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Abstract

The deltoid curve in R
2 is the boundary of a domain on which there exist proba-

bility measures and orthogonal polynomials for theses measures which are eigenvec-
tors of diffusion operators. As such, they may be considered as a two dimensional
extension of the classical Jacobi operators. They belong to one of the 11 families of
such bounded domains in R

2. We study the curvature-dimension inequalities associ-
ated to these operators, and deduce various bounds on the associated polynomials,
together with Sobolev inequalities related to the associated Dirichlet forms

1 Introduction

The deltoid curve (also called Steiner’s hypocycloid), see figure page 7, is one of
the bounded domains in R

2 on which there exist a probability measure µ and a
symmetric diffusion process, the eigenvectors of it being orthogonal polynomials for
µ. These orthogonal polynomials have been introduced in [17, 18] and appear in the
classification of [19]. They appear in [5] as one of the eleven models in dimension
two for which such polynomials exist. Moreover, it seems that is one of the most
difficult models to analyse, since there does not exist many geometric interpretation
for it. Beyond this, it is also interesting since it is deeply linked with the analysis of
the A2 root system and of the spectral analysis of SU(3) matrices.

This deltoid model and the associated generators provide an interesting object
to check various properties of diffusion operators, since one knows explicitly the
eigenvalues, and has many informations on the eigenvectors. For example, they
have satisfy recurrence formulas which allows for explicit computations, and in some
cases generating functions, see [27].

Since the associated measures and operators depend on a real parameter λ > 0
(see equation (3.11)), one may try to understand how functional inequalities and
curvature properties depend on this parameter λ, and hence on geometric properties
of the model.
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It turns out that for the specific cases λ = 1 and λ = 4, one may produce
simple geometric interpretations : in the first case from the Euclidean Laplace op-
erator through the symmetries of the triangular lattice, in the second case from the
Casimir operator on SU(3) acting on spectral measures. The SU(3) model provides
curvature-dimension inequalities for the generic model for λ ≥ 1. It is not clear how-
ever that these inequalities are optimal. It turns out that they indeed are. Quite
unexpectedly, the careful investigation of the CD(ρ, n) inequality for this model does
not produce better results than the direct consequence of the SU(3) inequality. In
comparison with the classical case of Jacobi polynomials, which are orthogonal with
respect to the measure Ca,b(1− x)a(1 + x)bdx on (−1, 1), this situation is similar to
the symmetric case a = b, but differs from the dissymmetric case (see [1]).

It seems worth to point out at least two interesting features of the computations
of curvature-dimension inequalities for this model. The first aspect concerns the
existence of an optimal dimension in the inequality. When one looks for curvature-
dimension inequalities on a compact Riemannian manifold with dimension n0, but
for a reversible measure which is not the Riemann measure, there is no optimal one.
For any n > n0, one may find some constant ρ(n) such that a CD(ρ(n), n) inequality
holds. In general, ρ(n) goes to −∞ when n → n0. It is only for Laplace operators
that one may expect some CD(ρ, n0) inequality. This is not the case here. For any
λ > 1, there is a bound n(λ) = 2λ such that no CD(ρ, n) inequality may hold for
n < n(λ). However, for this limiting value n = 2λ, the CD(34(λ − 1), 2λ) holds. Of
course, this phenomenon is due to the singularity of the density of the measure at
the boundaries of it’s support.

The second aspect concerns the use of appropriate coordinate systems. Since
the underlying metric is a flat metric in two dimensions, the curvature-dimension
inequality amounts to check for which values a and b one has an inequality of the
form

−∇∇W ≥ aId + b∇W ⊗∇W,

where W is the logarithm of the density measure with respect to the Riemann
measure. It turns out that a proper choice of the coordinates leads to very simple
formulas, which is not the case if the computation is made through the use of the
naive usual coordinates in the Euclidean plane. This comes from the fact that we
have indeed at disposal a polynomial structure, expressed through the choice of these
coordinates, and the function W satisfies nice relations with respect to this, namely
a "boundary equation" described in (4.31). This is a good indication that if one
wants to study such inequalities for higher dimensional models, these "polynomial
coordinates" should be used instead of the usual ones.

Then, the curvature-dimension inequalities provide through Sobolev inequali-
ties (2.6) various uniform bounds on the orthogonal polynomials, which turn out,
up to some change in the parameters, to be equivalent to the Sobolev inequality
itself. They also provide bounds on kernels constructed from other spectral decom-
positions, that is for operators which do not necessary commute with our starting
operator.

Orthogonal polynomials on the interior of the deltoid curve belong to the large
family of Heckman-Opdam polynomials associated with root systems [12, 13], and
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in the even larger class of MacDonald’s polynomials [21, 20, 22]. As such, they may
serve as a guide for more general models of diffusions associated with orthogonal
polynomials. One may find some extensive presentation of these pluri-dimensional
families of orthogonal polynomials, for example in [9, 22].

The associated diffusion generator is associated with some reflection group in
dimension 2. Operators associated with reflection groups in R

d, known as Dunkl
operators, are extensively studied in the literature, from the points of view of special
functions related to Lie group analysis or Hecke algebras, as well as from the point
of view of the associated heat equations, or in probability and statistics [8, 15, 14,
24, 23].

Most of the language and notations related to diffusion operators, and in par-
ticular the links between curvature-dimension inequalities and Sobolev inequalities,
together with the bounds one may deduce for eigenvectors, are borrowed from [3].
The fact that Sobolev inequalities are equivalent to bounds on the heat kernel goes
back to [7, 26], and the relations between curvature dimension inequalities go back
to [2] and are exposed in [3], among others. It is classical that one may deduce from
them bounds on the spectral projectors. However, the fact that these bounds may in
turn provide Sobolev inequalities, which is the content of Theorem 5.4, seems quite
new, at least to our knowledge, although a similar result concerning logarithmic
Sobolev inequalities is exposed in [3]. Notice that this recovers a Sobolev inequality
with a weaker exponent, not to talk about the optimal constants, which are always
out of reach with this kind of techniques.

Many of the properties concerning the spectral decomposition of the operator
on the deltoid, recurrence formulas for the associated orthogonal polynomials, gen-
erating functions, etc., may be found in [27]. We shall not use the results of this
paper here, apart the representations coming from symmetry groups in R

2 and from
SU(3), that we recall briefly in Section 3.

The paper is organized as follows. In Section 2, we present the general curvature-
dimension inequalities and the associated Sobolev inequalities. We show how this
provides bounds on the eigenvectors. Section 3 is a short introduction to the model
associated with the deltoid curve, where we explain the two geometric specific cases.
Section 4 provides the associated curvature-dimension inequalities, first from the
SU(3)-model, then from direct computation. We provide two approaches for this
general case, first in subsection 4.2 using the naive system of coordinates, and then in
subsection 4.3 with the adapted system of coordinates. The choice to present these
two approaches, and the striking difference in the complexity of the computation,
aims at underlining the efficiency of the good "polynomial coordinates". Finally, in
Section 5, we give the various bounds on polynomials and operators we are looking
for.

