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Abstract. This paper deals with an identification methodology of the interfacial fracture parameters 

to predict the lifetime of a metallic brazed joint. The methodology is based on an experimental-

numerical study whereby the optimal parameters are obtained. The experimental data, using the 

scanning electron microscope analysis, allowed approving that failure of the assembly based AuGe 

solder seems first to appear near the interfaces. These results were confirmed by micrographs 

analysis of the solder/insert and solder/substrate interfaces. Then, using shear test results and 

parametric identification coupled with a finite elements model (FEM) simulation, the damage 

constitutive law of the interfacial fracture based on a bilinear cohesive zone model are identified. 

The agreement between the numerical results and the experimental data shows the applicability of 

the cohesive zone model to fatigue crack growth analysis and life estimation of brazed joints. 

Introduction 

Solder joint failure, either due to thermal loads or mechanical loads, is a significant reliability 

concern in power electronic packaging. The majority of the research show that failure seems first to 

appear near the solder/die and/or solder/ceramic substrate interfaces (Ren et al., 2013) (Baazaoui et 

al., SF2M2013) (Baazaoui et al, 2013) (Müge, 2007). These failure modes are mainly due to the 

presence of a high porosity ratio (Msolli et al., 2012) and/or brittle intermetallic compounds (Müge, 

2007) (Baazaoui et al., CFM2013) (Yao et al., 2008). To understand the interfacial cracking 

phenomena in adhesive joints and thus to optimize the design of high temperature packaging, 

cohesive zone models (CZM) (Crisfield & Alfano , 2001) (Davila & Camanho, 2002) (Li et al., 

2005) have been widely used.  

The CZM can be considered as an improvement of the Griffith theory (linear fracture mechanics). 

Indeed, the CZM is able to describe the entire fracture process including crack initiation and 

propagation and taking into account the presence of a process zone upstream developing the crack 

tip. Since the developing works by Barenblatt (Barenblatt, 1962) and Dugdale (Dugdale, 1996), 

many cohesive zone models have been proposed in the literature (Tvergaard & Hutchinson, 1992) 

(Needleman & Xu, 1994) (Ortiz & Camacho , 1996) (Zavattieri & Espinosab, 2001). All of them 

start from the assumption that one or more interfaces can be defined, where crack growth is allowed 

by the introduction of a possible discontinuity in the displacement field. This interfacial fracture has 

been modeled successfully in many applications, including the power electronic packaging, using 

the cohesive zone approach based on a traction-separation law (Needleman, 1987). This law is 

defined the relation between the traction load exerted by the joining layer as a function of the 

separation between the fracture surfaces or across the entire layer. For pure-mode, three important 

parameters governing a traction-separation law are the cohesive element stiffness	�, the maximum 

traction stress �� and the energy dissipation at failure	��. The governing law for a specific interface 

is often found by assuming a relation of a certain form and then matching a finite element 

simulation with experimental observations. 

In this work, we propose to study and characterize the interfacial fracture behaviour of a metallic 

brazed joint. The first part of the study deals with the experimental characterisation performing the 
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connection process of copper inserts using Au88Ge12 eutectic solder alloy, then the shear test based 

on the image correlation followed by a fractography analysis. In the second part, the constitutive 

law of the bilinear cohesive zone model and the finite element modelling of the assembly are 

presented. Finally, the estimation of the bilinear CZM parameters were performed based on an 

experimental-numerical methodology.   

Experimental Characterizations of Brazed Joints 

Experimental Procedure. The assembly is constituted by copper inserts of dimensions 4.7×4.7×2 

mm which are bonded on copper substrates of dimensions 30×10×2 mm at a temperature of 420°C 

using the eutectic solder alloy Au88Ge12. The multilayer structure are presented in the Fig 1.a. 

More details in specimen elaboration has been demonstrated in elsewhere (Baazaoui et al., 

SF2M2013) (Baazaoui et al., CFM2013). Notably, reference mark with dark color, which 

represented by the points A and B an shown in Fig. 1.b, is bonded to measure the displacement of 

the assembly and the displacement here is defined as the variation of non-contact measurement 

reference marks along the top surface of the inserts under shear loads.  

