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TRAVELLING WAVES FOR DIFFUSIVE AND STRONGLY COMPETITIVE SYSTEMS: RELATIVE MOTILITY AND INVASION SPEED

Our interest here is to nd the invader in a two species, diusive and competitive Lotka Volterra system in the particular case of travelling wave solutions. We investigate the role of diusion in homogeneous domains. We might expect a priori two dierent cases: strong interspecic competition and weak interspecic competition. In this paper, we study the rst one and obtain a clear conclusion: the invading species is, up to a xed multiplicative constant, the more diusive one.

Introduction

Competitive reaction diusion systems have been widely studied in the last few years. This mathematical model is motivated by numerous applications: ecology, chemistry, genetics, etc. In general, the mathematical formulation of this problem is, for some spatial domain Ω (non-necessarily bounded), some n ∈ N and some positive constants (d i , r i , a i , k i,j ) i,j∈{1,...,n} :

(1.1) ∀i ∈ {1, . . . , n}

∂ t u i = d i ∆ x u i + u i   r i -a i u i - j =i k i,j u j   in Ω × (0, +∞)
One tough question is how their solutions and, when it exists, the long-time steady state, depend on the diusion rates (d i ) i∈{1,...,n} . Asymptotically, how do the species (if we see this as continuous approximation of a population dynamics problem) represented by the densities (u i ) i∈{1,...,n} share the domain Ω? Basically, in the neighbourhood of any spatial point x, two cases may occur: either only one species persists (exclusion case) or two or more persist (coexistence case). In the exclusion case, the only persistent species is called invading species. A priori, all the parameters participate in the determination of this invader: number of species n, heterogeneity of Ω, boundedness of Ω, boundary conditions, intrinsic growth rates (r i ) i∈{1,...,n} , interspecic competition rates (k i,j ) i,j∈{1,...,n} , intraspecic competition rates (a i ) i∈{1,...,n} and of course diusion rates (d i ) i∈{1,...,n} .

The dependency on diusion rates is a very open general problem. Previous works show clearly that a very general result is for the moment inachievable and that we are due to consider in each study a specic case for the other parameters of the problem. A key work in this area is the paper by Dockery et al. [START_REF] Dockery | The evolution of slow dispersal rates: a reaction diusion model[END_REF]. They proved that, when Ω is bounded, heterogeneous, with Neumann boundary conditions and when k i,j = 1 for all i, j ∈ {1, . . . , n}, the less motile species that is the one with the lower diusion rate is the invading species. Their result relies deeply on the heterogeneity, the basic idea being that each species loses the individuals trying to invade unfavorable areas while, in favorable areas, the competition helps the more concentrated one, that is the less diusive one.

We leave the extension of Dockery's result for dierent (k i,j ) i,j∈{1,...,n} to others and wonder if a similar result can be obtained in homogeneous domains (bounded or not).

Actually, it is quite tough to guess heuristically what could happen in homogeneous domains. Indeed, on one hand, the more diusive species might be able to ignore its competitors long enough and invade the whole territory while eliminating the competitors slowly. On the other hand, the more concentrated species that is the less diusive one might benet from the maxim unity is strength and eliminate slowly the dispersed competitors and, asymptotically, invade the domain.

It is well-known that diusion tends to bring unexpected results. In any case, if something can revert the invasion, we expect it to be the competition. With this in mind, we decide to focus rst on the innite competition limit which should amplify the eects of competition.

Many papers limit their study to the case n = 2 (and so will we) because then the system becomes monotonic and is therefore much simpler to study than the general case. We will not use the monotonicity explicitly but it will be the underlying mechanism behind many results.

When n = 2, the PDE system can be rewritten:

∂ t u = d 1 ∆ x u + u (r 1 -a 1 u -k 1 v) in Ω × (0, +∞) ∂ t v = d 2 ∆ x v + v (r 2 -a 2 v -k 2 u) in Ω × (0, +∞)
When there is no diusion at all, this system becomes an ODE system. Then, the steady state (u, v) = (0, 1) (resp. (u, v) = (1, 0)) is stable when k1r2 r1a2 > 1 (resp. k2r1 r2a1 > 1), unstable when k1r2 r1a2 < 1 (resp. k2r1 r2a1 > 1). Our interest lies in the bistable case and more precisely in the so-called weak competition case where k1r2 r1a2 and k2r1 r2a1 are larger than 1 but close to 1. In the monostable case, only one species is a strong competitor.