2 Curvature dimension inequalities

We briefly recall in this Section the context of symmetric diffusion operators, follow-
ing [6], in a specific context adapted to our setting. For a given probability space
(X,X , µ), we suppose given an algebra A of functions such that A ⊂ ∩1≤p<∞Lp(µ),
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A is dense in L2(µ), and which is stable under composition with smooth functions
Φ. In our case, A may be chosen as the class of restrictions to the domain of smooth
functions defined in a neighborhood of it, without any boundary condition. This
particular choice for A is made possible thanks to a special property of the oper-
ator, which satisfies a "boundary equation", which is our model has the specific
form (4.31). It is valid as soon one deals with operators having polynomial eigen-
vectors on a bounded domain, see [4]. In most of the cases, we may as well restrict
our attention to polynomials, although this would not be appropriate for Sobolev
inequalities. A bilinear application Γ : A × A 7→ A is given such that, ∀f ∈ A,
Γ(f, f) ≥ 0, which satisfies Γ(Φ(f1, · · · , fk), g) =

∑

i ∂iΦΓ(fi, g) for any smooth
function Φ. A linear operator L is defined through

(2.1)
∫

X
fL(g)dµ = −

∫

X
Γ(f, g)dµ

and we assume that L maps A into A. In this context, all the properties of the
model are described by Γ and µ, and the model is then entirely described by the
triple (X,Γ, µ) (see [3]). We then extend L into a self adjoint operator and we
suppose that A is dense in the domain of L.

Then, for f = (f1, · · · , fk) and for any smooth function Φ

(2.2) L(Φ(f)) =
k
∑

1

∂iΦ(f)L(fi) +
k
∑

i,j=1

∂2
ijΦ(f)Γ(fi, fj).

We have

Γ(f, g) =
1

2

(

L(fg)− fL(g)− gL(f)
)

.

We moreover define the Γ2 operator as

(2.3) Γ2(f, g) =
1

2

(

LΓ(f, g)− Γ(f,Lg)− Γ(g,Lf)
)

.

Then, for any parameters ρ ∈ R and n ∈ [1,∞], we say that L satisfies a
curvature-dimension inequality CD(ρ, n) if and only if

∀f ∈ A,Γ2(f, f) ≥ ρΓ(f, f) +
1

n
(Lf)2.

It is worth to observe that the CD(ρ, n) inequality is local. For a general elliptic
operator on a smooth manifold M with dimension n0, one may always decompose L
into ∆g +∇ log V , where ∆g is the Laplace operator associated with the co-metric
(g) and V is the density of µ with respect to the Riemann measure. In which case,
the operator Γ2 may be decomposed as

(2.4) Γ2(f, f) = |∇∇f |2 + (Ricg −∇∇ log V )(∇f,∇f),

where Ricg denotes the Ricci curvature computed for the Riemannian metric asso-
ciated with g, ∇∇ log V is the Hessian of log V , also computed in this metric, and
|∇∇f |2 is the Hilbert-Schmidt norm of the Hessian of f .
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In this case, the CD(ρ, n) inequality holds if and only if n ≥ n0 and, when V is
not constant, when n > n0 and

(2.5) Ricg −∇∇ log V ≥ ρg +
1

n− n0
∇ log V ⊗∇ log V.

Of course, when L = ∆g, this amounts to n ≥ n0 and Ricg ≥ ρg. In this
case, there exists a best choice for both ρ and n, namely for n the dimension of the
manifold and for ρ a lower bound on the Ricci tensor, that is the infimum over M
of the lowest eigenvalue of this tensor.

In this paper, we are mainly mainly interested the case where L = ∆+∇ log(V ),
where ∆ is the Euclidean Laplace operator in some open set of Rn0 . In which case
the measure µ is V dx, and the CD(ρ, n) inequality holds if and only if n ≥ n0 and

−∇∇ log(V ) ≥ ρ+
1

n− n0
∇ log(V )⊗∇ log(V ).

In order for it to be satisfied, we may look at local inequalities CD(ρ(x), n(x))
and try to find such a pair (ρ(x), n(x)) for which ρ(x) is bounded below and n(x)
bounded above. For a generic function V , there is no "best" local inequality in
general. The CD(ρ, n) inequality requires that the symmetric tensor −∇∇ log V is
bounded below by ρId. If ρ0 is the best real number such that −∇∇ log V ≥ ρ0Id
(that is ρ0 is the lowest eigenvalue at the point x of −∇∇ log V ), then the inequality
holds as soon as ρ ≥ ρ0 and (ρ− ρ0)(n − n0) ≥ |∇ log V |2.

But in our case, as already mentioned in the introduction, we are not in this
situation. There is a lower bound on the admissible dimension, which is strictly
bigger than n0. To understand this phenomenon, one may analyse a bit further this
CD(ρ, n) inequality at a given point on the manifold.

It may happen that, at some point x, the eigenvector of −∇∇ log V corresponding
to some eigenvalue ρ1(x) > ρ0(x) is parallel to ∇ log V . Let then in this case, there
is a best choice for both ρ(x) and n(x), which is

{

ρ(x) = ρ0(x),

n(x) = n0 +
1

ρ1(x)−ρ0(x)
|∇ log V |2.

In the model that we shall consider later, we shall see that this happens asymp-
totically on the boundary of the set we are working on, and the constants n and ρ
computed at this boundary points are valid for all other points x.

When some CD(ρ, n) inequality holds, with ρ and n constant, and whenever
ρ > 0, and 2 < n < ∞, then (X,Γ, µ) satisfies a tight Sobolev inequality. For
p = 2n

n−2 , and for any f ∈ A, we have

(2.6)
(

∫

X
fpdµ

)2/p
≤
∫

X
f2dµ+

4

n(n− 2)

n− 1

ρ

∫

X
Γ(f, f)dµ.

More generally, an n- dimensional Sobolev inequality is an inequality of the form

(2.7) ‖f‖22n/(n−2) ≤ A‖f‖22 + C

∫

Γ(f, f) dµ.
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When µ is a probability measure, we say that the inequality is tight when the
constant A is 1, and provided some Sobolev inequality holds, tightness is equivalent
to the fact that a Poincaré inequality occurs, which is automatic in our case since
the spectrum is discrete (see [3]).

When a Sobolev inequality (2.7) holds, then the associated semigroup Pt =
exp(tL) is ultracontractive, that is, for any q ∈ [2,∞]

(2.8) ‖Ptf‖q ≤
C1

t
n
2
( 1
2
− 1

q
)
‖f‖2, 0 < t ≤ 1,

with

C1 =
(Cn

2
+ 2A

)n/2
.

This last constant C1 is not sharp however. The bound is valid for q = ∞ and
indeed, the result for any q ∈ (2,∞) is a consequence of the case q = ∞ through an
interpolation argument. It turns out that his last ultra contractive bound (for some
given q, but for any t ∈ (0, 1)) is in turn equivalent to the Sobolev inequality.

There is another equivalent version

(2.9) ‖Ptf‖∞ ≤ Ct−n/2‖f‖1, 0 < t ≤ 1,

for which one deduces immediately that the semigroup Pt has a density which is
bounded above by Ct−n/2.

When 1 ≤ n ≤ 2, one may replace Sobolev inequalities by Nash inequalities,
which play the same rôle, see remark 5.6. However, the best constants that one may
deduce from curvature-dimension inequalities for Nash inequalities are not known
(see [6]).

As a consequence of ultracontractive bounds, whenever f is an eigenvector for L
with eigenvalue −λ, and provided that

∫

f2dµ = 1, one has

(2.10) ‖f‖q ≤ C1 inf
t>0

eλt

t
n
2
( 1
2
− 1

q
)
= C1Cn,qλ

n
2
( 1
2
− 1

q
),

with Cn,q = infs>0 e
ss−

n
2
( 1
2
− 1

q
), which follows immediately from the fact that Ptf =

e−λtf . This applies in particular for q = ∞, and produces uniform bounds on the
eigenvectors from the knowledge of their L2(µ) norms.

3 Diffusion processes on the interior of the del-

toid curve

We describe first the operator associated with the deltoid curve associated with a
family of orthogonal polynomials. Most of the details may be found in [27]. The
deltoid curve is a degree 4 algebraic plane curve which may be parametrized as

x(t) = 2 cos t+ cos 2t, y(t) = 2 sin t− sin 2t
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Figure 1: The deltoid domain.

