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ON A FUNCTIONAL INEQUALITY ARISING IN THE ANALYSIS OF
FINITE-VOLUME METHODS

P BOUSQUET ∗, F. BOYER †, AND F. NABET†

Abstract. We establish a Poincaré–Wirtinger type inequality on some particular domains with a precise estimate
of the constant depending only on the geometry of the domain. This type of inequality arises, for instance, in the
analysis of finite volume (FV) numerical methods.

As an application of our result, we prove uniform a priori bounds for the FV approximate solutions of the
heat equation with Ventcell boundary conditions in the natural energy space defined as the set of those functions in
H1(Ω) whose traces belong to H1(∂Ω). The main difficulty here comes from the fact that the approximation is
performed on non-polygonal control volumes since the domain itself is non-polygonal.
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1. Introduction. The main goal of this paper is to study functional inequalities of the
following form

(1.1)
∣∣∣∣ 1

mσ

∫
σ

u− 1

mK

∫
K

u

∣∣∣∣ ≤ Cdiam(K)
1

mK

∫
K

|Du|, ∀u ∈W 1,1(Rn),

where K is a connected Lipschitz domain in Rn and σ a non empty open subset of ∂K. We
assume that K is bounded and connected. We have denoted by mK the volume of K and mσ

its surface measure, namely its (n−1)-dimensional Hausdorff measure. Those notations will
be used all along this paper.

The fact that such an inequality holds is straightforward, for instance by applying the
Bramble-Hilbert lemma. Our main purpose is to estimate the dependence of the constant C
with respect to the geometry of the domain K. In the particular case of a convex domain K
the mean-value inequality immediately implies that

(1.2)
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∫
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∣∣∣∣ ≤ diam(K)

Å
sup
K
|Du|
ã
, ∀u ∈W 1,∞(Rn),

with no geometric constant in the right-hand side. The inequality (1.1) has to be seen as a
generalisation of (1.2) to less regular functions u. This loss of regularity induces that the
constant in the inequality may depend on the shape of K. Observe that, if K is not convex,
one has to replace supK |Du| by supConv(K) |Du| in (1.2), where Conv(K) is the convex hull
of K.

Inequalities of the form (1.1) play an important role in the analysis of finite volume
numerical methods for elliptic or parabolic equations on general meshes, which is our main
motivation. They are meant to be applied to each cell (control volume)K in a mesh of a given
computational domain. They allow to prove stability estimates in (discrete) Sobolev spaces
for the natural L2 projections of the functions defined on Ω and the projections of their traces.
To our knowledge, such inequalities have only been established up to now in the framework
of polygonal sets K. However, for more complex situations, like for the discretisation of the
heat equation with dynamic Ventcell boundary conditions, we are interested in proving such
inequalities for non polygonal domains. We detail such an application in Section 6.
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Let us mention some references where such inequalities are proved and/or used in the
finite volume framework.

• In [6, Lemma 3.4] (see also [3, Lemma 7.2] and [4, Lemmas 6.2 and 6.3]), (1.1) is
proved (in 2D for simplicity) when K is polygonal and convex, with a constant C
depending only on the number of edges/faces ofK, and on the shape-regularity ratio
(diam(K))2/mK.

• In [5, Lemma 6.6], the inequality is slightly generalized to a polygonal K which is
simply supposed to be star-shaped with respect to a suitable ball.

• In [1], such inequalities are used for the convergence and error analysis of some
approximation of non-linear Leray-Lions type operators (a model of which is the
p-Laplace problem).

Finally, we refer to [8] for an example of analysis of a more complex model of a non-linear
evolution equation associated with a non-linear dynamical boundary condition. This refer-
ence was in fact our main motivation for the present work. Indeed, compared to the other
references above, the numerical method in [8] is derived on non-polygonal control volumes,
so that an inequality like (1.1) is needed on non-polygonal open sets K, see also Section 6.

The outline of the paper is the following. In Section 2, we state our main result (Theorem
2.1 in 2D) and the geometric assumptions that we shall work with in the sequel. Section 3
is devoted to the proof of the main result whereas in Section 4, we state and prove a sort
of Poincaré-Wirtinger inequality related to the functional inequality proved in Theorem 2.1.
Section 5 is dedicated to the extension of our main inequality in the higher dimensional case
(i.e. in Rn, for n ≥ 3). Finally, in order to illustrate this work, we provide an application,
as simple as possible, of Theorem 2.1 to the proof of uniform discrete energy estimates for a
finite volume approximation of a toy system on a non-polygonal domain Ω.

2. Main result. Given a C1 curve σ ⊂ R2 and a point z∗ ∈ R2 \ σ, we consider the
following domain T :

T = {z∗ + t(γ(θ)− z∗) : t ∈]0, 1[, θ ∈]0, 1[},

where γ : [0, 1] → R2 is a C1 parametrization of σ: γ([0, 1]) = σ, γ is one-to-one and |γ′|
does not vanish. Without loss of generality, we choose the parametrization γ in such a way
that |γ′(θ)| = mσ for every θ ∈ [0, 1].

We say that T is a pseudo-triangle if for every x ∈ σ,

(2.1) {z∗ + t(x− z∗) : t ≥ 0} ∩ σ = {x}.

σ

T σ̃
Tσ̃

FIG. 2.1. The pseudo-triangle T with its curved edge σ and one of its sub-triangle

Without loss of generality, we shall assume that the vertex z∗ of T opposite to σ is the
origin (0, 0) of R2.

THEOREM 2.1. Let T be a pseudo-triangle as above. We assume that there exist µ, ν > 0
such that for any sub-arc σ̃ ⊂ σ, the corresponding sub-triangle Tσ̃ (see Figure 2.1) satisfies
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(2.2) µ ≤
mTσ̃

mσ̃

≤ ν.

Then for every p ∈ [1,+∞[ and every u ∈W 1,p(T ),

(2.3)
∣∣∣∣ 1

mσ

∫
σ

u− 1

mT

∫
T

u

∣∣∣∣p ≤ C(mσ + diam(T ))p
1

mT

∫
T

|Du|p,

where C only depends on p and on the ratio ν
µ .

As already noticed in the introduction, the main issue is to understand how the constant
in the inequality depends on the geometry of this pseudo-triangle T .

REMARK 2.1. For a real flat triangle T , the quantity mTσ̃
mσ̃

does not depend on σ̃ and is
equal to mT

mσ
. In this particular case, µ = ν and mσ ≤ diam(T ). We recover exactly in this

particular case the inequality proved in [6].
PROPOSITION 2.2. Under assumption (2.1), the map θ 7→ det (γ(θ), γ′(θ)) is either

nonnegative everywhere or nonpositive everywhere.
In the sequel, we assume that the orientation is chosen such that det (γ, γ′) ≥ 0. Then,

assumption (2.2) is equivalent to the following inequality

(2.4) 2µmσ ≤ det (γ(θ), γ′(θ)) ≤ 2νmσ, ∀θ ∈ [0, 1].

