

Microkernel Dedicated for Dynamic Partial Reconfiguration on ARM-FPGA Platform

XIA Tian, Jean-Christophe Prévotet and Fabienne Nouvel INSA, IETR, UMR 6164, F-35708 RENNES

EWiLi'14, Lisboa, Portugal 2014-11-13

Outline

- Motivation and Object
- Overview of Proposed Platform
- Microkernel Architecture
- Case study and Analysis

DPR: Dynamic Partial Reconfiguration

- □ Reduced hardware resource utilization
- □ Reduced reconfiguration latency
- □ Improved design efficiency

Supporting technologies

- Bare-metal application
- Existing OS extention (Linux): RAMPSoCVM
- Embedded OS: CAP-OS, ReconOS

1/18

Motivation and Object

Object: Microkernel-supported ARM-FPGA platform

Advantages:

Higher security level: completely isolated environment

□Smaller trust computing base (TCB) than traditonal OS

□ Mixed criticals: hard/soft/non real-time applications

Supélec

Zynq-7000 All programmable SoC

Dual core ARM Cortex-A9 (Single processor currently)

≻512MB DDR

AXI bus based PS/PL Interface

Processor Config Access Port (PCAP)

PS (Processing System)

Supélec

PL (Programmable Logic)

UNIVERSITÉ DE NANTES

RENN

Proposed Architecture

4/18

RENNE

Supélec

UNIVERSITÉ DE NANTES

Hardware tasks

Proposed Platform

- Stored by DDR Memory
- Download by DMA transfer through PCAP
- Reconfig. overhead is linearly correlated to PRR size, which means predictable latency of hw task switch.

RENN

Supélec

Proposed Architecture

Communication Interface

	AXI_GP	AXI_HP
Number	2	4
Mode	Master	Slave
Access	Unified Addr space	DMA
Throughput	600MB/s	1200MB/s

- AXI_GP: Control HW task behaviors
- AXI_HP: High speed data exchange

Proposed Architecture

PRR Controller Structure

- Cooperate with HW task manager
- Configue HW task parameters:

>DMA address, data size

➤Working mode

 Generate HW task Synchronization IRQ

Supélec

UNIVERSITÉ DE NANTES

Monitor HW switch

RENN

PRR Controller Monitor

Cooperate with HW task service to Monitor HW switch.

- Small TCB Size (Kernel: 8 KLOC; User environment: 3 KLOC)
- De-privileged C Library to handle privileged operations: Cache, page table
- Bootloader for guest OS/Applications (User Server)
- Separate virtual address spaces for kernel and guests
- Specific Priority-based round-robin scheduling

Supélec

Isolated virtual address spaces

Mini-NOVA Privilege Level (PL)

Priority-based scheduling

Scheduling Principle:

HW task requires tighter time constrain (hard real-time)

 Quick response for the HW task management should be guaranteed

Functions:

 HW Manager Enqueue(): Add the HW task manager into the run queue and preempt lower prio

HW Manager Dequeue(): Remove the EC of the HW task manager from the run queue

 reschedule(): Update the schedule and dispatch the highest priority EC

İETR

Microkernel Architecture

HW Task Manager

HW tasks' switch/config is isolated from other guests, should be done by the HW task manager.

 This mechanism is to ensure the security of the FPGA fabric.

Process flow:

- 1) Guest's System call (hw task id, args)
- 2) Check HW task ready/args
- 3) Switch/Configure hw task
- 4) Return to guest

Syscall_HW_Manager (HW task id, arg01, arg02, arg03)

Case Description

Proposed scenario:

Computing system within a mobile wireless terminal, which is capable of dynamically change its configuration in order to obtain the best level of performances according to the channel conditions.

Case study and analysis

Implementation

 Modulation and IFFT execute in pipeline, the reconfiguration will casue a suspension.

 To minimize the significant time overhead we proposed a multiplepath structure.

t1: Syscall HW Manager;

t2: PCAP Start,

HW Manager dequeue;

t3: PCAP Done;

t4: Data frame over.

Supélec

Pipeline suspension

UNIVERSITÉ DE NANTES

16/18

RENNE

Case study and analysis

Results & Analysis

Task name	Туре	Execution Time(ms)	Reconfig.Time(ms)	Resource Usage
ChannelSensor	SW	3	no	no
HW Manager	SW	0,0096	no	no
Guest Switch	SW	0,00232	no	no
QAM (4/16/64)	HW	0,09-0.03(1 frame)	0.231	2%
IFFT (256-8192)	HW	0,006-0,168(1 frame)	2.72	13%

Frame size:	18,800 bits
FPGA Freq:	100MHz
■ARM Freq:	660MHz

Reconfig Overhead:

Pipeline suspension: 0.168 ms (8096 points FFT).

FPGA Utilization rate with / w/o DPR

17/18

Conclusions

- An ARM based microkernel is bulit on Zynq-7000 architecture.
- Propose hardware task manager and PRR/PRR Controller to support DPR.
- Apply seperate memory space and multiple access privileges to improve the system security, especially for FPGA access.
- Use priority-based round-robin scheduling to guarentee run-time hw task management.
- Perspectives:
 - Further virtualization with Linux and other RTOS;
 - Performance evaluation with standard benchmarks.

Thank you for your attention!

XIA Tian

INSA, IETR, France

EWiLi'14, Lisboa, Portugal 2014-11-13

Proposed Architecture

Priority-based scheduling

EC 1	EC 2	EC 3	EC HW			
Mini-NOVA						

Execution Context (EC):

- CPU/FPU register state
- Coprocessor state
- Page Table Address (TTBR)
- Scheduling Priority

13/20

RENN

Supélec

UNIVERSITÉ DE NANTES

İETR

Microkernel Architecture

HW Task Manager

HW tasks' switch/config is isolated from other guests, should be done by the HW task manager.

 This mechanism is to ensure the security of the FPGA fabric.

Process flow:

- 1) Guest's System call (hw task id, args)
- 2) Check HW task ready/args
- 3) Switch/Configure hw task
- 4) Return to guest

Syscall_HW_Manager (HW task id, IRQ_en, arg01, arg02, arg03)

Syscall_HW_Manager (HW task id, arg01, arg02, arg03)

