{r d}}\right)$. Since γ is increasing, $\frac{c}{\sqrt{r d}}>-c$, which clearly implies that $c>0$. The case $r d>\alpha^{2}$ is similar.

If $r d=\alpha^{2}$, the relation becomes $\gamma(-c)=\gamma\left(\frac{c}{\sqrt{r d}}\right)$. An obvious zero of $x \mapsto$ $\gamma(-x)-\gamma\left(\frac{x}{\sqrt{r d}}\right)$ is 0 , and by monotonicity it is unique, hence $c=0$.

Proposition 4.2. The function $d \mapsto c_{\infty, d}$ is continuous in $(0,+\infty)$.
Proof. This could follow from the continuity of each $d \mapsto c_{k, d}$ and the locally uniform convergence, but the continuity of $d \mapsto c_{k, d}$ is actually a more difficult problem (and is not solved by Kan-On [11]). Therefore, we prove the continuity of $d \mapsto c_{\infty, d}$ directly. Our proof being basically a repetition of the whole previous section of this article, we give only a sketch of it.

First, let $0<D_{1}<D_{2}$. We have:

$$
\begin{aligned}
\left\{c_{\infty, d} \mid d \in\left[D_{1}, D_{2}\right]\right\} & \subset\left\{c_{\infty, d} \left\lvert\, d \in\left[D_{1}, D_{2}\right] \cap\left(\frac{\alpha^{2}}{r},+\infty\right)\right.\right\} \cup\{0\} \cup\left\{c_{\infty, d} \left\lvert\, d \in \cap\left(0, \frac{\alpha^{2}}{r}\right)\right.\right\} \\
& \subset\left(\begin{array}{l}
d \in\left[D_{1}, D_{2}\right] \cap\left(\frac{\alpha^{2}}{r},+\infty\right)
\end{array}\right. \\
& \subset[-2 \sqrt{r d}, 0]) \cup[0,2]
\end{aligned}
$$

Thus, $\left\{c_{\infty, d} \mid d \in\left[D_{1}, D_{2}\right]\right\}$ is a relatively compact subset of \mathbb{R}.
Now, let $\delta \in\left[D_{1}, D_{2}\right]$ and $\left(\delta_{n}\right)_{n \in \mathbb{N}} \in\left[D_{1}, D_{2}\right]^{\mathbb{N}}$ a positive sequence which converges to δ. Up to extraction, $\left(c_{\infty, \delta_{n}}\right)$ converges to a limit point C.

If $C \leq 0$, we translate each couple $\left(u_{\infty, \delta_{n}}, v_{\infty, \delta_{n}}\right)$ so that $\left(u_{\infty, \delta_{n}}(0)\right)=\left(\frac{1}{2}\right)$. If $C>0$, we translate each couple $\left(u_{\infty, \delta_{n}}, v_{\infty, \delta_{n}}\right)$ so that $\left(v_{\infty, \delta_{n}}(0)\right)=\left(\frac{1}{2}\right)$. In either case, $\left\{u_{\infty, d} \mid d \in\left[D_{1}, D_{2}\right]\right\}$ and $\left\{v_{\infty, d} \mid d \in\left[D_{1}, D_{2}\right]\right\}$ are relatively compact in each $C\left(K_{i}\right)$ by Ascoli's theorem, and, up to extraction, $\left(u_{\infty, \delta_{n}}\right)$ and ($v_{\infty, \delta_{n}}$) converge locally uniformly. Let U and V be their limits.

- We have $-\alpha U^{\prime \prime}+\delta V^{\prime \prime}-\alpha C U^{\prime}+C V^{\prime}=\alpha U(1-U)-r V(1-V)$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
- U and V are continuous, $\alpha U-\delta V$ is C^{1}.
- U and V are positive and have finite limits at infinity.
- $U V=0$.
- If $C \leq 0, U$ is not identically null by normalization and V cannot be identically null since if it was, U would be a travelling wave for the Fisher - KPP equation with a speed smaller than 2 . The same reasoning applies for $C>0$ and finally, neither U nor V can be identically null.
- U and V cannot be both null on a compact subset by continuity of $(\alpha U-\delta V)^{\prime}$ and a Cauchy - Lipschitz's argument.
Now we translate back so that

$$
\sup \{\xi \in \mathbb{R} \mid U(\xi)>0\}=\inf \{\xi \in \mathbb{R} \mid V(\xi)>0\}=0
$$