Proof. One can assume without loss of generality that γ([0, 1]) is contained in the half plane
{(x, y) ∈ R2 : x > 0}. There exists a C1 map ϕ : [0, 1] →]− π/2, π/2[ such that for every
θ ∈ [0, 1],

γ(θ)

|γ(θ)|
= (cosϕ(θ), sinϕ(θ)).

By (2.1), the map ϕ is one-to-one. Hence, it is either strictly increasing or strictly decreasing.
Assume for instance that ϕ is strictly increasing.

This implies that for every θ ∈ [0, 1), for every h > 0 such that θ + h ∈ [0, 1],

det
Å
γ(θ),

γ(θ + h)− γ(θ)

h

ã
=

1

h
det (γ(θ), γ(θ + h))

=
1

h
|γ(θ)||γ(θ + h)| sin(ϕ(θ + h)− ϕ(θ)) ≥ 0.

Passing to the limit h→ 0 yields the desired result.
Assume now that (2.2) holds true, then let 0 ≤ a < b ≤ 1, and consider σ̃ = γ([a, b]).

Then

mσ̃ = (b− a)mσ and mTσ̃
=

1

2

∫ b

a

det (γ(θ), γ′(θ)) dθ,

thus thanks to (2.2),

µ ≤

∫ b

a

det (γ(θ), γ′(θ)) dθ

2(b− a)mσ
≤ ν,
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and we obtain (2.4) when b tends to a. Conversely, assume that (2.4) holds. Then (2.2)
follows by integration of (2.4) on the segment [a, b]. �

REMARK 2.2. For some particular cases, we can estimate the constant in the inequality
(2.3) even if the pseudo-triangle T does not satisfy assumption (2.2). In order to illustrate
such a situation, we consider the pseudo-triangle T defined as follows:

T = {tγ(θ) : 0 < t < 1,−θ0 < θ < π + θ0}, with γ(θ) = (R cos θ,R sin θ+R/ sin(θ0)),

where 0 < θ0 <
π
2 , R > 0. Observe that γ and γ′ are colinear for θ = −θ0 or θ = π + θ0

so that assumption (2.2) is not satisfied here. We decompose the pseudo-triangle T into the
piece of disk P of radius R and center A = (0, R/ sin(θ0)) and the quadrilateral Q defined
by: Q = T \ P .

R
θ0

O

θ0

P

Q

A

FIG. 2.2. A particular case which does not satisfy assumption (2.2)

First, we remark that assumption (2.2) is satisfied for the pseudo-triangle P with the
ratio ν

µ equal to 1 (see Remark 2.1). Then we can apply Theorem 2.1 to the pseudo-triangle
P , so that there exists a constant C0 > 0 which does not depend on R and θ0 such that∣∣∣∣ 1

mσ

∫
σ

u− 1

mP

∫
P

u

∣∣∣∣ ≤ C0R
1

mP

∫
P

|Du|.

Moreover, since P ⊂ T and T is convex, we can apply [3, Lemma 7.1],∣∣∣∣ 1
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u
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3
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|Du|.
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Now, we want to control the volume of the pseudo-triangle T by the volume of P . We
note that

mQ =
R2

tan θ0
, mP =

R2

2
(π + 2θ0) , diam(T ) = R

Å
1 +

1

sin θ0

ã
.

Hence

mQ ≤
diam(T )

R

2

π
mP

and then using that R ≤ diam(T ),

mP ≥
πR

πR+ 2diam(T )
mT ≥ C1

R

diam(T )
mT .

This implies ∣∣∣∣ 1
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1
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and ∣∣∣∣ 1
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∫
T
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∫
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u
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C1

(diam(T ))
4
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|Du|.

Since R ≤ diam(T ), mT ≤ (diam(T ))2, the above two inequalities yield∣∣∣∣ 1

mT

∫
T

u− 1

mσ

∫
σ

u

∣∣∣∣ ≤ C (diam(T ))4

Rm2
T

∫
T

|Du|

≤ C ′

sin(θ0)2
diam(T )

1

mT

∫
T

|Du|,

where C ′ is a universal constant. As expected we observe that the above inequality does not
depend on R and blows up when θ0 goes to 0.

3. Proof of Theorem 2.1. By Jensen’s inequality, we only need to establish the case p =
1. We begin by proving that the result follows from the existence of a suitable diffeomorphism
between T and the unit cube. We notice that the existence of such a diffeomorphism is
ensured by a general result of [2] but we have to be able to estimate the derivatives of this
diffeomorphism in function of the geometry of T . That is why we resume explicitly the steps
of [2] that allow us to control all the constants involved in the estimates.

In the sequel, we denote by Q2 =]0, 1[2 the unit cube. By a standard approximation
argument, one can assume that γ ∈ C2(0, 1).

LEMMA 3.1. Assume that there exists a Lipschitz continuous map Φ : Q2 → T such
that

1. Φ is a C1 diffeomorphism from Q2 onto T ,
2. Φ(0, θ) = (0, 0),
3. Φ(1, θ) = γ(θ),
4. Jac Φ(s, θ) = 2mTs.

Then for every u ∈W 1,1(T ), we have

1

mσ

∫
σ

u− 1

mT

∫
T

u =
1

2mT

∫
T

Du(x, y) [s∂sΦ(s, θ)](s,θ)=Φ−1(x,y) dx dy.
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Proof. It follows from (2.4) that the pseudo-triangle T is biLipschitz homeomorphic to
a (true) triangle, see the proof of Lemma 4.2 in section 4. In particular, T is a Lipschitz
domain. By a standard density argument, we can thus assume that u ∈ C1(T ). Let

v(s, θ) = u ◦ Φ(s, θ)Jac Φ(s, θ).

Then for every (t, θ) ∈ Q2,

v(1, θ)− v(t, θ) =

∫ 1

t

∂sv(s, θ) ds.

Hence, thanks to the assumptions on Φ, we obtain

2mTu(γ(θ))− u ◦ Φ(t, θ)Jac Φ(t, θ) =

∫ 1

t

(∂s(u ◦ Φ)Jac Φ + 2mT (u ◦ Φ)) ds.

By integrating this equality on Q2 and using an obvious change of variables, we get

(3.1) 2
mT

mσ

∫
σ

u−
∫
T

u =

∫ 1

0

dθ

∫ 1

0

dt

∫ 1

t

(∂s(u ◦ Φ)Jac Φ + 2mT (u ◦ Φ)) ds.

By Fubini theorem,∫ 1

0

dθ

∫ 1

0

dt

∫ 1

t

(∂s(u ◦ Φ)Jac Φ + 2mT (u ◦ Φ)) ds

=

∫
Q2

s (∂s(u ◦ Φ)Jac Φ + 2mT (u ◦ Φ)) ds dθ.