The innite competition limit (k 1 → +∞ and k1 k2 constant) has been studied by Dancer et al. in 1999 in the case of bounded domains with Neumann boundary conditions [START_REF] Dancer | Spatial segregation limit of a competition-diusion system[END_REF] (they also investigated Dirichlet conditions ve years later [START_REF] Crooks | Spatial segregation limit of a competition-diusion system with Dirichlet boundary conditions[END_REF]). They obtained a free boundary Stefan problem and, under regularity assumptions, a spatial segregation with an explicit condition on the interface. In 2007, Nakashima and Wakasa [START_REF] Nakashima | Generation of interfaces for LotkaVolterra competitiondiusion system with large interaction rates[END_REF] studied the generation of interfaces for such systems and obtained a similar free boundary condition.

It is worth mentioning that the spatial segregation in multi-dimensional domains for elliptic PDE yields highly non-trivial issues. It can be either approached as a free boundary problem (Dancer [5], Quitalo [START_REF] Quitalo | A free boundary problem arising from segregation of populations with high competition[END_REF]) or as an optimal partition problem (Conti [START_REF] Conti | A regularity theory for optimal partition problems[END_REF][START_REF] Conti | A variational problem for the spatial segregation of reaction-diusion systems[END_REF]), but in both cases it is really a problem in itself, which requires additional assumptions on the initial conditions and a lot of work. Therefore, our interest goes to unbounded homogeneous domains. Reaction diusion studies in such domains usually conjecture the existence of propagation fronts and, when their existence can be rigorously proved, derive from them some information on the dynamics of the system and the long-time steady state. Here, it is important to recall that the main underlying assumption with propagation fronts is that, when the initial conditions are well-chosen, the solutions of the PDE asymptotically behave like the travelling wave solution. We refer to Gardner [START_REF] Gardner | Existence and stability of travelling wave solutions of competition models: a degree theoretic approach[END_REF] for such results for nite k. We will not treat this aspect of the problem in this paper but will indeed investigate travelling wave solutions.

A straightforward consequence of the travelling wave approach is that it reduces the multi-dimensional Ω × R + to R. The problem becomes one-dimensional, that is an ODE problem, and thus all the free boundary issues vanish. Our hope is to nd a similar spatial segregation limit, with an explicit condition on the interface connecting the invasion speed of the travelling wave to the diusion rates. We know from Gardner [START_REF] Gardner | Existence and stability of travelling wave solutions of competition models: a degree theoretic approach[END_REF] and Kan-On [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition diusion equations[END_REF] that the invasion speed is constant and bounded by the Fisher KPP's speeds [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] of the species. Can we use the innite competition limit to derive its sign and therefore know which species invades the other? Will unity be strength?

It is important to remark that the invasion speed is not linearly determined here.

Actually, a linearization near (0, 1) or [START_REF] Berestycki | Le nombre de solutions de certains problèmes semi-linéaires elliptiques[END_REF]0) yields no condition at all on the invasion speed and the linearized speed cannot be dened as usual. As far as we know, the linear determinacy for competition diusion systems is useful only with a specic class of monostable problems (Huang [START_REF] Huang | Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model[END_REF], Lewis [START_REF] Lewis | Spreading speed and linear determinacy for twospecies competition models[END_REF]).

In the next section, we fully expose the problem, enunciate our nal result and recall that the problem is well-posed. The third and main section is dedicated to a compactness result and the convergence to a limit problem which is similar in many ways to the one Dancer et al. obtained. Eventually, the last section explicits the relation between the speed and the diusion rates.

Formulation of the problem and main theorem

In this rst section, we present the PDE problem studied in this article, give its ecological interpretation and enunciate our main result. We also check quickly that the problem is well-posed.

