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Abstract. Requirements of aircraft parts welded becoming increasingly severe especially in terms 

of reproducibility of geometry and metallurgical grade of weld bead; laser welding is a viable 

method of assembly to meet these new demands by its automation to replace longer term the 

manual TIG welding process. The purpose of this study is to determine the weldability of Hastelloy 

X alloy by the butt welding process Nd: YAG laser. To identify influential parameters of the 

welding process (laser power, feed rate, focal diameter and flow of gas) while streamlining testing, 

an experimental design was established with the CORICO software that uses the graphic correlation 

method. The position of the focal point was fixed at -1/3 of the thickness of the sheet. The gas flow 

rate and the power of the beam seem to have a major role on the mechanical properties and 

geometry of the weld. The strength of the weld is comparable to that of base metal. However, there 

is a significant drop in the elongation at break of about 30 %. The first observations of the cross 

section of the weld by scanning electron microscopy coupled with EBSD analysis show generally a 

molten zone presenting dendritic large grain compared to the equiaxed grains of the base metals 

without a heat affected zone. 

 
Introduction  
Hastelloy X is a commercially available nickel-chromium-molybdenum superalloy with a good 

oxidation resistance, a good mechanical properties at high temperature and a significant formability; 

sine qua criteria for the choice of materials for the production of chambers turbojet combustion 

which is part of this study [1]. Arc welding technique is commonly used for the manufacturing of 

parts but the aeronautical requirements becoming increasingly severe especially in terms of 

reproducibility of geometry and metallurgical grade fillet weld. Laser welding is a viable method of 

assembly to meet these new demands by its automation to replace longer term the manual TIG 

welding. The high power CO2 laser is extensively used for practical applications such as cutting and 

welding laser welding. The CO2 laser is very used in the industry with regard to Yb:YAG laser 

which until now was not rather powerful but this changes. The aim of this study was to evaluate the 

effect of Yb:YAG laser beam parameters on the microstructure and mechanical properties of the 

laser beam welded superalloys Hastelloy X to define a field of weldability. The implementation of 

an experimental design approach is required due to the multitude of input parameters and the 

complexity of the phenomena involved [2-3]. 

Experimental procedure  

Alloy studied is the nickel-chromium-molybdenum alloy Hastelloy X which composition is given 

in Table 1. The sheet metal is in the annealed condition: it was heat treated between 1150°C and 

1175°C and cooled rapidly. Treatment and cooling are carried out under a protective atmosphere 

[2]. Their thickness is 1.2 mm. 

Table 1. Chemical composition of the Hastellloy X (wt %). 

Ni Cr Co Mo W Al Fe Mn Cu Si C 
Bal 22.1 1.38 9.0 0.45 0.13 18.7 0.66 0.08 0.35 0.07 

http://www.ttp.net


 

The samples were cut and butt welded by TRUMPH TruLaser Cell 3000 machine. The laser beam 

is a Yb: YAG TruDisk maximum power 3.3 kilowatts continuous, equipped with a special optical 

fiber comprising a core fiber 100 µm and a coaxial fiber 400 µm. This fiber thus allows to weld 

sheet metals with a distributed power density following a classic Gaussian surface (small fiber, SF) 

either another a torus (large fiber, LF). Two laser parameters are particularly important for welding: 

the power density of the laser beam and the interaction time. They determine how much energy per 

area (W.m
-2

) and per unit of time (J.m
-2

) is introduced into the workpiece process [6]. The power 

density can be controlled by changing the laser power, the size of the focus spot and the 

configuration of fiber. The interaction time can be adjusted for spot work by changing the 

irradiation time or by altering the feed rate. To identify influential parameters of the welding 

process while streamlining testing, an experimental design was established by the CORICO 

software to understand the new possibilities offered by this new technology [7]. Five parameters 

were selected for this study: the laser power (500 – 2500 W), the speed welding (1 – 8 m.min
-1

), the 

focal diameter (110 – 750 µm) which depends on the fiber configuration and the gas flow. The fiber 

configurations are: the laser beam can be carried by the core of the fiber (SF) or by the periphery of 

the fiber (LF). The Table 2 presents 30 configurations of welding of the experiment design defined 

with the software CORICO. The position of the focal point relative to the surface of the sheet has 

not been considered as a variable parameter. Indeed, much research in this area showed a 

penetration at a maximum focal length of -1/3 of the thickness of the sheet relative to the surface 

and this whatever the focal diameter and the feed speed [3].  