The connected component of the complementary of the curve which contains 0
is a bounded open set, that we refer to as the deltoid domain D. Indeed, in what
follows, we shall work on this domain scaled by the factor 1/3, which will produce
much more convenient formulas. It turns out that there exist on this domain a one
parameter family L(λ) of symmetric diffusion operator which may be diagonalized in
a basis of orthogonal polynomials. It was introduced in [17, 18], and further studied
in [27]. This is one of the 11 families of sets in dimension 2 carrying such diffusion
operators, as described in [5].

In order to describe the operator, and thanks to the diffusion property (2.2), it
is enough to describe Γ(x, x), Γ(x, y), Γ(y, y), L(λ)(x) and L(λ)(y) (the Γ operator
does not depend on λ here).

The symmetric matrix

(

Γ(x, x) Γ(x, y)
Γ(y, x) Γ(y, y)

)

is referred to in what follows as the

metric associated with the operator, although properly speaking it is in fact a co-
metric. It is indeed easier to use the complex structure of R

2 ≃ C, and use the
complex variables Z = x+ iy, Z̄ = x− iy, with

L(Z) = (x) + iL(y), L(Z̄) = L(x)− iL(y),

and

Γ(Z,Z) = Γ(x, x)− Γ(y, y) + 2iΓ(x, y), Γ(Z, Z̄) = Γ(x, y) + Γ(y, y).
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The formulas are much simpler with these variables, and L(λ) is then described as

(3.11)























Γ(Z,Z) = Z̄ − Z2,

Γ(Z̄, Z̄) = Z − Z̄2,

Γ(Z̄, Z) = 1/2(1 − ZZ̄),

L(Z) = −λZ,L(Z̄) = −λZ̄,

where λ > 0 is a real parameter.
The boundary of this domain turns out to the curve with equation

(3.12) P (Z, Z̄) = Γ(Z, Z̄)2 − Γ(Z,Z)Γ(Z̄, Z̄) = 0,

and inside the domain, the associated metric is positive definite, so that it corre-
sponds to some elliptic operator on it. The reversible measure associated with it has
density CαP (Z, Z̄)α with respect to the Lebsegue measure, where λ = (6α + 5)/2,
and is a probability measure exactly when λ > 0 (we refer to [27] for more details).

There are two particular cases which are worth understanding, namely λ = 1
and λ = 4, corresponding to the parameters α = ±1/2. We briefly present those
two models, referring to [27] for more details, since we shall make a strong use of
them in what follows.

In the first case, one sees that this operator is nothing else that the image of the
Euclidean Laplace operator on R

2 acting on the functions which are invariant under
the symmetries around the lines of a regular triangular lattice.

For the first one, one considers the three unit third roots of identity in C, say
(e1, e2, e3) = (1, j, j̄). Then, consider the functions Z and zk : C 7→ C which are
defined as

(3.13) zk(z) = eiℜ(zēk), Z =
1

3
(z1 + z2 + z3)

They satisfy |zk| = 1 and z1z2z3 = 1.
It is easily seen that, for the Euclidean Laplace operator on R

2, Z and Z̄ satisfy
the relations (3.11) with λ = 1. Moreover, the function Z : C 7→ C is a diffeomor-
phism between the interior T of the triangle T and the deltoid domain D, where T is
one of the equilateral triangles with containing the two edges 0 and 4π/3. The func-
tions which are invariant under the symmetries of the triangular lattice generated
by this triangle T are exactly functions of Z. Therefore, the image of L(1) through
Z−1 : D 7→ T is nothing else that the Laplace operator on T . We may as well look
at the image of the operator L(λ) and it is then simply

(3.14) L(λ) = ∆(f) + (α+ 1/2)∇ logW∇f = ∆(f) +
λ− 1

3
∇ logW∇f

where ∆ is the usual Laplace operator in R
2 and the function W is defined form the

functions zj described in equation (3.13) as

(3.15) W = −(z1 − z2)
2(z2 − z3)

2(z3 − z1)
2.
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One should be aware here that thanks to the properties of the functions zj ,
−(z1− z2)

2(z2 − z3)
2(z3 − z1)

2 is a real valued function taking values in (0,∞) (and
vanishes only at the boundaries of T ).

This representation provides a way of computing CD(ρ, n) inequalities for L(λ),
following the description of Section 2.

The second description follows from the Casimir operator on SU(3). This lat-
ter group is a semi-simple compact Lie group, and as such as a canonical Laplace
(Casimir) operator which commutes (both from left and right) to the group ac-
tion [16, 10] . Namely, in any such semi simple compact Lie group G, one considers
it’s Lie algebra G, naturally endowed with a Lie algebra structure G × G 7→ G,
(X,Y ) 7→ [X,Y ]. The Lie algebra structure provides on G a natural quadratic
form K (the Killing form) as follows : for any element X ∈ G, one considers

ad(X) : G 7→ G, Y 7→ [X,Y ], and K(X,Y ) = −trace
(

ad(X)ad(Y )
)

. It turns

out that this quadratic form is positive definite exactly when the group is compact
and semi-simple. If one considers, for this Killing form, any orthonormal basis (Xi)
in the Lie algebra, the quantity

∑

iX
2
i , computed in the enveloping algebra, does not

depend on the choice of the basis, and commutes with any element on the Lie algebra
itself (this means that this commutation property depends only on the Lie-algebra
structure and not on the way that the elements of this Lie algebra are effectively
represented as linear operators).

Now, to any X ∈ G is associated a first order operator DX on G defined as
follows

(3.16) DX(f)(g) = ∂tf(ge
tX) |t=0 .

The application X 7→ DX is a representation of the Lie algebra into the linear space
of vector fields ([DX ,DY ] = D[X,Y ]), and any identity in the Lie algebra (on on
it’s enveloping algebra) translates to an identity on those differential operators. We
work here with the right action g 7→ getX but we could as well work with the left
action g 7→ etXg. For any orthonormal basis Xi of G for the Killing form K, one
defines the Casimir operator

(3.17) L =
∑

i

D2
Xi
.

It does not depend of the choice of the basis and commutes with the group action,
that is [L,DX ] = 0 for any X ∈ G.

This Killing form provides an Euclidean quadratic form in the tangent plane at
identity in G (the Lie algebra G), which may be translated to the tangent plane at
any point g ∈ G through the group action, and endows G with a natural Riemanian
structure. It turns out that the Casimir operator L is also the Laplace operator for
this structure. For the group SU(d) that we are interested in, one wants to precisely
describe the action of this Casimir operator on the entries of the matrix g = (zij)
in SU(d). That is, writing the entries zpq = xpq + iypq, we consider xpq and ypq as
functions G 7→ R, and, for any i, j, k, l, we want to compute

LSU(d)(xij), LSU(d)(yij), ΓSU(d)(xij , xk,l), ΓSU(d)(xij , yk,l), ΓSU(d)(yij , xk,l),
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where ΓSU(d) is the square field operator associated with LSU(d). In order to get
simpler formulae, it is once again better to work with the complex valued functions
zpq, writing for such a function z = x+ iy,

LSU(d)(z) = LSU(d)(x) + iLSU(d)(y),

ΓSU(d)(z, z) = Γ(x, x)− Γ(y, y) + 2iΓ(x, y),

ΓSU(d)(z, z̄) = Γ(x, x) + Γ(y, y).

If one denotes by Ep,q the matrix with entries (Ep,q)i,j = δipδjq, a base of the Lie
algebra of SU(d) is given by

Rk,l = (Ek,l −El,k)k<l

Sk,l = i(Ek,l +El,k)k<l

D1,l = i(E1,1 − El,l)1<l.