Since Jac Φ(s, θ) = 2mTs, the same change of variables gives∫
Q2

s (∂s(u ◦ Φ)Jac Φ + 2mT (u ◦ Φ)) ds dθ

=

∫
T

Du(x, y) [s∂sΦ(s, θ)](s,θ)=Φ−1(x,y) dx dy +

∫
T

u.

The lemma now follows from this identity together with (3.1).
�

In the case when T is a real triangle, namely when σ is a segment, we can observe that
the map

φ2 : (s, θ) ∈ Q2 7→ sγ(θ) ∈ T ,

satisfies the assumptions of the previous lemma.
In the general case where σ is curved, we have

Jacφ2(s, θ) = sdet (γ(θ), γ′(θ)),

and this quantity depends on θ: we cannot choose Φ = φ2. Thus, we are going to compose
φ2 with a diffeomorphism of the unit cube to construct a homeomorphism Φ : Q2 → T
satisfying the assumptions of the above lemma, see Figure 3.1.
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To simplify the notation, we define g by

g : (s, θ) ∈ Q2 7→ Jacφ2(s, θ) = sdet (γ, γ′)(θ).

Then, we construct a first diffeomorphism φ1 of Q2 such that φ2 ◦ φ1 satisfies the first two
assumptions of Lemma 3.1 and a weaker version (integrated with respect to s) of the third
assumption.

LEMMA 3.2. There exists a C1 diffeomorphism φ1 : Q2 → Q2 such that
1. for every x ∈ ∂Q2, φ1(x) = x,
2. for every θ ∈ [0, 1],

(3.2)
∫ 1

0

Jac (φ2 ◦ φ1)(s, θ) ds =

∫ 1

0

g ◦ φ1(s, θ)Jacφ1(s, θ) ds = mT .

3. for every (s, θ) ∈ Q2,

(3.3)
µ

4ν
≤ Jacφ1(s, θ) ≤ 4ν

µ
.

Proof. Let

(3.4) ε =
µ

10ν

and ζ ∈ C∞c (0, 1) be a cut-off function such that 0 ≤ ζ ≤ 1 + ε, |ζ ′|L∞ ≤ 10
ε and

(3.5)
∫ 1

0

ζ(s) ds = 1 and
∫ 1

0

|ζ(s)− 1| ds < ε.

We introduce the map

G : (a, b) 7→
∫ 1

0

s ds

∫ a+ζ(s)b

0

det (γ, γ′)(θ) dθ.

Then G is well-defined and C2 on the set {(a, b) : 0 ≤ a ≤ 1, −a1+ε ≤ b ≤ 1−a
1+ε } (here, we

use the fact that γ ∈ C2([0, 1]) so that det (γ, γ′) is C1([0, 1])). Moreover, we have

∂aG(a, b) =

∫ 1

0

det (γ, γ′)(a+ ζ(s)b)s ds

∂bG(a, b) =

∫ 1

0

det (γ, γ′)(a+ ζ(s)b)ζ(s)s ds.

By (2.4),

(3.6) ∂bG(a, b) ≥ 2mσµ

∫ 1

0

ζ(s)s ds > 0.

We claim that

(3.7) G

Å
a,
−a

1 + ε

ã
≤ mTa.
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Indeed, by (2.4),

G

Å
a,
−a

1 + ε

ã
≤ 2mσν

∫ 1

0

s(a− a

1 + ε
ζ(s)) ds ≤ 2mσνa

1 + ε

∫ 1

0

(1 + ε− ζ(s)) ds.

By (3.5), this implies

G

Å
a,
−a

1 + ε

ã
≤ 2mσνaε

1 + ε
≤ 2mσνaε.

Since

mT =
1

2

∫ 1

0

det (γ, γ′)(θ) dθ ≥ mσµ,

it follows from (3.4) that

G

Å
a,
−a

1 + ε

ã
≤ mTa,

which proves our claim.
Similarly, one can prove that∫ 1

0

s ds

∫ 1

a+ζ(s) 1−a
1+ε

det (γ, γ′)(θ) dθ ≤ mT (1− a).

This can be written as

G(1, 0)−G
Å
a,

1− a
1 + ε

ã
≤ mT (1− a).

Since

G(1, 0) =

∫ 1

0

s ds

∫ 1

0

det (γ, γ′)(θ) dθ = mT ,

this implies

(3.8) G

Å
a,

1− a
1 + ε

ã
≥ mTa.

We deduce from (3.6), (3.7) and (3.8) that for every a ∈ [0, 1], there exists a unique w(a) ∈
[−a/(1 + ε), (1− a)/(1 + ε)] such that

G(a,w(a)) = mTa.

By the implicit function theorem, the function w is C2 on [0, 1] and satisfies

(3.9) ∂aG(a,w(a)) + ∂bG(a,w(a))w′(a) = mT .

Since G(0, 0) = 0 and G(1, 0) = mT , we have w(0) = 0 = w(1).
We claim that for every s ∈ [0, 1], for every a ∈ [0, 1],

1 + ζ(s)w′(a) > 0.
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We only need to prove that ∂bG(a,w(a))(1 + ζ(s)w′(a)) > 0. By (3.9),

∂bG(a,w(a))(1 + ζ(s)w′(a)) =∂bG(a,w(a)) + ζ(s)(−∂aG(a,w(a)) +mT )

=∂bG(a,w(a))− ∂aG(a,w(a)) + ζ(s)mT

+ (1− ζ(s))∂aG(a,w(a)).

But

∂bG(a,w(a))− ∂aG(a,w(a)) =

∫ 1

0

det (γ, γ′)(a+ ζ(s)w(a))(ζ(s)− 1)s ds

≥ −2νmσ

∫ 1

0

|ζ − 1| ≥ −2νmσε = −µmσ

5
.

In the last inequality, we have used (3.5). Moreover, since 0 ≤ ζ ≤ 1 + ε,

ζ(s)mT + (1− ζ(s))∂aG(a,w(a))

≥ min (∂aG(a,w(a)), (1 + ε)mT − ε∂aG(a,w(a))) .

Since mσµ ≤ ∂aG(a,w(a)) ≤ mσν and mT ≥ mσµ, we get by (3.4)

ζ(s)mT + (1− ζ(s))∂aG(a,w(a)) ≥ 9mσµ

10
.

This implies

(3.10) ∂bG(a,w(a))(1 + ζ(s)w′(a)) ≥ mσµ

2
.

We now define

φ1(s, θ) = (s, θ + ζ(s)w(θ)) , (s, θ) ∈ Q2.

Then φ1 is C1 on Q2 and satisfies Jacφ1(s, θ) = 1 + ζ(s)w′(θ) > 0. Since for every
s ∈ [0, 1], the function θ 7→ θ + ζ(s)w(θ) is continuous and increasing, it maps [0, 1] onto
[0, 1]. Hence φ1 is a C1 diffeomorphism from Q2 onto Q2. Moreover, φ1 agrees with the
identity map on ∂Q2. We now turn to the proof of (3.2).