 

During the laser welding operation, the specimens were clamped rigidly by a fixture which was 

designed and manufactured for this study, to align the laser beam with the butt joint and avoid any 

thermal distortion. To limit the oxidation of the lower face of samples, an argon gaseous protection 

is realized (20 l.min
-1

). 

The microstructures of the base metal and the welds have been studied from observations by optical 

microscopy (Leica wild M420 stereo microscope) and scanning electron microscopy (FEG-SEM 

JEOL 7000F). Dimensional limits for specific common imperfections and shape dimensions in laser 

beam fusion welding are also provided in the referred specifications, in particular, square joints in 

butt configurations need to be checked in terms of their reinforcement R, low weld LW, drop-thru 

DT, underfill UF, undercut UC, and shrinkage groove SG. To validate the weldability of these 

alloys, dimensions of cord section are measured and compared to standard specifications described 

in EN ISO 6947 (Fig.1). 

 

 

Figure 1. Standart geometrical specifications described in EN ISO 6947. 

 

 



Table 2. Design matrix defined by the software CORICO. 

 
Power (w) 

Speed 

(m.min
-1

) 

ØSF 

(µm) 

ØLF 

(µm) 
Gas flow (l.mn

-1
) 

S1 1000 6.25 305 375 25 

S2 1500 1.00 110 450 10 

S3 2500 8.00 175 525 40 

S4 2500 4.50 240 600 32 

S5 1500 8.00 240 600 32 

S6 1000 6.25 175 525 25 

S7 1500 1.00 305 675 32 

S8 2000 6.25 175 525 17 

S9 2000 8.00 305 675 17 

S10 2000 2.75 305 675 40 

S11 1000 6.25 240 600 32 

S12 2000 4.50 305 675 10 

S13 2000 6.25 370 750 40 

S14 1500 4.50 370 750 17 

S15 1000 2.75 240 600 32 

S16 2500 2.75 270 750 17 

S17 1500 6.25 110 450 40 

S18 500 2.75 175 525 25 

S19 2500 1.00 240 600 25 

S20 500 4.50 205 675 10 

S21 1000 4.50 370 750 17 

S22 500 8.00 110 450 25 

S23 2000 2.75 175 525 32 

S24 1500 4.50 240 600 25 

S25 500 8.00 110 450 10 

S26 500 1.00 370 750 10 

S27 500 1.00 110 450 40 

S28 2500 1.00 110 450 10 

S29 2500 8.00 370 750 40 

S30 500 1.00 110 450 10 

 

A more precise metallurgical study was led for the optimized cords. EBSD analyses were 

performed using a JEOL 7000F field emission scanning electron microscope at an accelerating 

voltage of 20 kV equipped with a Nordlys II F+ camera. EBSD analyses were helpful in both 

analyzing the microstructure of the alloy and the welds. EBSD data were then post-processed with 

the commercial orientation imaging software package Oxford Channel 5. To minimize 

measurement errors, all grains comprising less than 3 pixels were automatically removed from the 

maps before data analysis. A 15◦ criterion was used to differentiate low angle grain boundaries 

(LAGBs) and high-angle grain boundaries (HAGBs). The grain size was quantified by 

measurement of grain area (ignoring annealing twin boundaries) and calculation of the equivalent 

grain diameter assuming each grain as a circle. EDX analysis (oxford Silicon Drift Detector X-

Max) were realized to specify the physico-chemical transformations in the welded cords. The 

mechanical properties of the welds were determined by means of micro-tensile to be compared with 

those of the parent material. 

 



 

Results and discussion  

The microstructure of the base metal consists of equiaxed grains of average size between 100 and 

150 microns for Hastelloy X whatever plane plate studied (Fig.2a). An EBSD analysis was realized 

in the plan RD-LT of the sheet of Hastelloy X. The figure 1.b present an IPF ZO mapping. Both 

plats show no texture. Several grains present macles. M6C's carbides are present in grains and in 

boundaries grains (Fig. 1c,d) 

 

Figure 2. Base metal Hastelloys X (a) Optical microscopy observation. (b) Inverse Pole Figure 

orientation map (IPF Z0).  (c) EDX analyses of M6C carbide types. 