In order to describe the Casimir operator in a compact form, it is better to work
with Dk,l = i(Ek,k − El,l)k<l, and one may write in this way (up to a factor 2 that
will play no rôle in the future)

(3.18) LSU(d) =
∑

k<l

(D2
Rk,l

+D2
Sk,l

+
2

n
D2

Dk,l
).

One may compute then the associated vector fields following formula (3.16), and
we get

DRpq =
∑

k

zkq∂kp − zkp∂kq + z̄kq∂̄kp − z̄kp∂̄kq

DSpq = i
[

∑

k

zkq∂kp + zkp∂kq − z̄kq∂̄kp − z̄kp∂̄kq

]

.

DDpq = i
[

∑

k

zkp∂kp − zkq∂kq − z̄kp∂̄kp + z̄kq∂̄kq

]

.

With these relations, one may directly compute the action of LSU(d) on the entries
of the matrix, and we get

(3.19)























LSU(d)(zpq) =
−2(d2−1)

d zpq

LSU(d)(z̄pq) =
−2(d2−1)

d z̄pq

ΓSU(d)(zkl, zrq) = −2zkqzrl +
2
dzklzrq,

ΓSU(d)(zkl, z̄rq) = 2(δkrδlq − 1
dzklz̄rq).

Now, let us consider the special case d = 3 and consider the function Z : G 7→ C

defined by Z(g) = 1
3trace (g) = 1

3(z11 + z22 + z33). Any function on G depending
only on the spectrum of g is a function of (Z, Z̄), since, denoting by λ1, λ2, λ3 the
eigenvalues of g, with |λi| = 1, λ1λ2λ3 = 1, such a spectral function is a function
of (3Z = λ1 + λ2 + λ3, λ1λ2 + λ2λ3 + λ3λ1), but thanks to the properties of the
eigenvalues,

λ1λ2 + λ2λ3 + λ3λ1 = 3Z̄.
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Then, the characteristic polynomial of g, that is P (X) = det(X − g), may be
written as

P (X) = X3 − 3ZX2 + 3Z̄X − 1.

It turns out that formulae (3.19) produce an easy way to compute the action of
LSU(d) on the entries of the characteristic polynomial. For this, we use the following
formulae, valid for any square matrix M with entries (mij)

(3.20) ∂mij
log det(M) = M−1

ji , ∂2
mijmkl

log det(M) = −M−1
jk M−1

li .

Using the change of variable formula (2.2), when applying equation (3.20) to XId−M
together with formulae (3.19), one gets, on SU(d) and with P (X) = det(XId−M),

ΓSU(d)(log P (X), log P (Y )) = (d− XP ′(X)

P (X)
)(d− Y P ′(Y )

P (Y )
)

−d
(

d+
X + Y

X − Y
(
Y P ′(Y )

P (Y )

−XP ′(X)

P (X)
)− XY

X − Y
(
P ′(Y )

P (Y )
− P ′(X)

P (X)
)
)

= XY
(P ′(X)

P (X)

P ′(Y )

P (Y )
+

d

X − Y
(
P ′(X)

P (X)
− P ′(Y )

P (Y )
)
)

.

which in turn gives

(3.21) Γ(P (X), P (Y )) = XY
(

P ′(X)P ′(Y ) + d
P ′(X)P (Y )− P ′(Y )P (X)

X − Y

)

,

and

(3.22) LSU(d)(P ) = (1− d2)XP ′ + (1 + d)X2P ′′.

One may now compare this for d = 3 with the formula given by (3.11) for λ = 4,
to observe that indeed, with L = 3

4LSU(3), they give the same result.
In the end, we see that L(4) is nothing else than 3

4LSU(3) when acting on functions
of Z = T/3, where T is the trace of the matrix.

4 Curvature dimension for the deltoid model

4.1 Curvature-dimension inequalities for SU(3).

It is well known that the Casimir operator of any compact semi simple Lie group has
a constant Ricci curvature (see for example [11], prop. 3.17, or [25]). However, the
explicit constant is not straightforward to compute, and for the sake of completeness,
we provide for this an easy way through the use of the Γ2 operator. It relies on the
following observation, which may be used in other similar situations. Let Ei be some
elements of the Lie algebra and Xi be the associated vector fields. We do not require
that the Ei form an orthonormal basis, since we shall use the representation (3.18)
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for SU(3) which is not given in such a basis (the elements Dij are not orthogonal
and are not linearly independent).

Suppose that L is given as

L =
∑

i

X2
i , [L,Xi] = 0, Γ(f, f) =

∑

i

Xi(f)Xi(f).

Then, using formula (2.3), one immediately gets

Γ2(f, f) =
∑

i,j

(XiXjf)
2.

We decompose XiXj(f) into it’s symmetric and antisymmetric part

XiXj =
1

2
(XiXjf +XjXif) +

1

2
[Xi,Xj ](f) = Hij +

1

2
[Xi,Xj ](f).

Then

Γ2(f, f) =
∑

ij

(Hijf)
2 +

1

4

∑

ij

([Xi,Xj ](f))
2 =

∑

ij

(Hijf)
2 +

1

2

∑

i<j

([Xi,Xj ](f))
2.

It turns out that this decomposition coincides exactly with the one provided
by (2.4) into the second order part and the first order part of the Γ2 tensor. There-
fore, on has

Ric(f, f) =
1

2

∑

i<j

([Xi,Xj ](f))
2,

and we are bound to compute the commutators of the elements in the basis.
For example, on SU(3), the commutator table is the following, with D̂i,j =

√

2/3Di,j, and a =
√

2/3:

0 R1,2 R1,3 R2,3 S1,2 S1,3 S2,3 D̂1,2 D̂1,3 D̂2,3

R1,2 0 −R2,3 R1,3 2/aD̂1,2 −S2,3 S1,3 −2aS1,2 −aS1,2 aS1,2

R1,3 0 −R1,2 −S2,3 2/aD̂1,3 S1,2 −aS2,3 −2aS1,3 −aS1,3

R2,3 0 −S1,3 S1,2 2/aD̂2,3 aS2,3 −aS2,3 −2aS2,3

S1,2 0 −R2,3 −R1,3 2aR1,2 aR1,2 −aR1,2

S1,3 0 −R1,2 aR1,3 2aR1,3 aR1,3

S2,3 0 −aR2,3 aR2,3 2aR2,3

D̂1,2 0 0 0
D̂1,3 0 0
D̂2,3 0

We just have to add half the sum of all the squares of the element appearing in
the table. We get

(1 + 3a2)(R2
2,3 +R2

1,3 +R2
1,2 + S2

1,2 + S2
1,3 + S2

2,3) +
2

a2
(D̂2

1,2 + D̂2
2,3 + D̂2

2,3).

Since 1+ 3a2 = 2/a2 = 3, we see that the Ricci curvature is constant and it is equal
3, more precisely Ric(f, f) = 3Γ(f, f).

Remembering that the dimension of SU(3) is 8, we get
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Proposition 4.1. The Casimir operator LSU(3) defined by equation (3.18) satisfies
the optimal CD(3, 8) inequality.

From the definition of the Γ2 operator and of the curvature-dimension inequality,
it is immediate that if if L satisfies CD(ρ, n), then cL satisfies CD(cρ, n). We
therefore see that 3

4LSU(3) satisfies a CD(94 , 8) inequality.
Then, L(4) being the image of 3

4LSU(3) through the map g 7→ Z = 1
3 (z11 + z22 +

z33), applying the CD(ρ, n) inequality on SU(3) on function of (Z, Z̄) provided
directly the

Corollary 4.2. L(4) satisfies the CD(94 , 8) inequality.

4.2 Curvature dimension for the general deltoid model

We may now come back to the general deltoid model. Let us write, in the triangle
representation, the decomposition (3.14)

L(λ) = ∆+
λ− 1

3
∇ logW,

where W (1−λ)/3 is the density the invariant measure of L(λ) with respect to the
Lebesgue measure, and W is given in formula (3.15)s.