Let a ∈ [0, 1]. By definition of w and g,∫ 1

0

ds

∫ a+ζ(s)w(a)

0

g(s, θ) dθ = mTa.

By definition of φ1, this can be written∫
φ1((0,1)×(0,a))

g = mTa.

By the change of variables formula, this gives∫ a

0

dθ

∫ 1

0

g ◦ φ1(s, θ)Jacφ1(s, θ) ds = mTa.

This implies that for every θ ∈ (0, 1),∫ 1

0

g ◦ φ1(s, θ)Jacφ1(s, θ) ds = mT ,
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which completes the proof of (3.2). It remains to prove (3.3). Similarly to (3.10),

∂bG(a,w(a))(1 + ζ(s)w′(a)) ≤ 2mσν.

Now,

2mσµ

∫ 1

0

ζ(s)s ds ≤ ∂bG(a, b) ≤ 2mσν

∫ 1

0

ζ(s)s ds.

We can estimate the right hand side by 2mσν while

2mσµ

∫ 1

0

ζ(s)s ds ≥ 2mσµ

Ç∫ 1

0

s ds−
∫ 1

0

|ζ(s)− 1| ds
å

≥ 2mσµ

Ç∫ 1

0

s ds− ε
å
≥ 4mσµ

5
.

Hence

4mσµ

5
≤ ∂bG(a, b) ≤ 2mσν

and thus

(3.11)
µ

4ν
≤ 1 + ζ(s)w′(a) ≤ 4

ν

µ
.

Since Jacφ1(s, θ) = 1 + ζ(s)w′(θ), this completes the proof of (3.3). The lemma is proven.
�

We proceed with the construction of the diffeomorphism Φ that we search in the form
φ2 ◦ φ1 ◦ φ0. To simplify the notation, we consider the map g1 : Q2 → R defined as follows:

g1(s, θ) = Jac (φ2 ◦ φ1)(s, θ)

= g ◦ φ1(s, θ)Jacφ1(s, θ)

= sdet (γ, γ′)(θ + ζ(s)w(θ))(1 + ζ(s)w′(θ)).

Observe that for every s ∈ (0, 1], θ ∈ [0, 1], g1(s, θ) > 0.
LEMMA 3.3. There exists a Lipschitz homeomorphism φ0 : Q2 → Q2 which is C1 on

Q2 and such that
1. for every θ ∈ [0, 1], φ0(0, θ) = (0, θ) and φ0(1, θ) = (1, θ),
2. for every (s, θ) ∈ Q2,

Jac (φ2 ◦ φ1 ◦ φ0)(s, θ) = g1 ◦ φ0(s, θ)Jacφ0(s, θ) = 2mTs.

3. for every (s, θ) ∈ Q2,

|∂sφ0(s, θ)| ≤ C,

where C only depends on ν/µ.
Proof. For every (s, θ) ∈ Q2, we denote by v(s, θ) the unique element of [0, 1] such that

(3.12)
∫ v(s,θ)

0

g1(s′, θ) ds′ = mTs
2.
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The map v is well-defined since g1(s, θ) > 0 for every s ∈ (0, 1], θ ∈ [0, 1] and also because∫ 1

0

g1(s′, θ) ds′ = mT .

This is exactly the reason why we constructed g1 in Lemma 3.2. Moreover, v(0, θ) = 0
and v(1, θ) = 1. By the implicit function theorem, v is C1 on (0, 1] × [0, 1] and satisfies
g1(v(s, θ), θ)∂sv(s, θ) = 2mTs; that is,

(3.13) v(s, θ) det (γ, γ′)(θ + ζ ◦ v(s, θ)w(θ))(1 + ζ ◦ v(s, θ)w′(θ))∂sv(s, θ) = 2mTs.

In particular, for every (s, θ) ∈ Q2, ∂sv(s, θ) > 0.
We deduce from Lemma 3.2 that for every (s, θ) ∈ Q2,

mσ

µ2

2ν
s ≤ g1(s, θ) ≤ 8mσν

2

µ
s.

Since mσµ ≤ mT ≤ mσν, it follows from (3.12) that

(3.14)
µ

2ν
s ≤ v(s, θ) ≤ 2

ν

µ
s.

From (3.13) and (3.11) ,

(3.15) 0 < v(s, θ)∂sv(s, θ) ≤ 4
ν2

µ2
s.

In view of (3.14), this also implies that

(3.16) 0 < ∂sv(s, θ) ≤ 8
ν3

µ3
.

A similar argument proves that ∂θv ∈ L∞(Q2). We now define

φ0(s, θ) = (v(s, θ), θ).

Then φ0 is a homeomorphism from Q2 onto Q2 which is C1 on Q2. Moreover, φ0(0, θ) =
(0, θ), φ0(1, θ) = (1, θ) and Jacφ0(s, θ) = ∂sv(s, θ). By differentiation of (3.12), we get

2mTs = g1(v(s, θ), θ)∂sv(s, θ) = g1 ◦ φ0(s, θ)Jacφ0(s, θ).

This completes the proof of the lemma. �
Lemmas 3.2, 3.3 clearly show that, as announced, the map

Φ = φ2 ◦ φ1 ◦ φ0,

satisfies all the assumptions of Lemma 3.1. The structure is summarized in Figure 3.1:
• The side {s = 0} of Q2 (in red solid on the figure) is pointwise preserved by φ0 and
φ1 and mapped to the vertex of T (also in red) by φ2.

• The side {s = 1} of Q2 (in blue dashdotted on the figure) is pointwise preserved by
φ0 and φ1 and mapped to σ by φ2.

• The horizontal segments {θ = cte} of Q2 (in magenta dashed) are preserved as a
whole by φ0 then deformed by φ1 and φ2.
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Q2 Q2 Q2
T

Φ

φ0 φ1
φ2

FIG. 3.1. Construction of the diffeomorphism Φ

• The vertical segments {s = cte} (in green dotted) are preserved as a whole by φ1

and deformed by φ−1
0 and φ2.

In order to complete the proof of Theorem 2.1, it remains to prove the following estimate.

LEMMA 3.4. There exists a constant C > 0 such that

|∂sΦ(s, θ)| ≤ C ν
3

µ3
(diam(T ) +mσ).

Proof. By definition, we have

Φ(s, θ) = v(s, θ)γ(θ + ζ ◦ v(s, θ)w(θ)).

Hence,

∂sΦ(s, θ) = (∂sv(s, θ)) γ(θ + ζ ◦ v(s, θ)w(θ))

+ v(s, θ)∂sv(s, θ)ζ ′(v(s, θ))w(θ)γ′(θ + ζ ◦ v(s, θ)w(θ)).

By construction, |ζ ′|L∞ ≤ 10/ε = 100ν/µ and |w|L∞ ≤ 1. It then follows from Lemma
3.3, see (3.15) and (3.16), that

|∂sΦ(s, θ)| ≤ C ν
3

µ3
(diam(T ) +mσ).