2.1. Model.

2.1.1. Reaction diusion system. We rst consider the following one-dimensional Lotka Volterra competition diusion problem:

∂ t µ = d 1 ∂ xx µ + µ (r 1 -a 1 µ -k 1 ρ) in R × (0, +∞) ∂ t ρ = d 2 ∂ xx ρ + ρ (r 2 -a 2 ρ -k 2 µ) in R × (0, +∞) where d 1 , d 2 , r 1 , r 2 , a 1 , a 2 , k 1 , k 2 are
positive constants with ecological meaning (diffusion rates, intrinsic growth rates, intraspecic competition rates, interspecic competition rates). We assume, without loss of generality, that k2a2 r

2 2 ≥ k1a1 r 2 1 . Let k = k1r2 a2r1 > 0, α = k2a2r1 k1a1r2 > 0, d = d2 d1 > 0, r = r2 r1 > 0 and (u k , v k ) : (x, t) → a 1 r 1 µ d 1 r 1 x, 1 r 1 t , a 2 r 2 ρ d 1 r 1 x, 1 r 1 t
We get:

∂ t u k = ∂ xx u k + u k (1 -u k ) -ku k v k in R × (0, +∞) ∂ t v k = d∂ xx v k + rv k (1 -v k ) -αku k v k in R × (0, +∞)
As soon as k > 1 (which will always be assumed thereafter), αk r > 1, that is the system is bistable. Indeed, the free assumption k2a2 r

2 2 ≥ k1a1 r 2 1
we made earlier ensures that α r ≥ 1. A priori, the parameters k, α, d and r can take any positive value. Let P (k, α, d, r) denote this generic PDE problem. Our interest lies in the limit, as k → +∞, of the set of problems {P (k, α, d, r)} k>1 (associated to a given (α, d, r)) (hence the notations u k and v k ).

Moreover, going back to the initial parameters, this means that we actually consider a larger class of ecological problems than just k 1 → +∞ and k1 k2 constant. Indeed, the only restrictions are that d2 d1 , r2 r1 and k2a2 k1a1 are xed along the whole class. For example, the limit k → +∞ may correspond to:

• k 2 proportional (with a xed constant along the whole class) to k 1 and k 1 → +∞ with a 1 and a 2 xed (along the whole class); • k 1 → +∞ and a 1 proportional to 1 k1 with a 2 and k 2 xed; • a 2 proportional to a 1 and a 1 → 0 with k 1 and k 2 xed.

2.1.2. Travelling wave system. Searching for a travelling wave of the variable ξ = x -c k t, where c k ∈ R is the unknown invasion speed, the problem rewrites eventually:

(2.1)

               -u k -c k u k = u k (1 -u k ) -ku k v k in R -dv k -c k v k = rv k (1 -v k ) -αku k v k in R u k (-∞) = 1, u k (+∞) = 0 v k (-∞) = 0, v k (+∞) = 1 u k < 0 in R v k > 0 in R
It is well-known that natural selection tends to dierentiate the niches of competing species. The travelling wave solution corresponds to the case where u k lives essentially in the left half-space while v k lives essentially in the right half-space.

In such a situation, it seems obvious that one species might chase the other and invade the abandoned territory. The whole point of this article is to determine this species, or equivalently, the sign of the invasion speed. Indeed, [START_REF] Berestycki | Le nombre de solutions de certains problèmes semi-linéaires elliptiques[END_REF] 

c k > 0 i u k chases v k ; (2) c k < 0 i v k chases u k ;
Of course, we aim to nd a result depending on the value of d. Thus in the following pages, when we focus on the dependency of c k on d, we write c k,d ; otherwise, when d is xed, we simply write c k . 2.2. Unity is not strength theorem. Our main result follows. 

(1) c ∞,d = 0 if d = α 2 r ; (2) c ∞,d ∈ (0, 2) if d ∈ 0, α 2 r ; (3) c ∞,d ∈ -2 √ rd, 0 if d > α 2 r . Remark 2.
c k ∈ -2 √ rd, 2 , u k ∈ C ∞ (R) and v k ∈ C ∞ (R).
We can moreover assume exactly one of the following normalization hypotheses:

• u k (0) = v k (0), • u k (0) = 1 2 , • v k (0) = 1
2 , and if we do so, u k and v k are unique.