We also know from the general formulation of the CD(ρ, n) inequality (2.5) that
the CD(94 , 8) for λ = 4 translates into the following

(4.23) −∇∇ logW ≥ 9

4
Id +

1

6
∇ logW ⊗∇ logW.

For λ > 1, multiplying the previous inequality by λ−1
3 , this in turns gives for the

general case provides

Corollary 4.3. For any λ ≥ 1, L(λ) satisfies a CD(3(λ−1)
4 , 2λ) inequality.

Observe that indeed the limiting case λ = 1 corresponds to the Laplace operator
on R

2 which satisfies a CD(0, 2) inequality.
It is not clear however that this inequality is sharp. Indeed, going from the CD

inequality on SU(3) to the same CD inequality for L(4), we may as well have lost
information. In general, as we already mentioned, on a smooth compact manifold
(with no boundaries) with dimension n0, there is no optimal CD(ρ, n) inequality,
and for any n > n0 one may find some ρ(n0) such that the operator ∆ + ∇ log V
satisfies a CD(ρ, n) inequality. Moreover, this does not tell us anything about the
case where λ < 0.

As mentioned in the introduction, the optimal computation for this inequality
for a generic λ is not elementary. In this section, we shall perform directly the
computations of ∇∇ logW and ∇ logW ⊗∇ logW to observe that the SU(3) case
indeed gives the optimal answer, which is quite surprising. Of course, on SU(3) the
CD(ρ, n) inequality is optimal at every point x ∈ SU(3), while on the projected
model, it is optimal only at some point on the boundary of the deltoid domain D.

We shall show the following
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Proposition 4.4.

1. For λ < 1, the operator L(λ) does not satisfy any CD(ρ,∞) inequality.

2. For λ > 1, the operator satisfy no CD(ρ, n) inequality for any n < 2λ. More-

over, the best constant ρ in the CD(ρ, 2λ) inequality is ρ = 3(λ−1)
4 .

Proof. — Everything boils down, for λ > 1, to check inequalities of the form

−∇∇ logW ≥ c1Id + c2∇ logW ⊗∇ logW,

and for λ < 1 to check the the tensor ∇∇ logW is not bounded below.
To perform the computations, we shall use the triangle model, that is move back

everything of T through the map Z−1, since on T the metric is the identity and the
Hessian is computed in the usual way.

In what follows, we shall use the functions log(z) for a complex variable z 6= 0
without any precaution about which determination of the argument we chose for the
logarithm, since indeed we are only concerned with the one form d log(z) and it’s
derivative.

Let us recall that W = −(z1 − z2)
2(z2 − z3)

2(z3 − z1)
2, with zk = ei(Ek.z), where

(4.24) E1 =

(

1
0

)

, E2 =

(

−1
2√
3
2

)

, E3 =

(

−1
2

−
√
3
2

)

.

Then, setting σ = log(z1 − z2) + log(z2 − z3) + log(z3 − z1), logW = 2σ, up to
some additive (eventually complex) constant, and we are looking for

(4.25) −∇∇σ ≥ bI2 + a∇σ ⊗∇σ.

What we want to show is first that ∇∇σ is not bounded above, and then that
the former inequality (4.25) may not hold if a > 1/3. Moreover, we want to check
that for a = 1/3, the best lower bound for b is b = 9/8. It turns out that this is
quite technical.

We shall need a few intermediate steps to check this inequality.

Lemma 4.5. We have

∇zk = izkEk, ∇ log(zp − zq) = i
zpEp − zqEq

zp − zq
,

∇∇ log(zp − zq) =
zpzq

(zp − zq)2
(Ep − Eq)

⊙2

.

Proof. — (Of Lemma 4.5)
The two first identities are immediate. For the last one, we write

∇∇ log(zp − zq) = i∇(
1

zp − zq
(zpEp − zqEq))

= − 1

zp − zq
(zpE

⊗2

p − zqE
⊗2

q ) +
1

(zp − zq)2
(zpEp − zqEq)

⊗2

As a consequence, one has
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Corollary 4.6.

(4.26) ∇∇ log σ = [
z1z2

(z1 − z2)2
V ⊙2

1 +
z2z3

(z2 − z3)2
V ⊙2

2 +
z1z3

(z3 − z1)2
V ⊙2

3 ].

(4.27) ∇ log σ ⊗∇ log σ = −[
z1

z1 − z2
V1 +

z2
z2 − z3

V2 +
z3

z3 − z1
V3]

⊙2

.

where
V1 = E1 − E2, V2 = E2 − E3, V3 = E3 − E1

and Ei, i = 1, 2, 3 are defined in (4.24).

Remark 4.7. Observe that |Vi|2 = 3 and that the complex valued vector

U =
z1

z1 − z2
V1 +

z2
z2 − z3

V2 +
z3

z3 − z1
V3,

has purely imaginary components: thanks to the fact that V1 + V2 + V3 = 0, and
using z̄i = z−1

i , one sees that Ū = −U . Therefore −U ⊗ U ≥ 0.

On the other hand, the tensor z1z2
(z1−z2)2

V ⊙2

1 + z2z3
(z2−z3)2

V ⊙2

2 + z1z3
(z3−z1)2

V ⊙2

3 is real.

Proof. — (Of Corollary 4.6). Equation (4.26) is a direct consequence of Lemma 4.5,
while (4.27) follows from

∇σ ⊗∇σ = −[
z1E1 − z2E2

z1 − z2
+

z2E2 − z3E3

z2 − z3
+

z3E3 − z1E1

z3 − z1
]⊗

2

= −[E1 +
z2

z1 − z2
(E1 − E2) + E2 +

z3
z2 − z3

(E2 − E3) + E3

+
z1

z3 − z1
(E3 − E1)]

⊗2

and the fact that E1 + E2 +E3 = 0.

First, observe that when z2 = eiφz1 with φ → 0, with z1 6= 1, j, j̄, the tensor
∇∇σ is equivalent to − 4

sin2 φ/2
V1 ⊗ V1, and therefore is not bounded below. This

shows that there cannot exist any CD(ρ,∞) inequality for λ < 1.
From now on, the parameter a ∈ R being fixed, let us call b(a) the best constant

b in inequality (4.25) at a given point in the interior of the triangle. It is obtained the
lowest eigenvalue of the symmetric tensor ∇∇σ−a∇σ⊗∇σ. We want to understand
when this function is bounded below.

It is then better to change coordinates and consider a basis W1 = V1/
√
3 and

W2 which is orthogonal to W1 and norm 1, such that

V2 =
√
3(−1

2
W1 +

√
3

2
W2), V3 =

√
3(−1

2
W1 −

√
3

2
W2).

Moreover, we shall set z2 = z1u, |u| = 1, so that z3 = 1/(z21u), and z31 = z.
Observe that the image of (x, y) 7→ (z, u), is S2

1 , where S1 is the set complex numbers
with modulus 1.
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With those notations, inequality (4.25) becomes

AW⊙2

1 +BW⊙2

2 + CW1 ⊙W2

4(1− u)2(1− zu)2(1− zu2)2
≥ b(W⊙2

1 +W⊙2

2 ),

where

A = 3
(

(

a(u2 + 1) + (2a− 4)u
)

(1 + u6z4)− uz(u+ 1)
(

4a(u2 + 1) + u2 − 10u+ 1
)

(1 + z2u3)

+2u2z2
(

2a(u4 + 1) + a(u3 + u) + (6a− 12)u2
)

)

B = 9(u− 1)2
(

a(u6z4 + 1)− (u5z3 + uz)− (u4z3 + u2z) + (−2a+ 4)u3z2
)

C = 6
√
3(u− 1)(1 − z2u3)

(

a(u4z2 + 1) + a(u3z2 + u) + (1− 2a)(u3z + uz)− 2u2z
)

Setting z = eiθ and u = eiφ we have

A = 12u4z2
(

2 cos(2θ + 3φ)(a cos2 φ/2− 1)− 2 cos(φ/2) cos(θ + 3/2φ)((4a + 1) cos φ− 5)

+2a cos(2φ) + a cos(φ) + 3(a− 2)
)

B = −72u4z2(sin2(φ/2))
(

a cos(2θ + 3φ)− cos(θ + 2φ)− cos(θ + φ) + (2− a)
)

C = 48
√
3z2u4 sin(φ/2) sin(θ + 3/2φ)

(

a cos(θ + 2φ) + a cos(θ + φ) + (1− 2a) cos(φ)− 1
)

while the denominator may be written as

−44z2u4 sin2(φ/2) sin2(θ/2 + φ/2) sin2(θ/2 + φ).