�
Lemma 3.4 together with Lemma 3.1 yield the desired inequality (2.3).

4. A Poincaré inequality. In this section, we derive a Poincaré inequality related to
Theorem 2.1.

THEOREM 4.1. We consider the same assumption (2.2) as in Theorem 2.1. Then for
every p ∈ [1,+∞[ and every u ∈W 1,p(T ),

1

mT

∫
T

∣∣∣∣u− 1

mσ

∫
σ

u

∣∣∣∣p ≤ C (diam(T ) +mσ)
p 1

mT

∫
T

|Du|p,

where C only depends on p and on the ratio ν
µ .

This results is a consequence of the inequality proved in the previous section and of the
following lemma.
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LEMMA 4.2. Under the assumption (2.2), for every u ∈W 1,p(T ), we have

1

m2
T

∫
T

∫
T

|u(x)− u(x′)|p dx dx′ ≤ C(diam(T ) +mσ)p
1

mT

∫
T

|Du|p,

where C only depends on p and on the ratio ν
µ .

Proof. Let us introduce the reference unit triangle T0 defined by

T0 = {(a, b) ∈]0, 1[2, b < a}.

On this domain, the following inequality classicaly holds

(4.1)
∫
T0

∫
T0

|v(y)− v(y′)|p dy dy′ ≤ Cp
∫
T0

|Dv(y)|p dy, ∀v ∈W 1,p(T0),

with a value of Cp > 0 depending only on p.
We introduce (see Figure 4.1) the following diffeomorphism from T0 onto T

Ψ : (a, b) ∈ T0 7→ aγ(b/a) ∈ T.

T0
T

Ψ

FIG. 4.1. The diffeomorphism Ψ

We proceed now with the estimate of the derivatives of Ψ. An immediate computation
shows that

DΨ(a, b) = (γ(b/a)− (b/a)γ′(b/a), γ′(b/a)) ,

so that we get

Jac Ψ(a, b) = det (γ(b/a), γ′(b/a)),

and thus, by (2.4) (which is a consequence of (2.2)), we deduce that

(4.2) 0 < 2µmσ ≤ Jac Ψ(a, b) ≤ 2νmσ, ∀(a, b) ∈ T0,

and

(4.3) ‖DΨ‖∞ ≤ (‖γ‖∞ + ‖γ′‖∞) ≤ (diam(T ) +mσ).

For any u ∈ C1(T̄ ) we set v = u◦Ψ ∈W 1,p(T0) and we use Ψ as a change of variables∫
T

∫
T

|u(x)− u(x′)|p dx dx′ =

∫
T0

∫
T0

|v(y)− v(y′)|pJac Ψ(y)Jac Ψ(y′) dy dy′

≤ ‖Jac Ψ‖2∞
∫
T0

∫
T0

|v(y)− v(y′)|p dy dy′.
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Then by (4.1) and the change of variables x = Ψ(y) again, we get∫
T

∫
T

|u(x)− u(x′)|p dx dx′ ≤ Cp‖Jac Ψ‖2∞
∫
T0

|Dv(y)|p dy

≤ Cp
‖Jac Ψ‖2∞
infT0 Jac Ψ

∫
T0

|Dv(y)|p Jac Ψ(y)dy

= Cp
‖Jac Ψ‖2∞
infT0 Jac Ψ

∫
T

|(Dv)(Ψ−1(x))|p dx

= Cp
‖Jac Ψ‖2∞
infT0 Jac Ψ

∫
T

|Du(x)|p‖DΨ(Ψ−1(x))‖p dx

≤ Cp
‖Jac Ψ‖2∞‖DΨ‖p∞

infT0 Jac Ψ

∫
T

|Du(x)|p dx.

By using the previous estimates (4.2) and (4.3) we conclude that∫
T

∫
T

|u(x)− u(x′)|p dx dx′ ≤ Cp
2mσν

2

µ
(diam(T ) +mσ)p

∫
T

|Du(x)|p dx

≤ Cp
2mσν

2

µ2
µ(diam(T ) +mσ)p

∫
T

|Du(x)|p dx.

Since µmσ ≤ mT , we finally obtain∫
T

∫
T

|u(x)− u(x′)|p dx dx′ ≤ CmT (diam(T ) +mσ)p
∫
T

|Du(x)|p dx

for a C depending only on p and ν/µ. Dividing this inequality by m2
T gives the claim. �

We can now prove the claimed Poincaré inequality.
Proof of Theorem 4.1. By the triangle inequality,

1

mT

∫
T

∣∣∣∣u− 1

mσ

∫
σ

u

∣∣∣∣p ≤ Cp 1

mT

∫
T

∣∣∣∣u− 1

mT

∫
T

u

∣∣∣∣p + Cp

∣∣∣∣ 1

mT

∫
T

u− 1

mσ

∫
σ

u

∣∣∣∣p .
One can estimate the second term with Theorem 2.1:∣∣∣∣ 1

mT

∫
T

u− 1

mσ

∫
σ

u

∣∣∣∣p ≤ C(mσ + diam(T ))p
1

mT

∫
T

|Du|p,

where C only depends on the ratio ν
µ . By Jensen’s inequality, the first term is not larger than

the quantity

1

m2
T

∫
T

∫
T

|u(x)− u(x′)|p dx dx′,

which is, in turn, estimated by using Lemma 4.2. �

5. The higher dimensional case. Let n ≥ 2. Let γ : Qn−1 → Rn be a C1 map on the
closure of the unit cube Qn−1 = (0, 1)n−1 such that γ is one-to-one and |∂1γ∧ . . . ∂n−1γ| >
0 on Qn−1. We denote by σ = γ(Qn−1) the corresponding hypersurface and by T the set:

T = {sγ(θ) : s ∈ (0, 1), θ ∈ Qn−1}.
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We assume that for every θ ∈ Qn−1,

{sγ(θ), s ≥ 0} ∩ σ = γ(θ).

THEOREM 5.1. We assume that there exist µ, ν > 0 such that for every θ ∈ Qn−1,

(5.1) µ ≤ det (γ, ∂1γ, . . . , ∂n−1γ)(θ)

n|∂1γ ∧ · · · ∧ ∂n−1γ|(θ)
≤ ν.

Then for every p ∈ [1,+∞[ and every u ∈W 1,p(T ),∣∣∣∣ 1

mσ

∫
σ

u− 1

mT

∫
T

u

∣∣∣∣p ≤ C(‖Dγ‖L∞ + diam(T ))p
1

mT

∫
T

|Du|p,

where C only depends on the ratio ν
µ .