 

 

 

 

 

 

 

Fig. 1. Sample preparation, a) multilayer structure of the bonding process, b) testing configuration 

of the AuGe specimen.  

To determine the load-displacement behaviour of the assembly, displacement-controlled shear tests 

with a constant rate of 1 mm/min were operated at room temperature by INSTRON apparatus 

dedicated to perform shear tests on electronic devices. Meanwhile, an innovative non-contact 

detecting system using the correlation camera was introduced to measure displacement of the 

assembly. The database of the experimental results obtained is used for identification of the 

interfacial fracture parameters of the brazed joint. 

Experimental result analysis. Fig.2 shows the shear test curves obtained by INSTRON apparatus 

(Fig. 2.a) and video displacement measurement (Fig. 2.b). For both load-displacement results, the 

maximal applied load exceeds 1050 N. The crosshead and real displacement at failure reaches 1.27 

mm and 0.136 mm, respectively. The latter result (Fig. 2.b) defines the accumulation displacements 

of the AuGe brazed joint and the two Cu/solder interfaces and the extra displacement in the first 

curve (Fig. 2.a) is induced by the load frame, load cell and load clips. 

          
Fig. 2. Shear test results for 1 mm/min of a) effective apparatus results and b) correlation camera 

results. 

The load-real displacement behaviour obtained by the camera correlation show an important and 

non-linear plastic deformation. Knowing the maximal load and the insert surface, the shear strength 
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of this assembly is 47.5 MPa approximately. Another studies of the AuGe solder was performed by 

Hosking et al. (Hosking et al., 1999) and they show that the AuGe tensile strength is about 200 MPa 

which corresponds to a shear strength of 		��√� =	115.47 MPa. Compared with this latter result, the 

obtained shear strength of 47.5 MPa in our study is very low. Indeed, the failure seems first to 

appear in the Cu/substrate interfaces. To verify these assumptions, the failure zones for the AuGe 

specimen were analyzed using the scanning electron microscope (Fig. 3). The EDX analysis of the 

specimen failure shows the presence of the AuGe and Ni. The micrographs and EDX analysis of 

AuGe broken specimen illustrate a mixed fracture: adhesive and brittle failure in the two Cu/solder 

interfaces and cohesive and ductile failure in the joint.  
 

 

 

 

 

 

                                               

 

 

 

 

 

 

Fig. 3. SEM Micrographs of AuGe specimen failure and EDX analysis of the same zone. 

Numerical simulations of the interfacial fracture 

To simulate the behaviour and failure mechanism of solder interconnects under the shear loading, a 

fracture mechanics criteria based cohesive zone model was employed. The behaviour laws of 

cohesive elements are usually described in terms of traction versus separation	�
��
� which related 

the interface’s relative displacement �
 	to the traction vector	�
 (Fig. 4). Generally, the cohesive 

elements behave elastically until damage initiation and obey a softening behaviour afterwards. The 

specific energy dissipated by the cohesive element �
 can be calculated from the area under the �
-�
 curve. Different constitutive laws of the cohesive zone model were proposed in the literature 

(Needleman, 1987) (Tvergaard & Hutchinson, 1992) (Needleman & Xu, 1994)  (Ortiz & Camacho , 

1996) (Zavattieri & Espinosab, 2001) (Hutchinson & Tvergaard, 2002). Since the shape of the 

function �
��
� may influence the results of the simulation (Alfano, 2006) (Scheider, 2009), it is 

crucial to identify a law that is suitable for capturing the interfacial fracture extension behaviour of 

the cohesive layers. According to the nature of the material (ductile, brittle,…), the type of loading 

considered (monotonic or cyclic loadings), the cohesive zone model can be defined. The 

fractography results of the AuGe solder based assembly carried out in the first section have been 

shown a brittle damage in the Cu/solder interfaces. To predict the interfacial and brittle damage 

behaviour observed experimentally, the irreversible and bilinear cohesive zone model (Alfano & 

Criesfield, 2001) (Camanho & Davila, 2002) may apply. This bilinear cohesive zone model is 

currently the most widely used for interfacial fracture behaviour simulation due to its availability in 

ABAQUS® software. Thus, it has been widely used to characterize the interfacial damage 

behaviour in power electronic packaging (Ren et al., 2013) (Yao & Keer, 2013). These studies have 

shown the performance of the bilinear cohesive zone methods for describing and predicting fracture 
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initiation and propagation at the interfaces of electronic assemblies. They also approved the 

convergence between the numerical simulation and experimental results. 