Proof. The well-posedness and the bounds for c k are proven by Gardner in [START_REF] Gardner | Existence and stability of travelling wave solutions of competition models: a degree theoretic approach[END_REF] and also by Kan-On in [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition diusion equations[END_REF] (actually, Gardner only showed c k ∈ -2 √ rd, 2 but Kan-On showed indeed c k ∈ -2 √ rd, 2 which will be important in the end). It is worth mentioning that their papers actually proved that the problem is well-posed without any monotonicity condition and that the monotonicity is indeed enforced.

Since u k , v k ∈ L ∞ (R) and u k , v k ∈ L 1 (R)
, the regularity just follows from W k,p -estimates and Sobolev's injections.

Remark 2.4. The extremal speeds -2 √ rd and 2 are the invasion speeds of respectively v k when u k = 0 and u k when v k = 0. This is a well-known result from Fisher, Kolmogorov, Petrovsky and Piscounov [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF].

Limit problem

Here we show that (u k ), (v k ) and (c k ) converge when k → +∞ and formulate the limit problem.

3.1. Existence of limit points. First, (c k ) is relatively compact and therefore, by the Bolzano Weierstrass theorem, has a limit point c ∈ -2 √ rd, 2 .

If c ≤ 0, we x for any k > 1 the normalization u k (0) = 1 2 . On the contrary, if c > 0, we x for any k > 1 v k (0) = 1 2 . This choice will be explained later on. In either case, this implies that the functions k → u k and k → v k are well-dened.

Proposition 3.1. For any i ≥ 1, let

K i = [-i, i]. (u k ) and (v k ) are relatively compact in C (K i ).
Proof. Our aim here is to use Ascoli's theorem. To that end, let us show that each u k is Hölder-continuous with a constant independent of k.

There exists a positive function χ

∈ D (R) such that χ (x) = 0 if x / ∈ [-i -1, i + 1] and χ (x) = 1 if x ∈ [-i, i].
For any k > 1, if we multiply the equation dening u k by u k χ and then integrate, we get:

ˆ(-u k u k χ -c k u k u k χ) = ˆu2 k χ -ˆu2 k (u k + kv k ) χ
The third term is obviously negative. An integration by parts yields:

ˆu 2 k χ - ˆu2 k 2 χ + c k ˆu2 k 2 χ ≤ ˆu2 k χ Finally, since ´u 2 k χ ≥ ´i -i u 2 k and u k L ∞ ≤ 1, we have: u k 2 L 2 (Ki) ≤ ˆ χ + |c k | 2 |χ | + 1 2 |χ |
Then we use Ascoli's theorem: the family (u k ) is bounded in L ∞ (K i ) and uniformly equicontinuous in K i therefore it is relatively compact in C (K i ). The exact same proof works for (v k ).

It is now clear, by a standard diagonal extraction argument, that there exists a subsequence of (u k ) (resp. (v k )) which converges locally uniformly to a limit point u (resp. v).

3.2. Properties of the limit points. c, u and v are actually unique and true limits as it will be proven later on. For the moment, let us just consider extracted convergent subsequences, still denoted (c k ), (u k ) and (v k ). 

k ˆuk v k ϕ ≤ ˆuk (1 -u k ) |ϕ| + |c k | ˆuk |ϕ | + ˆuk |ϕ | ≤ C ϕ W 2,1 (R) Hence u k v k → 0 in D (R).
Since u k v k → uv locally uniformly, we get indeed uv = 0.

Remark 3.3. This kind of result is usually referred to as a segregation property.

There is a lot of similar results in the literature. Lemma 3.4. We have Lemma 3.6. u and v have nite limits at ±∞. Besides,

-αu + dv -αcu + cv = αu (1 -u) -rv (1 -v) in D (R).
0 ≤ lim +∞ u ≤ lim -∞ u ≤ 1 and 0 ≤ lim -∞ v ≤ lim +∞ v ≤ 1
Proof. By locally uniform convergence, u and v are monotone, respectively nonincreasing and non-decreasing, and satisfy 0 ≤ u, v ≤ 1.

Lemma 3.7. u and v cannot vanish simultaneously on a non-empty compact set.

Proof. Once again, we consider a non-empty compact set [a, b].