It yields $U_{\mid \mathbb{R}_{+}}=0, V_{\mid \mathbb{R}_{-}}=0,-U^{\prime \prime}-C U^{\prime}=U(1-U)$ in $(-\infty, 0),-\delta V^{\prime \prime}-C V^{\prime}=$ $r V(1-V)$ in $(0,+\infty)$ and $\alpha U^{\prime}(0)=-\delta V^{\prime}(0)$. Basically, C, U and V verify the exact same problem than $c_{\infty, \delta}, u_{\infty, \delta}$ and $v_{\infty, \delta}$. By uniqueness, $C=c_{\infty, \delta}$, that is $c_{\infty, \delta}$ is the unique limit point of $\left(c_{\infty, \delta_{n}}\right)$ and eventually $c_{\infty, \delta_{n}} \rightarrow c_{\infty, \delta}$. Therefore, $d \mapsto c_{\infty, d}$ is indeed continuous.

5. Conclusion

We have proved our "Unity is not strength" theorem. Some remaining questions concern the shape of the asymptotic speed: what are the limits when $d \rightarrow 0$ or $d \rightarrow+\infty$? Are there optimal diffusion rates so that the invasion of one species or the other is the fastest? And eventually, how fast is the convergence to this asymptotic limit and, for example, is it monotone?

These could be adressed with the knowledge of the derivatives of the speed as a function of k or d. These might be determined analytically thanks to Kan-On formulas [11]. However, we did not manage to compute the sign of these derivatives, that is, the monotonicity of the speed with respect to k or d. We leave it as an open problem.

References

[1] Berestycki, H., Le nombre de solutions de certains problèmes semi-linéaires elliptiques, Journal of Functional Analysis, 40 (1981), no. 1, 1-29.
[2] Conti, M., Verzini, G., Terracini, S., A regularity theory for optimal partition problems. SPT 2004-Symmetry and perturbation theory, 91-98, World Sci. Publ., Hackensack, NJ, 2005.
[3] Conti, M., Terracini, S., Verzini, Gk, A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54 (2005), no. 3, 779-815.
[4] Crooks, E. C. M., Dancer, E. N., Hilhorst, D., Mimura, M., Ninomiya, H., Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions. Nonlinear Anal. Real World Appl. 5 (2004), no. 4, 645-665.
[5] Dancer, E. N., Hilhorst, D., Mimura, M., Peletier, L. A., Spatial segregation limit of a competition-diffusion system. European J. Appl. Math. 10 (1999), no. 2, 97-115.
[6] Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M., The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37 (1998), no. 1, 61-83.
[7] Du, Y., Lin, Z., Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal., 42 (2010), 377-405.
[8] Du Y., Ma, L., Logistic type equations on \mathbb{R}^{N} by a squeezing method involving boundary blow-up solutions. J. London Math. Soc. (2) 64 (2001), no. 1, 107-124.
[9] Gardner, R. A., Existence and stability of travelling wave solutions of competition models: a degree theoretic approach. J. Differential Equations 44 (1982), no. 3, 343-364.
[10] Huang, W., Han, M., Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model. J. Differential Equations 251 (2011), no. 6, 1549-1561.
[11] Kan-On, Y., Parameter dependence of propagation speed of travelling waves for competition - diffusion equations. SIAM J. Math. Anal. 26 (1995), no. 2, 340-363.
[12] Kolmogorov, A., Petrovsky, I., Piscounov, N., Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d'Etat à Moscou (Bjul. Moskovskogo Gos. Univ.) (1937) 1-26.
[13] Lewis, M. A., Li, B., Weinberger, H. F., Spreading speed and linear determinacy for twospecies competition models. J. Math. Biol. 45 (2002), no. 3, 219-233.
[14] Nakashima, K., Wakasa, T., Generation of interfaces for Lotka-Volterra competition-diffusion system with large interaction rates. J. Differential Equations 235 (2007), no. 2, 586-608.
[15] Quitalo, V., A free boundary problem arising from segregation of populations with high competition. Arch. Ration. Mech. Anal. 210 (2013), no. 3, 857-908.
E-mail address: leo.girardin@ens-cachan.fr