Constitutive law of the cohesive zone model. For pure-mode I and pure-mode II or mode III 

loading, the shape of the constitutive bilinear CZM law is shown in Fig. 4.b. This available traction-

separation law (TSL) is to assume the linear elastic behaviour followed by the initiation and 

evolution of damage. A high initial stiffness � is used to hold the top and bottom faces of the 

decohesion element together in the linear elastic range. Once the peak values of the normal or shear 

nominal stress are attained, the stiffnesses are gradually reduced to zero. The analytical expression 

of the bilinear cohesive model law is as follows (Camanho & Davila, 2002) (Alfano, 2006): 

�
 = � �	�
			��		�
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��1 − �
�	�	�
 			��				�
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���
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(Eq. 2)  

Where �
� and �
� represent the relative displacement at damage initiation and complete failure as 

shown in Fig. 5, respectively. �
��� refers to maximum value of the relative displacement attained 

during the loading history. �
� and �
�	are given by (Alfano, 2006): �
� = !"#$ 	    and �
� = 		%&!"#  (Eq. 3)  

�� represents the fracture energy of the cohesive elements.   

A fundamental aspect in the formulation of the cohesive constitutive model is the requirement that 

the energy dissipated at a fracture propagation must be equal to the fracture energy, the following 

relation (Eq. 3) must be satisfied: �
 = ' �
(�
 = ��)"*�      (Eq. 4)  

                            

Fig. 4. a) Configuration of the cohesive fracture, b) TSL for bilinear cohesive zone model. 

In this paper, only pure-mode II debonding problem is considered so that the analysis is simplified 

by focusing the attention on scalar interface relationships relating one relative-displacement 

component � to the dual stress component	�. In this case, the CZM characteristic parameters are the 

cohesive element stiffness � or the cohesive layer modulus	+, the fracture energy �� and the 

strength	��.  

Cohesive zone modeling of the interfacial fracture. To simulate the behaviour and failure 

mechanism of AuGe solder interconnects under shear loading, a 2D finite element model has been 

developed incorporating the cohesive zone model which defined in the previous section and using 

the commercial finite element software ABAQUS®. The geometrical and boundary conditions are 

shown in Fig. 5. This model is composed of copper insert, copper substrate which are bonded 

together with the eutectic solder alloy Au88Ge12, two cohesive layers and a rigid shear tool. The 

two cohesive zone layers are placed in the solder/insert and solder/substrate interfaces, where 



fatigue failure is typically observed. The thickness of the cohesive and joint layers, measured 

experimentally, is about 4 and 50 µm, respectively. The two cohesive layers were modeled using a 

4-nodes bilinear quadrilateral element of type 2D cohesive (COH2D4). The length of the cohesive 

elements was 100 µm. In the thickness, the cohesive zone must be discretized with a single layer of 

cohesive elements (Needleman & Xu, Numerical simulations of fast crack growth in brittle solids, 

1994). In this case, the path of the cracking is naturally determined by the overall field and the 

cohesive response. The solder, the insert and the substrate layers were meshed with a 4-node 

bilinear 2D plane stress quadrilateral elements (CPS4R). The size of the elements in the solder is 

the same as the cohesive elements (100 µm) in the length and 10 µm in the thickness.  

Table 1. Properties of the AuGe and copper materials used for assembly (Hosking et al., 1999) 

(Msolli, 2011). 

Properties AuGe Copper 

Elastic modulus (GPa) 69.2 128 

Poisson’s ratio 0.32 0.36 

Yield strength (MPa) 160 233 

Tensile strength at failure (MPa) 200 268 

Thermal conductivity (W.m
-1

.K
-1

) 44.4 398 

Mass density (Kg.m
-3

) 14670 8850 

Specific heat capacity (J.Kg
-1

.K
-1

) 134 380 

Thermal expansion coefficient (µm.m
-1

.K
-1

) 12.3 17.3 

In the current model, we supposed that the two cohesive layers have the same interfacial properties 

and an isotropic mechanical behaviour. The procedure used to determine the CZM law’s parameters 