By monotonicity, if u |[a,b] = 0, then u |[a,+∞) = 0. Similarly, v |(-∞,b] = 0. It yields, in D ((-∞, a)), -u -cu = u (1 -u)
and αu -dv = αu . Therefore u is continuous and, using -u -cu = u (1 -u), u is also continuous and the previous dierential equation is satised pointwise. Now, we get by induction that u is C ∞ in (-∞, a). Since it does not explode on the left of a, it is the restriction of a solution on a strictly larger interval. Since u is regular, u (a) = 0 and by Cauchy Lipschitz's theorem, u is identically null. By the same reasoning, v is also identically null.

To prevent u and v from being both null on the whole real line, either one of the two normalization sequences (u k (0)) k>1 = 1 2 and (v k (0)) = 1 2 combined with locally uniform convergence suces. Lemma 3.9. Neither u nor v can be positive everywhere.

Proof. If c ≤ 0, the normalization sequence is (u k (0)) = 1 2 . It ensures that u is not null. We dene

ξ u = sup {ξ ∈ R | u (ξ) > 0} ∈ (-∞, +∞].
If ξ u = +∞ (that is, u positive everywhere), v is null.

In such a case, we have u decreasing, bounded between 0 and 1, with limits at innity, non-constant by normalization, and -u -cu = u (1 -u) everywhere with u ∈ C ∞ (R).

This yields that lim -∞ u = 1 and lim +∞ u = 0. To that end, we use L'Hospital's rule.

Let l = u (-∞), G : ξ → exp (cξ) and F = Gu so that F = G (u + cu ) = -Gu (1 -u). F and G are dierentiable in R, G = 0 and G → +∞ as ξ → -∞; besides, F G → -l(1-l) c . By L'Hospital's rule, F G → -l(1-l) c , that is u (-∞) = -l(1-l)
c . In the end, necessarily, l ∈ {0, 1}. At +∞, we use the other version of L'Hospital's rule, noticing that u is bounded in R + (easy to prove) and checking that F and G go to 0. Eventually, by monotonicity, the limits are 1 at -∞ and 0 at +∞.

Thus u is a travelling wave for the Fisher KPP equation with speed c ≤ 0 < √ 2, hence the contradiction [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF].

If c > 0, we just apply this reasoning to v with normalization (v k (0)) = 1 2 .

Corollary 3.10. The two quantities

sup {ξ ∈ R | u (ξ) > 0} and inf {ξ ∈ R | v (ξ) > 0}
are real and equal. Up to translation, we can assume it to be 0. By continuity of u and v, u (0) = v (0) = 0.

(8) -u -cu = u (1 -u) in (-∞, 0); (9) -dv -cv = rv (1 -v) in (0, +∞); (10) αu (0) = -dv (0).
The behaviour of these limits is illustrated with the following gure.

v (0) u (0) = -d α v (0) 0 1 0 u v 3.4.
Uniqueness of the limit points.

Theorem 3.16. For any c > -2, the problem -y c -cy c = y c (1 -y c ) in (0, +∞) y c (0) = 0 admits a unique positive solution.

It satises y c > 0 in R + and lim ξ→+∞ y (ξ) = 1. Besides, γ : c → y c (0) is increasing and continuous.

Proof. This result was proved by Du and Lin in [START_REF] Du | Spreading-vanishing dichotomy in the diusive logistic model with a free boundary[END_REF] (prop. 4.1) but wrongly stated. Indeed, the requirement in their theorem should be c < 2, not c ≥ 0 as stated in [START_REF] Du | Spreading-vanishing dichotomy in the diusive logistic model with a free boundary[END_REF]. (Moreover, be aware that our statement is written with -cy c whereas their statement is written with +cy c ; so the requirement c < 2 becomes here c > -2; besides, this also changes the monotonicity of γ.)

Let us clear all doubts by lling the gap in their proof, that is the beginning where they construct their subsolution.

• Case |c| < 2: For all > 0, let y the positive solution of -y -cy = y(1 -y) in (0, ), y(0) = y( ) = 0.