Simplfying everything by u4z2, and letting A1 = −Az−2u−4, B1 = −Bz−2u−4,
C1 = Cz−2u−4, and N = 44 sin2(φ/2) sin2(θ/2 + φ/2) sin2(θ/2 + φ), we see that the
best constant b(a), at some point (z, u) is then

b(a) =
A1 +B1 −

√

(A1 −B1)2 + C2
1

2N
.

We now may prove the following

Lemma 4.8. The function b(a) is unbounded below on the set |z| = |u| = 1 if
a > 1/3.

16



Proof. — (Of Lemma 4.8) We shall see in Lemma 4.10 that the function b(a) is
bounded below for a = 1/3. This of course shows that it is also bounded below for
any a < 1/3. What we have to prove then is that the function b(a) is unbounded
below when a > 1/3.

Let us concentrate on the case a < 1. It is enough to observe the asymptotics of
b(a) around θ = φ = 0. The result is obtained when choosing φ = λθ2. Then, one
has











A1 ≃ 12(1 − a)θ4 = αθ4

B1 ≃ 18λ2(1− 2a)θ6 = βθ6

C1 ≃ −24
√
3λaθ5 = γθ5

Then, b(a) ≃ c/θ2, where the constant c has the sign of 4βα − γ2, that is of
(1− 3a). When a > 1/3, this converges to −∞ when θ → 0.

Remark 4.9. When choosing in the previous argument φ = λθ, one sees that b(a)
is unbounded below as soon as a > 1/2. This asymptotics is not enough to capture
the optimal bound.

We now concentrate on the case a = 1/3. We are able to compute explicitly the
lower bound for a = 1/3, which corresponds and fits with the SU(3) computation,
although the explicit computation of the lower bound is not explicit (and not really
of interest) for the other values of a < 1/3.

We will study the function b(a) in case a = 1
3 .

Lemma 4.10. The function b(1/3) is bounded below and it’s lower bound is 9/8

Proof. — (Of Lemma 4.10)
In the case a = 1/3 the function b(1/3) have the following form in (z,u):

b(1/3) =
1

2

1

(u− 1)2(zu2 − 1)2(zu− 1)2

(

P (z, u)−
√

Q(z, u)
)

where

P (z, u) = (u2 − 4u+ 1)(1 + u6z4)− 4zu(u+ 1)(u2 − 3u+ 1)(1 + z2u3)

+u2z2(u4 + 8u3 − 30u2 + 8u+ 1).

Q(z, u) = [(z2u4 − zu3 − zu2 + u2 − u+ 1)(z2u2 − z2u3 + z2u4 − zu− zu2 + 1)

(z2u4 + z2u3 + zu3 − 6zu2 + zu+ u+ 1)2].

Using the same notations than in Lemma 4.8, b(1/3) can be written also in (θ, φ)
in this form

(4.28) b(1/3) =
1

2

N(θ, φ)

D(θ, φ)
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where

N(θ, φ) = 2
(

2 cos(2θ + 3φ)(cos(φ)− 2)− 8 cos(φ/2) cos(θ + 3/2φ)(2 cos(φ)− 3)

+ cos(2φ) + 8 cos(φ)− 15− | T || 2 cos(φ/2) cos(θ + 3/2φ) + cos(φ)− 3 |
)

D(θ, φ) = −26 sin2(φ/2) sin2(θ/2 + φ) sin2(θ/2 + φ/2)

where

T = z2u3 − 2 cos(
φ

2
)zu

3

2 + 2cos(φ)− 1

and | T |=
√
T T̄

Setting x = cos(φ/2), y = cos(θ + 3/2φ), and y = x+ w we may rewrite this as

(4.29)

b(1/3) =
1

4

(2(1 − x2)− xw)2 + 3w2(1− x2)− (2(1 − x2)− xw)
√

(2(1− x2)− xw)2 + 3w2(x2 − 1)

(1− x2)w2

To see this, we just replacing in (4.28)

cos(φ) = 2x2 − 1, cos(2φ) = 8x4 − 8x2 + 1, cos(2θ + 3φ) = 2y2 − 1

sin2(
φ

2
) = 1− x2, sin(φ+

θ

2
) sin(

θ + φ

2
) =

1

4
(x− y)

we obtain

N(x, y) = 8
(

2x4 − 8x3y + 2x2y2 + x2 + 10xy − 3y2 − 4−

| x2 + xy − 2 |
√

4x4 + 4x2y2 − 4x3y − 3y2 − 7x2 + 2xy + 4
)

D(x, y) = −24(1− x2)(x− y)2

then if we set y = x+ w we have the result

Now, in formula (4.29), we set t =| 2(1−x2)−xw)

w
√
1−x2

|, and then b(1/3) becomes

b(1/3) =
1

4
(t2 + 3− t

√

t2 − 3), t ≥
√
3.

It is an easy exercise to check that the lower bound of this last function of t is 9/8.

We now collect the results of Lemmas 4.8 and 4.10 to get Proposition 4.4.
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4.3 A simpler proof of the curvature-dimension inequal-

ity

As mentioned in the introduction, we shall show that the use of the complex coor-
dinates (Z, Z̄) provide a much simpler proof of Proposition 4.4. Everything relies
on the boundary equation (4.31), which is nothing else than a particular case of a
general equation which is valid as soon as orthogonal polynomials come into play
(see [4]). In the coordinates (Z, Z̄) ∈ D, the operator L(λ) takes a simpler form,
even if the metric looks more complicated. This illustrates the use of the appro-
priate coordinates whenever one has a polynomial structure such as this deltoid
model.

Once again, our aim is to compute the Hessian of the function log P , where P is
defined in equation (3.12).

Following [3], the Hessian of f , applied to dh, dk, that is in a local system of
coordinates ∇∇ij(f)∂ih∂jk, may be defined as

(4.30) H[f ](h, k) =
1

2

(

Γ(h,Γ(f, k)) + Γ(k,Γ(f, h)) − Γ(f,Γ(k, h)
)

.

We want to apply this with f = logP and h, k = Z, Z̄. For this, one may use the
boundary equation which takes in this context the particular form

(4.31) Γ(Z, log(P )) = −3Z, Γ(Z, logP ) = −3Z,

and is easily checked from formulae (3.11)
From this, we deduce that, for any function G(Z,Z), Γ(log P,G) = −3D(G),

where D is the Euler operator Z∂Z + Z∂Z
Let us write

H11 = H[log P ](Z,Z), H12 = H[logP ](Z,Z), H22 = H[log P ](Z,Z).