REMARK 5.1. Observe that the quantity in (5.1) is invariant with respect to the parametriza-
tion of σ. More precisely, let ψ : Qn−1 → Qn−1 be a C1 map such that |Jacψ| > 0
everywhere and γ̃ = γ ◦ ψ. Then

∂1γ̃ ∧ · · · ∧ ∂n−1γ̃ = ((∂1γ ∧ · · · ∧ ∂n−1γ) ◦ ψ) Jacψ.

This implies

det (γ̃, ∂1γ̃, . . . , ∂n−1γ̃) = 〈γ̃, ∂1γ̃ ∧ · · · ∧ ∂n−1γ̃〉
= 〈γ̃, ((∂1γ ∧ · · · ∧ ∂n−1γ) ◦ ψ) Jacψ〉
= ( det (γ, ∂1γ, . . . , ∂n−1γ) ◦ ψ) Jacψ.

Hence,

det (γ̃, ∂1γ̃, . . . , ∂n−1γ̃)

|∂1γ̃ ∧ · · · ∧ ∂n−1γ̃|
=

det (γ, ∂1γ, . . . , ∂n−1γ) ◦ ψ
|∂1γ ∧ · · · ∧ ∂n−1γ| ◦ ψ

.

In particular, when ψ is a C1 diffeomorphism, γ satisfies (5.1) if and only if γ̃ satisfies (5.1).
In view of Lemma A.1 given in Appendix, one can assume without loss of generality that

(5.2) |∂1γ ∧ · · · ∧ ∂n−1γ|(θ) = mσ, ∀θ ∈ Qn−1.

Exactly as in the 2 dimensional case, the proof of Theorem 5.1 is a consequence of the
following lemmas.

LEMMA 5.2. Assume that there exists a Lipschitz continuous map Φ : [0, 1]×Qn−1 → T
such that

1. Φ is a C1 diffeomorphism from (0, 1)×Qn−1 onto T ,
2. Φ(0, θ) = (0, 0),
3. Φ(1, θ) = γ(θ),
4. Jac Φ(s, θ) = nmTs

n−1.
Then for every u ∈W 1,1(T ), we have

1

mσ

∫
σ

u− 1

mT

∫
T

u =
1

nmT

∫
T

Du(x, y) [s∂sΦ(s, θ)](s,θ)=Φ−1(x,y) dx dy.
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The proof is very similar to the proof of Lemma 3.1 and we omit it. In particular, we observe
that by (5.2), we have∫
σ

u =

∫
Qn−1

u(γ(θ))|∂1γ∧· · ·∧∂n−1γ|(θ) dθ = mσ

∫
Qn−1

u(γ(θ)) dθ = mσ

∫
Qn−1

u(Φ(1, θ)) dθ.

The construction of a suitable Φ then follows the lines of the two dimensional case. We
proceed to indicate the major changes. We still denote by φ2 the map

φ2 : (s, θ) ∈ [0, 1]×Qn−1 → sγ(θ) ∈ T̄ .

Then Jacφ2(s, θ) = sn−1 det (γ, ∂1γ, . . . , ∂n−1γ)(θ), and we shall look for Φ under the
form Φ = φ2 ◦ φ2 ◦ φ0.

LEMMA 5.3. There exists a C1 diffeomorphism φ1 : [0, 1] × Qn−1 → [0, 1] × Qn−1

such that
1. for every θ ∈ Qn−1, φ1(0, θ) = (0, θ) and φ1(1, θ) = (1, θ),
2. for every θ ∈ Qn−1, ∫ 1

0

Jac (φ2 ◦ φ1)(s, θ) ds = mT .

3. for every s ∈ [0, 1] and every θ ∈ Qn−1,

(5.3) |∂sφ1(s, θ)| ≤ C , C ′ ≤ Jacφ1(s, θ) ≤ C ′′

where C,C ′ and C ′′ > 0 only depend on the ratio ν/µ.
Proof.

Step 1: Construction of an auxiliary function
Fix 1 ≤ k ≤ n − 1. Given θ ∈ Qn−1, we use the notation θk−1 = (θ1, . . . , θk−1) and

θ′ = (θk+1, . . . , θn−1). Assume that there exists a C1 function h : [0, 1]×Qn−1 → R such
that

1. for every θ′ = (θk+1, . . . , θn−1) ∈ Qn−k−1,∫
(0,1)×Qk

h(s, θk, θ′) dsdθk = mT ,

2. there exist C < 1 < C ′ only depending on ν/µ such that for every θ′ ∈ Qn−k−1,

Cnmσµs
n−1 ≤ h ≤ C ′nmσνs

n−1.

We introduce

ε =
Cµ

2nC ′ν

and a cut-off function: ζ ∈ C∞c ((0, 1)×Qk−1) such that 0 ≤ ζ ≤ 1 + ε and∫
(0,1)×Qk−1

ζ(s, θk−1) dsdθk−1 = 1 ,

∫
(0,1)×Qk−1

|ζ(s, θk−1)− 1| dsdθk−1 < ε.

We can further require that

‖Dζ‖L∞ ≤
Cn
ε
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for some constant Cn which only depends on n. Consider the map

Gθ′ : (a, b) 7→
∫

(0,1)×Qk−1

dsdθk−1

∫ a+ζ(s,θk−1)b

0

h(s, θk, θ′) dθk.

Then Gθ′ is well-defined and C2 on the set {(a, b) : 0 ≤ a ≤ 1, −a1+ε ≤ b ≤ 1−a
1+ε }. As in

the proof of Lemma 3.2, there exists a C2 map w : [0, 1]×Qn−k−1 7→ [−1, 1] such that for
every a ∈ [0, 1] and every θ′ ∈ Qn−k−1, Gθ′(a,w(a, θ′)) = mTa; that is,∫

(0,1)×Qk−1

dsdθk−1

∫ a+ζ(s,θk−1)w(a,θ′)

0

h(s, θk, θ′) dθk = mTa.

Moreover, w(0, θ′) = 0 = w(1, θ′) and by differentiation of the above identity with respect
to a, one gets

(5.4)

∫
(0,1)×Qk−1

h
(
s, θk−1, a+ ζ(s, θk−1)w(a, θ′), θ′

)
(
1 + ζ(s, θk−1)∂aw(a, θ′)

)
ds dθk−1 = mT .

As in the proof of Lemma 3.2, this leads to the following estimate:

(5.5) D ≤ 1 + ζ(s, θk−1)∂aw(a, θ′) ≤ D′

for some constants D, D′ > 0 which only depend on ν/µ. We omit the details.
Step 2 : construction of φ1

Let ψn+1 = id and hn+1 = hn = Jacφ2. We construct by induction on k = n, . . . , 0
two sequences of maps

ψk+1 : [0, 1]×Qn−1 → [0, 1]×Qn−1 , hk : [0, 1]×Qn−1 → R

such that for k = 0, . . . , n,

1. The map ψk+1 is a C2 diffeomorphism from [0, 1]×Qn−1 onto [0, 1]×Qn−1,
2. For every θ ∈ Qn−1, ψk+1(0, θ) = (0, θ) and ψk+1(1, θ) = (1, θ),
3. We have

hk = (hk+1 ◦ ψk+1)Jacψk+1,

4. There exist two constants 0 < Ck < 1 < C ′k depending only on ν/µ such that for
every s ∈ [0, 1] and every θ ∈ Qn−1,

(5.6)
Ck ≤ Jacψk+1(s, θ) ≤ C ′k,

Cknmσµs
n−1 ≤ hk(s, θ) ≤ C ′knmσνs

n−1.