According to Berestycki [START_REF] Berestycki | Le nombre de solutions de certains problèmes semi-linéaires elliptiques[END_REF] (theorem 4), such a solution exists if and only if the Dirichlet principal eigenvalue of the operator -L on (0, ) is negative: λ 1 -L, (0, ) < 0, where L is the operator associated with the linearized equation near y = 0:

Lφ := φ + cφ + φ. It is easy to compute: λ 1 -L, (0, ) = -1 + c 2 /4 + π 2 / 2 .
Hence, when |c| < 2, one has λ 1 -L, (0, ) < 0 when is large enough and thus we can construct y . Vice-versa, if |c| ≥ 2, λ 1 -L, (0, ) > 0 and the solution does not exist (whereas Du and Lin claim it does for all c ≤ 0). • Case c ≥ 2: It suces to remark that, for example, if y 1 is a solution of the previous Dirichlet problem for some c 1 ∈ (-2, 2), then y 1 is a subsolution for the Dirichlet problem with any speed c > c 1 .

In either case, the subsolution is now properly constructed and we can continue the proof as in [START_REF] Du | Spreading-vanishing dichotomy in the diusive logistic model with a free boundary[END_REF] and conclude.

Remark 3.17. We need to change a bit u and v before pursuing in this direction.

Let us consider ũ : ξ → u (-ξ) and ṽ :

ξ → v d r ξ . ũ is a solution of the problem -ũ + cũ = ũ (1 -ũ) in (0, +∞) ũ (0) = 0
ṽ is a solution of the problem -ṽ -c √ rd ṽ = ṽ (1 -ṽ) in (0, +∞) ṽ (0) = 0

Besides, c ∈ -2 √ rd, 2 so -c > -2 and c √ rd > -2, therefore we can apply the theorem.

Corollary 3.18. For any d > 0, there exists a unique (u, v, c) satisfying the limit problem (and may thereafter be called

(u ∞,d , v ∞,d , c ∞,d )).
Proof. The uniqueness of c implies by the previous theorem the uniqueness of u and v.

Corollary 3.19. The sequences (c k ), (u k ) and (v k ) have a unique limit point each. Hence the pointwise convergence of (c k ) and locally uniform convergence of (u k ) and (v k ) are fully proved and there is no need to consider extracted subsequences anymore.

Proof. Recall that, in any metric space, a sequence whose image is relatively compact and which has a unique limit point converges to this limit point. 

Dependency of the invasion speed on the diffusion rates

This last section is where we derive from the limit problem the result: how does the invasion speed c depend on the diusion rate d? Thanks to the convergence of (c k ) to c, we will then be able to extend it to c k (for k large enough).

Theorem 4.1. We have: Proof. This could follow from the continuity of each d → c k,d and the locally uniform convergence, but the continuity of d → c k,d is actually a more dicult problem (and is not solved by Kan-On [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition diusion equations[END_REF]). Therefore, we prove the continuity of d → c ∞,d directly. Our proof being basically a repetition of the whole previous section of this article, we give only a sketch of it.

• if d = α 2 r , c ∞,d = 0; • if d > α 2 r , c ∞,d ∈ -2 √ rd, 0 ; • if d < α 2 r , c ∞,d ∈ (0, 2 
First, let 0 < D 1 < D 2 . We have:

{c ∞,d | d ∈ [D 1 , D 2 ]} ⊂ c ∞,d | d ∈ [D 1 , D 2 ] ∩ α 2 r , +∞ ∪ {0} ∪ c ∞,d | d ∈ ∩ 0, α 2 r ⊂    d∈[D1,D2]∩ α 2 r ,+∞ -2 √ rd, 0    ∪ [0, 2] ⊂ -2 rD 2 , 2 Thus, {c ∞,d | d ∈ [D 1 , D 2 ]} is a relatively compact subset of R. Now, let δ ∈ [D 1 , D 2 ] and (δ n ) n∈N ∈ [D 1 , D 2 ]
N a positive sequence which converges to δ. Up to extraction, (c ∞,δn ) converges to a limit point C.

If C ≤ 0, we translate each couple (u ∞,δn , v ∞,δn ) so that (u ∞,δn (0)) = 1

. If

C > 0, we translate each couple (u ∞,δn , v ∞,δn ) so that (v ∞,δn (0)) = 1 • U and V are continuous, αU -δV is C 1 .

• U and V are positive and have nite limits at innity.

• U V = 0.