The tensile mechanical properties in different directions in the plane RD-LT have been determined 

for the base metal (Table 3). No anisotropy of mechanical properties for the two sheets metal is 

demonstrated confirming previous microstructural observations. 

Table 3. Mechanical properties of Hastelloy X. 

Angle of orientation with  

regard to rolling direction 

Rigidity 

E [GPa] 

Yield Strength  

[MPa] 

Ultimate Tensile Strength  

[MPa] 

Elongation 

 [%] 

0° 208±10 446±3 799±2 55±2 

45° 211±15 446±11 793±11 53±2 

90° 190±20 456±5 806±5 58±8 

 

This study was conducted in several stages with CORICO software: a preliminary study was 

conducted to determine the limits of weldability defined from geometric criteria fillet weld. A 

second study clarified the weldability taking into account the mechanical properties of fillet weld 

and highlights the influence of each parameter on the welding quality of the welded joint. Corico 

method is based on analysis of partial correlations between all the variables of the experimental 

design. 

The domain of weldability was determined from 30 tries defined by the experimental design for the 

homogeneous assembly. The figure 3 presents the domains of weldability; that is the domains 

where the geometrical criteria of cords are verified. The welding speed of 2.75 m.min
-1

 seems the 

most interesting because the welded cords meet the criteria of the standard about is the diameter of 

the focal point and for a power superior to 1000 W. For speeds of welding more important, the 

power must be superior in 1500 W and the focal diameter between 200 and 370 microns. The figure 

4a presents the evolution of the mechanical strength of the weld according to the variables: the focal 
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diameter, the speed of welding and the power. It exists a correspondence enters domain of 

weldability and the maximal strength of cords. The speed of 2.75 mm.min
-1

 seems to be also the 

most relevant to obtain the most resistant cords. The break of tensile samples for the same speed is 

localized in the parent material and not in the welds ( Fig. 4b). 

 

Figure 3. Weldability field of the Hastelloy X. 

  

Figure 4. (a) Mechanical propreties field (UTS) of the welds of Hastelloy X. (b) Fracture field of 

the Hastelloy X welded samples. 

The response surface methodology was used to explore the relationships between several 

explanatory variables (speed, power and focus diameter) and one or more response variables (UTS 

and elongation).  

The figure 4 presents the response surfaces of the ultimate tensile strength according to the 

experimental variables. The mechanical strength is maximal when the speed of the head is average 

(of the order of 4.5 m.min
-1

) and the power superior to 1000 W (Fig. 5a). The focal diameter seems 

to be a factor of the first order because the strength is maximal for diameters lower than 350 

microns whatever the speed and the power (Fig. 5b, c). The response surfaces of the elongation at 

rupture according to the same variables are presented to the figure 6. The same trends are 

a b 



 

highlighted. The maximal elongation is obtained for focal diameters lower than 110 µm, values of 

power lower than 1500 W and average speeds of welding of the order 4.5 mm.min
-1

. 

 

 

Figure 5. Response Surfaces presenting the evolution of the elongation at rupture according to the 

welding speed, the power and the focal diameter. 

Two optimizations were calculated by the software CORICO by fixing several criteria of 

desirability. The first optimization was calculated by setting as the standard IN ISO 6947 for the 

geometrical criteria references and by maximizing the mechanical properties. The second modelling 

was determined by taking as criteria the maximum of the strength of the welds while trying to 

minimize the geometrical defects (hollow, gutter) cords. The optimum parameters are summarized 

in table 4 for the small and large focal diameter for both homogeneous welding. 

Table 4. Optimized parameters determined by the software CORICO for homogeneous welding 

Hastelloy X. 