5. We have ∫
(0,1)×Qk

hk(s, θk, θ′) dsdθk = mT ,

where θk = (θ1, . . . , θk) and θ′ = (θk+1, . . . , θn−1).
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Observe that these conditions are satisfied for k = n. We assume that for some k ≥ 1,
ψn+1, ψn . . . , ψk+1, and thus hn, . . . , hk are already constructed and satisfy the above prop-
erties. Let εk = Ckµ

2nC′
k
ν and ζk a function which satisfies the properties of the function ζ

introduced in Step 1, with ε = εk. We apply Step 1 to the function hk with ζk and C = Ck,
C ′ = C ′k. This gives a function wk : [0, 1] × Qn−k−1 → [−1, 1] satisfying the properties
enumerated in Step 1.

We then construct ψk as follows

ψk(s, θ1, . . . , θn−1) = (s, θk−1, vk(s, θ), θ′) = (s, θ1, . . . , θk−1, vk(s, θ), θk+1, . . . , θn−1)

with

vk(s, θ) = θk + ζk(s, θk−1)wk(θk, θ
′).

Since Jacψk = 1 + ζk∂θkwk, (5.5) implies

Ck−1 ≤ Jacψk ≤ C ′k−1,

where 0 < Ck−1 < 1 < C ′k−1 only depend on ν/µ.
Let hk−1 = (hk ◦ ψk)Jacψk. By (5.4),∫

(0,1)×Qk−1

hk−1

=

∫
(0,1)×Qk−1

hk(s, θk−1, θk + ζk(s, θk−1)wk(θk, θ
′), θ′)Jacψk(s, θ) dsdθk−1

=mT .

As in the proof of Lemma 3.2, one can check that hk−1 and ψk satisfy all the remaining
properties, even if it means changing the actual value of the constants Ck−1 and C ′k−1. This
completes the construction by induction of h0, . . . , hn and ψ1, . . . , ψn+1. We now define

φ1 = ψn ◦ ψn−1 ◦ · · · ◦ ψ1.

Then φ1 is a C1 diffeomorphism from [0, 1] × Qn−1 onto itself and φ1 coincides with the
identity on {0} ×Qn−1 and {1} ×Qn−1. By construction,

(5.7)

h0 = (h1 ◦ ψ1)Jacψ1 = (((h2 ◦ ψ2)Jacψ2) ◦ ψ1) Jacψ1

= (h2 ◦ ψ2 ◦ ψ1)Jac (ψ2 ◦ ψ1) = . . .

= (hn ◦ ψn ◦ · · · ◦ ψ1)Jac (ψn ◦ · · · ◦ ψ1)

= (hn ◦ φ1)Jacφ1

= (Jacφ2 ◦ φ1)Jacφ1 = Jac (φ2 ◦ φ1).

In particular, we deduce that

mT =

∫
(0,1)

h0(s, θ′) ds =

∫
(0,1)

Jac (φ2 ◦ φ1)(s, θ′) ds.

Step 3: Proof of (5.3)
For every k = 1, . . . , n − 1, and every (s, θ) ∈ [0, 1] × Qn−1, let us introduce the

notation:

[(s, θ)]k = θk = (θ1, . . . , θk).
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Then

ψ1(s, θ) = (s, [ψ1(s, θ)]1, θ′) = (s, θ1 + ζ1(s)w1(θ1, θ
′), θ′)

with θ′ = (θ2, . . . , θn−1), and for every k = 1, . . . , n,

ψk ◦ ψk−1 ◦ · · · ◦ ψ1(s, θ)

=
(
s, [ψk−1 ◦ · · · ◦ ψ1(s, θ)]k−1, θk + ζk(s, [ψk−1 ◦ · · · ◦ ψ1(s, θ)]k−1)wk(θk, θ

′), θ′
)

where θ′ = (θk+1, . . . , θn).
Since ‖wk‖L∞ ≤ 1, it follows by induction on k = 1, . . . , n that there exists Ak > 0

which depends only on ν/µ such that

‖∂s(ψk ◦ · · · ◦ ψ1)‖L∞ ≤ Ak.

In particular, ‖∂sφ1‖L∞ ≤ An. The fact that C ≤ Jacφ1 ≤ C ′, for some C,C ′ > 0
depending only on ν/µ, follows from (5.6) and the identity

Jacφ1 =
n∏
k=1

Jacψk+1.

The lemma is proved. �
LEMMA 5.4. There exists an homeomorphism φ0 : [0, 1]×Qn−1 → [0, 1]×Qn−1 which

is C1 on (0, 1)×Qn−1 and such that
1. for every θ ∈ (0, 1), φ0(0, θ) = (0, θ) and φ0(1, θ) = (1, θ),
2. for every (s, θ) ∈ (0, 1)×Qn−1,

Jac (φ2 ◦ φ1 ◦ φ0)(s, θ) = nmTs
n−1,

3. there exists a C1 map v : (0, 1) × Qn−1 → [0, 1] such that for every (s, θ) ∈
(0, 1)×Qn−1, φ0(s, θ) = (v(s, θ), θ) and

|v(s, θ)| ≤ Cs , |∂sv(s, θ)| ≤ C

where C only depends on ν/µ.
The proof is essentially the same as the proof of Lemma 3.3. The only difference is that

now by (5.6) for k = 0 and (5.7)

Cnmσµs
n−1 ≤ Jac (φ2 ◦ φ1) ≤ C ′nmσνs

n−1.

The rest of the proof is the same and we omit it.
Lemma 5.3 and Lemma 5.4 show that the map

Φ = φ2 ◦ φ1 ◦ φ0,

satisfies all the assumptions of Lemma 5.2. The analogue of Lemma 3.4 is given by the
following:

LEMMA 5.5. There exists a constant C > 0 such that

|∂sΦ(s, θ)| ≤ C(diam(T ) + ‖Dγ‖L∞)

where C only depends on ν/µ.
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Proof. By construction,

Φ(s, θ) = φ2 ◦ φ1 ◦ φ0(s, θ) = φ2(φ1(v(s, θ), θ)).

Hence,

∂sΦ(s, θ) = Dφ2(φ1(v(s, θ), θ)).∂sφ1(v(s, θ), θ).∂sv(s, θ).

By Lemma 5.4, |∂sv|, |v| ≤ C and by Lemma 5.3, we have |∂sφ1| ≤ C. Hence

|∂sΦ(s, θ)| ≤ C(diam(T ) + ‖Dγ‖L∞)

where C only depends on ν/µ. �
We can now proceed to the proof of the main theorem.