• If C ≤ 0, U is not identically null by normalization and V cannot be identically null since if it was, U would be a travelling wave for the Fisher KPP equation with a speed smaller than 2. The same reasoning applies for C > 0 and nally, neither U nor V can be identically null.

• U and V cannot be both null on a compact subset by continuity of (αU -δV ) and a Cauchy Lipschitz's argument. Now we translate back so that sup {ξ ∈ R | U (ξ) > 0} = inf {ξ ∈ R | V (ξ) > 0} = 0 It yields U |R+ = 0, V |R-= 0, -U -CU = U (1 -U ) in (-∞, 0), -δV -CV = rV (1 -V ) in (0, +∞) and αU (0) = -δV (0). Basically, C, U and V verify the exact same problem than c ∞,δ , u ∞,δ and v ∞,δ . By uniqueness, C = c ∞,δ , that is c ∞,δ is the unique limit point of (c ∞,δn ) and eventually c ∞,δn → c ∞,δ . Therefore, d → c ∞,d is indeed continuous.

Conclusion

We have proved our Unity is not strength theorem. Some remaining questions concern the shape of the asymptotic speed: what are the limits when d → 0 or d → +∞? Are there optimal diusion rates so that the invasion of one species or the other is the fastest? And eventually, how fast is the convergence to this asymptotic limit and, for example, is it monotone?

These could be adressed with the knowledge of the derivatives of the speed as a function of k or d. These might be determined analytically thanks to Kan-On formulas [START_REF] Kan-On | Parameter dependence of propagation speed of travelling waves for competition diusion equations[END_REF]. However, we did not manage to compute the sign of these derivatives, that is, the monotonicity of the speed with respect to k or d. We leave it as an open problem.

Theorem 2 . 1 .

 21 (d → c k,d ) k>1 converges locally uniformly in (0, +∞) to a continuous function d → c ∞,d which satises:

Lemma 3 . 2 .

 32 uv = 0.Proof. Multiplying by a test function ϕ ∈ D (R) and integrating the equation for u k yields:

  Proof. Multiply the equation for u k by α and substract to it the one for v k . The lefthandside converges trivially in D (R). The right-handside converges by dominated convergence. Lemma 3.5. u, v ∈ C (R) and αu -dv ∈ C 1 (R).

  Proof. The continuity of u and v is immediate thanks to the continuity of each u k and v k and the locally uniform convergence. Let a, b ∈ R such that a < b and I a : C ([a, b]) → C ([a, b]) dened by I a (f ) : x → ´x a f . By continuity of u and v, it is quite obvious that the function αcu -cv + I a (αu (1 -u) -rv (1 -v)) -(αcu (a) -cv (a)) is continuous. But, thanks to the previous lemma, it is also equal in D ((a, b)) to -αu + dv up to an additive constant. Therefore -αu + dv is a well-dened function of C ([a, b]).

Remark 3 . 8 .

 38 We already knew that uv = 0 everywhere. Thus the previous lemma ensures that, for any a < b, u |[a,b] = v |[a,b] = 0 is not possible; one of the two densities has to be positive whereas the other has to be null.

  The equality -αu (0) = dv (0) rewrites αγ (-c) = √ rdγ c √ rd . Now we consider the two functions x → αγ (-x) and x → √ rdγ x √ rd . They necessarily have an intersection point since c exists. But as they are respectively decreasing and increasing, this intersection point is unique.

Remark 3 .

 3 20. It is now clear that the sum up theorem of the previous section gives sucient but far from necessary conditions for uniqueness. For any c, u and v are unique i they are positive and satisfy points 4, 5, 8 and 9 and then the uniqueness of c is just a consequence of point 10.Proposition 3.21. The convergence of(d → c k,d ) k>1 to d → c ∞,d is locally uniform.Proof. Actually, one can see easily that the whole proof of pointwise convergence of (d → c k,d ) k>1 holds if we do not x a priori d. It suces to have d ∈ [D 1 , D 2 ], with D 2 > D 1 > 0 xed, so that we can replace bounds like -2 √ rd by -2 √ rD 2 .