From the previous remarks, we get

H11 = −3Γ(Z,Z) +
3

2
D(Γ(Z,Z)).

H12 = −3Γ(Z,Z) +
3

2
D(Γ(Z,Z)),

and

H22 = −3Γ(Z,Z) +
3

2
D(Γ(Z,Z)).

In other words, with the obvious notations, H = −3Γ + 3
2DΓ

In the same way, the tensor ∇ logP ⊗∇ logP may be computed in this system
of coordinates as

M = 9

(

Z2 ZZ

ZZ Z
2

)

.
In the end, the inequality

(4.32) −∇∇ logP ≥ b1Γ + a1∇ log P ⊗∇ logP
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amounts to

(3− b1)Γ− 3

2
DΓ− 9a1M ≥ 0,

where Γ denotes the matrix
(

Γ(Z,Z) Γ(Z,Z)

Γ(Z,Z) Γ(Z,Z)

)

.

For such a tensor (Rij) in complex coordinates, to represent a non negative real
tensor amounts to ask that

R12 ≥ 0 and (R12)2 ≥ R11R22.

R12 ≥ 0 reads 3− b1 + (b1 − 18a1)ZZ ≥ 0, and for this to be true on Ω amounts
to ask

b1 ≤ 3, a1 ≤ 1/6,

since ZZ varies from 0 to 1 on Ω.
The second one writes

(4.33)

[(3−b1)/2+b1/2−9a1ZZ]2 ≥ (3/2−b1)
2ZZ+(b1−9a1)

2Z2Z
2
+(Z3+Z

3
)(b1−9a1)(3/2−b1).

Writing everything in polar coordinates Z = ρeiθ, this writes as

P2(ρ
2) ≥ 2ρ3 cos(3θ)(b1 − 9a1)(3/2 − b1),

where P2 is a degree 2 polynomial.
Observe that this requires to be true for any ρ ∈ [0, 1] when cos(3θ) = 0 (which

corresponds to the cusps of the deltoid curve).
But, with the explicit computation of P2, one gets

P2(ρ
2)−2ρ3(b−9a)(3/2−b) =

1

4
(1−ρ)(3−b1+b1ρ)

(

3−b1+ρ(3−2b1)+3ρ2(b1−12a1)
)

.

For the maximal value a1 = 1/6,

P2(ρ
2)− 2ρ3(b− 9a)(3/2 − b) = (1− ρ)2(3− b1 + 3ρ(2− b1)),

and we get a bound b1 ≤ 9/4.
For these values a1 = 1/6 and b1 = 9/4, equation (4.33) writes

4(1 − ρ2)2 ≥ ρ2 + ρ4 − 2ρ3 cos(3θ),

while the condition Γ(Z,Z)2 ≥ Γ(Z,Z)Γ(Z,Z), which characterizes the points in D̄,
writes

1

4
(1− ρ2)2 ≥ ρ2 + ρ4 − 2ρ3 cos(3θ),

so the the inequality is satisfied everywhere in D. Observe that the critical points for
the curvature-dimension inequality for the critical values are attained at the cusps.
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Remark 4.11. Observe that the values b1 = 9/4 and a1 = 1/6 in inequality (4.32)
are once again exactly the bounds obtained in equation (4.23). Moreover, we know
that even with a1 = 0 (corresponding to a CD(ρ,∞) inequality), if we look for
the optimal value for b1, it is clear from this method that the best constant b1 is
bmax < 3, so that whatever the constant a1 ∈ [0, 1/6], the optimal value for b1 lies
in the interval [9/4, 3). (The optimal constant b1(a1) may be explicitly computed but
has no real interest.)

5 Sobolev inequalities and bounds on the eigen-

vectors

As described in Section 2, from the curvature dimension inequality, we may obtain
bounds on the supremum of the associated eigenvectors. More precisely, whenever
a CD(ρ, n) inequality holds with ρ > 0 and n < ∞, there exists a constant C such
that for any eigenvector P satisfying L(P ) = −µP , then

‖P‖∞ ≤ Cµn/4‖P‖2,

where the L2 norm is computed with respect to the invariant measure of the operator
L.

Turning to the case of the operator L(λ) on the deltoid, we recall from [27]
that the associated eigenvectors which are polynomials with total degree n have
eigenvalues µp,q = (λ − 1)(p + q) + p2 + q2 + pq, with p + q = n. More precisely,
of any n ≥ 1 such that p + q = n, when p 6= q, there is a dimension 2 associated
eigenspace. In complex variables, for such value µp,q, there is a unique degree n
polynomial Pp,q(Z, Z̄) with highest degree term ZpZ̄q and another one which is
P̄p,q(Z, Z̄) = Pp,q(Z̄, Z) = Pq,p(Z, Z̄) eigenvector (the polynomial Pp,q having real
coefficients). For p = q however, the associated eigenspace is one dimensional. The
real forms are Sp,q = 1

2 (Pp,q + Pq,p) and Ap,q = −i
2 (Pp,q − Pq,p), which form a real

basis for this eigenspace.
When λ > 1, for L(λ), for any µp,q and of any polynomial P in the associated

eigenspace, one gets from the CD(3(λ−1)
4 , 2λ) inequality

(5.34) ‖P‖∞ ≤ C(λ)µλ/2.

Looking at the constants, this does not produce any estimates for λ = 1 or
0 < λ < 1. However, for λ = 1, one may consider the following. The operator L(1)

is nothing else than the usual Laplace operator acting on functions f(Z), where the
function Z is given in (3.13). As functions of (x, y) in the real plane, those functions
are periodic in x with period 4π and in y with period 4π/

√
3. As such, the associated

semigroup P
(1)
t is an image of the product semigroup of the associated 1 dimensional

torus (that is the semigroup on the real line acting on periodic functions). More
precisely, when considering a function on the deltoid as a function of (x, y) ∈ R

2,

P
(1)
t ((x, y, dx′, dy′) = P

S1(4π)
t (x, dx′)P

S1(4π/
√
3)

t (y, dy′),
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where PS1(τ)
t (x, dx′) is the semigroup of the torus with radius τ , that is the semigroup

of the one-dimensional Brownian motion acing on τ -periodic functions. Since both
semigroups have a density which is bounded above by C/

√
t for some constant C

and for 0 < t ≤ 1, it turns out that P
(1)
t has a density which is bounded above by

C ′/t. This is enough to get the bound on the associated eigenvectors. In the end,
we get

Proposition 5.1. For any λ ≥ 1, there exists a constant C(λ) depending on λ only,
such that for any polynomial P eigenvector of L(λ) with eigenvalue µ 6= 0, one has

(5.35) ‖P‖∞ ≤ C(λ)µλ/2‖f‖2.

Remark 5.2. Looking at the constants, whenever λ → 1, the constant C(λ) in (5.35)
goes to ∞, and there is an unexpected discontinuity in the constants. Indeed, our
computations are not the best possible. One may sharpen them with the help of
spectral gaps, that is the knowledge of the lowest non 0 eigenvalue, which here is λ.
More precisely, one may reinforce the constants in the ultracontractive bounds under
a CD(ρ, n) inequality and the knowledge of this lowest eigenvalue (see remark page
313 in [6]). But the argument in this modified estimate produces a Sobolev inequality
with any dimensional parameter m > n , and a constant which is not improved when
m → n. There is therefore a balance in the optimal bound on P between the value of µ
(for µ large one wants m to be the lowest possible), and for λ → 1 (when λ → 1, one
wants C(λ) not too big). We could such have produced a better bound. But indeed,
the remark in [6] as it stands is not really valid for ρ = 0 which corresponds in our
case to λ = 1. One would have to sharpen this estimate, both for the case ρ = 0 and
for the value of m. It is indeed true that one may obtain a n-dimensional Sobolev
inequality (under it’s entropic form) under a estimate on the lowest eigenvalue and
some CD(ρ, n) inequality, even for ρ < 0, but the argument in [6] is clearly not
sufficient for that and requires further analysis.