is explained in the next section. The AuGe solder and the copper insert and substrate were 

considered to have elastoplastic behaviour. All mechanical proporties for AuGe and copper 

materials were respectively listed in the Table 1. The plastic behaviour of the AuGe solder and the 

copper substrates was taken from the experimental results of Hosking et al. and S. Msolli, 

respectively (Hosking et al., 1999) (Msolli, 2011). This assembly is subjected to shear loading with a 

displacement rate of 1 mm/min and at a temperature room of 20°C. The displacement rate is applied in a 

reference point located in the rigid shear tool. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Finite element model of sandwiched assembly joined by AuGe solder.  

Identification procedure method of the interfacial constitutive law 

Identification algorithm. One of the biggest challenges faced by researchers who work with 

cohesive zone models is to determine the model parameters because standard experimental tests do 

not exist (Bhate et al., 2007). As a matter of fact, the CZM links the microstructural failure 

mechanisms to the displacement fields governing bulk deformations. Thus and as mentioned before, 

a cohesive zone is characterized by the properties of the material, the damage initiation condition 

and the damage evolution function. As defined in the previous section, the considered constitutive 

law is the bilinear cohesive zone model. In this case, the properties of the interfacial behaviour 

required to be identified are the cohesive element stiffness	� or the cohesive layer modulus + for 

the elastic behaviour and the strength	�� and the fracture thoughness �� for the damage constitutive 
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law. In this study, we considered the modulus of elasticity as known during the identification 

procedure and it is supposed to be the same as the joint layer (69.2 GPa). Thus, the number of the 

CZM parameters to identify is 2; the fracture energy and the strength of the interfaces layer. The 

identification of this two interfacial fracture parameters was achieved using the results from the 

shear test and corresponds to the resolution of an inverse identification problem. A usual methods of 

resolving such a problem is summarized in Fig. 6 (Fourcade et al., 2014).  

The input data from which identification is done are the experimental shear test results, the behavior 

law of the solder/insert and solder/substrate interfaces associated with a set of initial parameter and 

the numerical model of the test. For a set of parameters	,, a difference vector -�,� is then 

calculated as:  -�, = ./0�, , … , /
�, , /3�, 4   (Eq. 5)  

Where	/
�, = 56 7"89�� :7";<=7";<= . >6�?	is the mean experimental shear test curve, >@A  is the 

simulated one and 56 is the weight and have a value of 1 in order to maximize the weight of the 

value at maximum depth, which is the one with the smallest uncertainty. The cost function is then 

defined as the Euclidean norm of the difference vector (Eq. 6).  B�, = C-�, C   (Eq. 6)  

The identification is led by minimizing the cost function using the Levenberg-Marquardt algorithm 

from the scipy.optimize python library. The unknown parameters	�� and	�D were initially set to 47 

MPa and 4.8 N/mm, respectively, and the domain of these two parameters is given in Table. 2. The 

initial values were chosen over the experimental range. The maximal value of the cohesive elements 

strength	��	is set to the value of the AuGe joint strength at failure. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Block diagram of the identification of CZM constitutive law from simple shear tests 

(Fourcade et al., 2014).  

Table 2. Domain for cohesive zone model parameters during identification process. 

 Min Max 

Strength	�� (MPa) xxx 200 

Fracture energy 	�D (N/mm) xxx xxx 
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Estimation of the interfacial fracture parameters and discussion. The values of the strength	�� 

and the fracture energy	�D was determined using an iterative procedure to obtain the best match 

between model predictions and the experimental measurements of the load-displacement 

behaviour….. 

Summary 

To predict the lifetime of the AuGe brazed joint, a bilinear CZM parameters of Cu/AuGe interfaces 

were identified using inverse method with experimental shear test and finite element modelling. The 

experimental data allowed approving the load-displacement behaviour of the joint and the two 

Cu/solder interfaces. The SEM and EDX fractography analysis show a mixed fracture: adhesive in 

the two Cu/solder interfaces and cohesive in the joint. The interfacial fracture of these assembly was 

then simulated using 2D finite element modelling. The parameters of the bilinear CZM for the case 

of mode II loading were obtained based on inverse methodology and the results seem to be in good 

agreement with the experimental results…….. 
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