 1
st
 optimization 2

nd
 optimization 

 SF LF SF LF 

Power (W) 1571 2430 1679 2269 

Speed (m.min
-1

) 7.65 3.17 4.67 2.63 

Ø focal (µm) 350 518 349 610 

Gas flow (l.min
-1

) 40 39 39 39 

 

Microstructure and mechanical properties of these optimized fillet welds were characterized to 

better understand the influence of welding parameters. Fusion zone shape and final solidification 

structure of these two alloys were evaluated as a function of laser parameters. The shapes of the 

weld beads optimized in cross section are shown in Figure 6. A typical form of a Keyhole welding 

mode is observed for butt weld obtained with small focal, and an X-shaped weld is more 

representative of a conduction welding method obtained with a large focal. Conduction mode is 

characterized by a low penetration welds. The weld depth is determined by a combination of heat 

conduction and convection of the liquid in the solder bath. As against, the mode called keyhole, 

wherein evaporation and ejection of metal occurs, achieves substantial penetration depths. The 

dimensions of optimized welds, defined in the figure 1, were measured. All the cords satisfy all the 

geometrical criteria of the standard IN ISO 6947. 
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Figure 6. Metallographic observations of welds obtained with the welding optimal parameters. 

The strength of the optimized welds was determined from transverse tensile tests. The obtained 

curves are presented to the figure 7. The curve of the hastelloy X, determined in the same direction, 

is also given for comparison. 

 

 
Figure 7. Evolution of the strength of cords according to the strain determined from tensile 

transverse tests realized on welded test samples. 

 

The mechanical behavior of welded samples with the parameters defined during the first 

optimization postpones from the mechanical behavior of  welded samples with the parameters of 

the second optimization and the samples of the base material. Whatever focal used to weld the 

samples of the first optimization, the mechanical strength is lower. This difference of mechanical 

behavior does not seem due to the size of the weld because the cord which has the best mechanical 

behavior is the one obtained with the small focal diameter for the conditions of welding defined by 



 

the second optimization. To try to explain the different mechanical behavior of these samples 

welded, instrumented tensile tests by means of digital correlation images were realised. The local 

mappings of deformation field of the weld for a global rate of elongation of 21 % of the tensile 

sample are presented in the figure 8. 

 

 

Figure 8. Evolution of the local deformation across the weld for an global elongation of 21% 

determined by DIC. 

 

 

Fields of deformation of the sample welded with the small focal of the present first optimization 

locally a more important rate of deformation due to a concentration of stress in the weld which 

presents a low weld defect. The sample welded with the large focal of the present first optimization 

has a less important rate of deformation in the melted zone and uniformly distributed. This can be 

led by the geometry of the weld which is exempt from defects The premature break is however 

localized in the melted zone, at the level of the median interdendritic plan. Samples welded with the 

parameters of the second optimization, whatever is the focal diameter present a rate of 

homogeneous deformation in the weld and in the parent material. The differences of mechanical 

behavior of the various welds cannot thus give some explanation only by the geometry of the 

welded cords; the microstructure in a more local scale thus has to play a very important role. 

To verify this hypothesis, EBSD analyses were realized on all the weld in the plan LT-ST. They are 

presented in  the figure 9. These analyses were made in the same conditions as those made for the 

parent material (FEG-SEM JEOL 7000F coupled with OXFORD Nordlys Fast camera). The 

observed microstructure presents a growth epitaxic from the parent material of the denditric colonar 

grains in the melted zone. 

Differences of microstructure appear between cords realized with the parameters of the first 

optimization and the second optimization. Colonnars grains are less disorientated with regard to the 

axis of tensile tests for the samples of the second optimization. Furthermore, équiaxes grains appear 

in the center of these melted zones. These differences can explain the best mechanical behavior of 

these welds. 

  



 

 
Figure 9. EBSD maps (IPF Z0) of the welds in cross section . 

 

Conclusion 
 

The weldability of Hastelloy X alloy was defined based on welding parameters such as the laser 

power, the speed, the focal diameter and the gas flow. The most influential parameters seem to be 

the laser power and the focal diameter. The implementation of experimental design allowed to 

define two types of optimization. The second optimization based on mechanical criteria seems more 

interesting than the first optimization based on geometrical criteria of cords. Indeed, the second 

optimization allows to obtain welds which have similar properties in that of the alloy. 

 

 

Further analyzes of the carbon and more specifically of the state of precipitation in the weld are 

planned in order to precise the mechanical behavior of the weld. 
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