From the point of view of the invariant measure µ(λ) of L(λ), what is relevant is
the decomposition of L2(µ(λ)) into spaces of orthogonal polynomials. More precisely,
when denoting Pk the space of polynomials with total degree less than or equal to
k, one considers the subspace Hk of Pk which is orthogonal to Pk, such that one has
the orthogonal decomposition

L2
(

µ(λ)
)

= ⊕∞
k=1Hk,

where H0 is the space of constant functions.
One has

Proposition 5.3. There exists a constant C1(λ) such that, for any k ≥ 1 and any
P ∈ Hk

(5.36) ‖P‖∞ ≤ C1(λ)k
λ+1/2‖P‖2.

Proof. — One may decompose Hk into the eigenspaces associated to L(λ). There
are rk = [k/2] + 1 such eigenspaces, and all the eigenvalues belong to the interval
[k(λ+ k − 5/4), k(λ + k − 1)], or, when k ≥ 1, in the interval [3/4k2, λk2].

22



Writing P ∈ Hk as P =
∑rk

i=1 aiPi where Pi is an eigenvector with ‖Pi‖2 = 1
and ‖P‖2 =

∑rk
1 a2i , one has from (5.35) and the bound on the eigenvalues in Hk

‖P‖∞ ≤
rk
∑

1

|ai|‖Pi‖∞ ≤ C(λ)λ(1+λ/2)
rk
∑

1

|ai|kλ

≤ C(λ)λ(1+λ/2)kλr
1/2
k

√

√

√

√

rk
∑

1

a2i ,

from which the bound follows immediately.

One may wonder how far inequality (5.36) is from the Sobolev inequality we

started from. Observe first that, for the heat kernel P(λ)
t , for any function P ∈ Hk,

one has
‖P(λ)

t P‖2 ≤ exp(−3/4tk2)‖P‖2,
since all eigenvalues of Pt on Hk are bounded below by exp(−3/4tk2).

Therefore, we have, for any P ∈ Hk

‖P(λ)
t P‖∞ ≤ C1(λ) exp(−3/4tk2)kλ+1/2‖P‖2.

Observe that this relies only on the bound (5.35) together with the knowledge of the
eigenvalues.

Theorem 5.4. Let Pt be a symmetric Markov semigroup with reversible probability
measure µ and generator L. Assume that L satisfies a Poincaré inequality and that
one has a decomposition into orthogonal spaces L2(µ) = ⊕kHk, where Hk is a linear
space, with the property that, for some real number a > 0 and for any f ∈ Hk,

‖Ptf‖∞ ≤ Ckpe−atk2‖f‖2.

Then, L satisfies a tight Sobolev inequality with dimension m = 2p + 1.

Proof. — Following [6], and from the existence of a Poincaré inequality, it is enough
to prove that, for t ∈ (0, 1] and for some constant C, ‖Ptf‖∞ ≤ Ct−m/4‖f‖2. We
may restrict to the case where ‖f‖2 = 1. For f ∈ L2(µ), let us write f =

∑

k fk,
where fk ∈ Hk and

∑

k ‖fk‖22 = 1.

‖Ptf‖∞ ≤
∑

k

‖Ptfk‖∞ ≤
∑

k

kpe−atk2‖fk‖2 ≤
(

∑

k

k2pe−2atk2
)1/2

.

One may compare the sum
∑

k k
2pe−2atk2 with

∫∞
0 x2p exp(−2atx2) dx, where the

function x2p exp(−2atx2) is increasing on (0,
√

p/(2at) and decreasing on (
√

p/(2at),∞),
and we see that, for 0 < t ≤ 1,

∑

k

k2pe−2atk2 ≤ C(a, p)t−(p+1)/2, 0 < t ≤ 1.
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Therefore, following the results exposed in Section 2, we get a Sobolev inequality
with dimension m = 2(p + 1). The existence of a Poincaré inequality (that is of a
strictly positive first non zero eigenvalue for −L) insures that we may get a tight
Sobolev inequality (2.7). This gives the result.

Looking at the values for the deltoid model, we see that the estimate provides a
Sobolev inequality with dimension m = 2λ+ 3, whereas we started from a Sobolev
inequality with dimension 2λ. One may wonder if this lost in dimension (from n to
n+ 3) is due to too crude estimates on both the eigenvalues and the summation in
the series, or from the fact that the spaces Hk are k dimensional. Indeed, even in the
case or one dimensional Jacobi operators, where the eigenspaces are one dimensional,
where the eigenvalues for the associated operator are k(k + c) for polynomials with
degree k, one would pass with the same method from a Sobolev inequality with
dimension n to a Sobolev inequality with dimension n + 1. This is in big contrast
with the case of logarithmic Sobolev inequalities, where estimates on the Lp bounds
on the eigenvectors are indeed equivalent to logarithmic Sobolev inequalities (see [3]).

Finally, we directly get from this a criterium for a symmetric operator constructed
from orthogonal polynomial would have a bounded density.

Proposition 5.5. Let K be a symmetric operator in L2(µ(λ)) which maps Hk into
Hk and is such that, for any P ∈ Hk, ‖K(P )‖2 ≤ νk‖P‖2. If A =

∑

k ν
2
kk

2λ+1 < ∞,
then K2 may be represented by a bounded kernel,

K2(f)(x) =

∫

f(y)k(x, y) dµ(y),

where |k| ≤ A.

Proof. — Arguing as in the proof of Theorem (5.4), we may write f =
∑

k fk with
fk ∈ Hk. Then,

‖K(f)‖∞ ≤
∑

k

‖K(fk)‖∞ ≤
∑

k

kλ/1/2‖K(f)‖2

≤
∑

k

νkk
λ/1/2‖fk‖2 ≤ (

∑

k

νkk
λ/1/2)1/2‖f‖2.

Therefore, the operator K is bounded from L2 into L∞ with norm A1/2. By sym-
metry and duality, the same is true from L1 into L2, and by composition, K2 is
bounded from L1 into L∞ with norm A. It therefore may be represented by a kernel
k bounded by A.

Remark 5.6. The method presented here says nothing about the case where 0 <
λ < 1. Indeed, in this case, one may expect to have a two-dimensional behavior for
the heat kernel, that is ‖P1‖2,∞ ≤ Ct−1/2, 0 < t ≤ 1. In this context, it is better to
replace Sobolev inequalities by Nash inequalities, that is inequalities of the form

‖f‖22 ≤ ‖f‖2θ1
(

‖f‖22 + C

∫

Γ(f, f)dµ
)1−θ

,
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where θ = 2
n+2 is a dimensional parameter. When n > 2, this is equivalent to a

Sobolev inequality with dimension n, but for n ∈ (1, 2), this is still equivalent to
a bound ‖Pt‖2,∞ ≤ C ′t−n/4 (see [3]). As mentioned, we may expect when 0 <
λ < 1 some Nash inequality with dimensional parameter n = 2. We cannot expect
any smaller value for n since, applied to any function compactly supported in the
interior of D, this would contradict the classical two dimensional Nash inequality in
an open domain of R2. However, the singularity of the measure at the cusps of the
deltoid make things a bit hard to analyze. Following the method developed in [3],
pages 370-371, we are able to prove Nash inequalities with dimension n = 5/2,
with however a constant C(λ) which goes to infinity when λ → 0. This is not
satisfactory for many points of view. First, because of the bad dimension, and for
the lack of continuity in these inequalities when λ → 1. Secondly, when λ → 0,
the measure converges to the uniform measure on the three cusps 1

3(δ1/3 + δj/3 +
δj̄/3), and the associated polynomials converge to the corresponding polynomials on

three point (when one would have to replace ZZ̄ by 1/9 and Z3 by Z/33). It is
therefore a challenging question to produce for small λ some functional inequality
which recaptures this particular structure in the limit.
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