γ

  ). Proof. The sign of c ∞,d is actually a simple consequence of the relation αγ (-c) = √ rdγ c √ rd . Indeed, let us prove that rd < α 2 implies c ∞,d > 0. Indeed, if rd < α 2 , then √ rd α < 1 and as γ c √ rd > 0, we get is increasing, c √ rd > -c, which clearly implies that c > 0. The case rd > α 2 is similar. If rd = α 2 , the relation becomes γ (-c) = γ c √ rd . An obvious zero of x → γ (-x) -γ x √ rd is 0, and by monotonicity it is unique, hence c = 0. Proposition 4.2. The function d → c ∞,d is continuous in (0, +∞).

2 .

 2 In either case, {u ∞,d | d ∈ [D 1 , D 2 ]} and {v ∞,d | d ∈ [D 1 , D 2 ]} are relatively compact in each C (K i) by Ascoli's theorem, and, up to extraction, (u ∞,δn ) and (v ∞,δn ) converge locally uniformly. Let U and V be their limits.• We have -αU + δV -αCU + CV = αU (1 -U ) -rV (1 -V ) in D (R).

  2. This result is profoundly unexpected! It does not suce to compare d to 1 or α to 1. v can loose even if r is large and u can loose even if α is large, for example. This should yield interesting insight into ecological applications.2.3. Well-posedness and regularity of the problem. Theorem 2.3. For any k > 1, there exists a unique c k such that there exist solutions u k and v k of the problem (2.1). It is enforced that

 Lemma 3.11.We have:

• u ∈ C ∞ ((-∞, 0) ∪ (0, +∞)),

• v ∈ C ∞ ((-∞, 0) ∪ (0, +∞)), Besides, we can extend u and v by continuity on the left and on the right respectively and obtain u (0) = lim ξ→0,ξ<0 u (ξ) and v (ξ v ) = lim ξ→0,ξ>0 v (ξ) which are nite and satisfy -αu (0) = dv (0) > 0.

Proof. u is identically zero on (0, ∞) so u |(0,+∞) is trivially C ∞ . In (-∞, 0), it is a weak, and then regular (same routine), solution of u + cu + u (1 -u) = 0.

Eventually, just recall that αu -dv ∈ C 1 (R). If its derivative at 0 is zero, by the same kind of Cauchy Lipschitz reasoning, u = v = 0 everywhere. Remark 3.12. The relation αu (0) + dv (0) = 0 is essentially the free boundary condition obtained by Nakashima and Wakasa in [START_REF] Nakashima | Generation of interfaces for LotkaVolterra competitiondiusion system with large interaction rates[END_REF]. Lemma 3.13. lim -∞ u = 1 and lim +∞ v = 1.

Proof. Same as before. Lemma 3.14

We know from Fisher and KPP [START_REF] Kolmogorov | Étude de l'équation de la diusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] that c = -2 √ rd is the maximal speed for wich there exists a travelling wave v KP P positive, going from 0 at -∞ to 1 at +∞, which satises -dv KP P -cv KP P = rv KP P (1 -v KP P )

We normalize by xing v KP P (ξ ) = 1 2 . Let f = v KP P -v. First, we can easily check that f is in C (R)∩C ∞ ((-∞, 0) ∪ (0, +∞)) and satises

We can therefore apply the maximum principle to the operator

Since lim +∞ f = 0, it gives us that f (ξ) ≤ 0 for any ξ ∈ (ξ , +∞). But we can also apply the minimum principle to the same operator, and we eventually get that f is identically zero in (ξ , +∞). This way, f (ξ ) = 0, hence f is identically zero in (0, +∞), which is impossible since f (0) > 0 and f is continuous in R. Theorem 3.15. There exist locally uniform limits u and v of (u k ) and (v k ) respectively. They satisfy:

(1) u, v ∈ C (R) ∩ C ∞ ((-∞, 0) ∪ (0, +∞));

(2) lim ξ→-∞ u (ξ) = 1;

(3) lim ξ→+∞ v (ξ) = 1;

(4) u |R+ = 0;

(5) v |R-= 0; (6) u ≤ 0 in R -with u (0) dened by left-continuity; [START_REF] Du | Spreading-vanishing dichotomy in the diusive logistic model with a free boundary[END_REF] v ≥ 0 in R + with v (0) dened by right-continuity;