Proof of Theorem 5.1. By Jensen’s inequality, we only need to prove the case p = 1. By a
standard approximation argument, one can further assume that γ ∈ C2(Qn−1).

The required inequality is then a consequence of the equality given by Lemma 5.2, and
by the construction and estimate of a suitable Φ given by Lemmas 5.3, 5.4 and 5.5. �

6. Applications to the analysis of some finite volume methods.

6.1. Regular families of meshes of a smooth domain. Let Ω be a bounded domain of
R2 with a C2 boundary. A finite volume mesh M of Ω is a finite family of compact subsets
of Ω with non-empty interiors usually refered to as control volumes and denoted by the letter
K. This family is supposed to satisfy

K̊ ∩ L̊ = ∅, ∀K,L ∈M,K 6= L,

Ω =
⋃
K∈M

K.

Mext

Mint

Γ

FIG. 6.1. The non-polygonal mesh M of Ω and the two submeshes Mint and Mext

We assume that M can be split into two disjoint subsets (see Figure 6.1) as follows:
• The set of polygonal control volumes Mint that satisfy: for any K ∈ Mint, K is

polygonal and K ∩ ∂Ω contains at most a finite number of points.
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• The set of curved control volumes Mext that satisfy : for any K ∈ Mext, K is a
pseudo-triangle whose curved edge is contained in the boundary of the domain Ω.
With any such curved control volume K, we associate the (real) triangle K̃ which
possesses the same vertices as K (see the dashed lines in Figure 6.1). Observe that
K̃ may not be included in Ω.

We may now define the approximate mesh to be the following set of control volumes

M̃ =
⋃

K∈Mint

{K} ∪
⋃

K∈Mext

{K̃}.

This is a finite volume mesh made of polygonal control volumes.
The size and the regularity of such a mesh are measured by the quantities

size(M) = max
σ∈E

mσ, and reg1(M) = max
L∈‹M diam(L)2

mL
,

where E is the set of the edges σ of all the control volumes in the mesh M. Usual convergence
results in the finite volume framework assume that size(M) goes to 0 and that reg1(M)
remains bounded. This means that control volumes are not allowed to become flat while the
mesh is refined.

The main objective of this section is to prove that, if one builds a mesh M of Ω as
described previously such that size(M) is small enough, then each boundary curved control
volumes K ∈ Mext satisfies the assumptions of Theorem 2.1 with a ratio νK/µK which is
independent of K. In other words, on such curved elements, the inequality (2.3) holds with a
constant C uniformly bounded as the mesh is refined.

PROPOSITION 6.1. Let Ω be a bounded domain of class C2 in R2 and ξ0 > 0. There
exists h0 > 0 depending only on Ω and ξ0, such that for any finite volume mesh M as
described above, if

(6.1) reg1(M) ≤ ξ0 and size(M) ≤ h0,

then any exterior control volume K ∈ Mext (which is a pseudo-triangle) satisfies the as-
sumption (2.4) with two values of µ and ν that satisfy ν/µ = 3.
Proof. The exterior control volume K can be written in the following form (see Figure 6.2)

K = {(1− s)γ(t) : s ∈ [0, 1], t ∈ [0, h]},

where the opposite vertex which is supposed to be the origin (0, 0) lies inside Ω, and γ :
[0, h] → R2 is a normal parametrization of the curved edge σ ⊂ Γ: ‖γ′(t)‖ = 1 for every
t ∈ [0, h].

We also introduce the associated real triangle K̃ with vertices (0, 0), γ(0) and γ(h).
First, we claim that if we assume that

(6.2) h0 <
1

2‖γ′′‖∞
,

then we have

(6.3) mσ = h ≤ 2diam(K̃).

Indeed, let t ∈ [0, h]. By the mean value inequality, there exists ξt ∈ [0, h] such that

〈γ′(t), γ(h)− γ(0)〉 = h〈γ′(t), γ′(ξt)〉
≥ h− h2‖γ′‖∞‖γ′′‖∞ = h− h2‖γ′′‖∞

≥ h

2
.
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(0, 0)

σ

γ(0) γ(h)

K̃

FIG. 6.2. A control volume K ∈Mext with a curved edge σ ⊂ Γ

The last inequality follows from (6.1) and (6.2). The conclusion follows from the Cauchy-
Schwarz inequality and the fact that the parametrization γ is normal and satisfies ‖γ(h) −
γ(0)‖ ≤ diam(K̃).

Then, we are going to prove relation (2.4). For any t ∈ [0, h], we write the term
det (γ(t), γ′(t)) as follows:

(6.4)

det (γ(t), γ′(t)) = det

Å
γ(0),

γ(h)− γ(0)

h

ã
+ det

Å
γ(0), γ′(t)− γ(h)− γ(0)

h

ã
+ det (γ(t)− γ(0), γ′(t))

:=I1 + I2 + I3.

Now, we have to control the terms Ij , j = 1, 2, 3.
We begin with the term I1. Clearly, we have

(6.5) I1 =
2

h
m
K̃
.

As regards the second term in (6.4), there exists ζt ∈ [0, h] such that,

(6.6) |I2| = |det (γ(0), γ′(t)− γ′(ζt))| ≤ ‖γ(0)‖‖γ′′‖∞h ≤ 2‖γ′′‖∞diam(K̃)2.

Now, we are concerned by the last term in (6.4). There exists ζ̃t ∈ [0, h] such that,

|I3| =
∣∣∣∣ det

Å
−tγ′(t) +

t2

2
γ′′(ζ̃t), γ

′(t)

ã∣∣∣∣ ≤ h2

2
‖γ′‖∞‖γ′′‖∞,

and since the parametrization is normal, we deduce by (6.3) that

(6.7) |I3| ≤
h2

2
‖γ′‖∞‖γ′′‖∞ ≤ 2‖γ′′‖∞

Ä
diam(K̃)

ä2
.

Gathering relations (6.4)-(6.7) we get,∣∣∣∣ 2hmK̃ − det (γ(t), γ′(t))

∣∣∣∣ ≤ 4‖γ′′‖∞
Ä
diam(K̃)

ä2
.
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Thanks to the definition of reg1(M) and assumption (6.1) on reg1(M) we have,∣∣∣∣ det (γ(t), γ′(t))− 2

h
m
K̃

∣∣∣∣ ≤ 4‖γ′′‖∞ξ0mK̃.

Then, we obtain

m
K̃

Å
2

h
− 4‖γ′′‖∞ξ0

ã
≤ det (γ(t), γ′(t)) ≤ m

K̃

Å
2

h
+ 4‖γ′′‖∞ξ0

ã
.

Assuming that h0 satisfies, additionally to (6.2), the condition

(6.8) h0 <
1

4‖γ′′‖∞ξ0

we finally proved

1

h
m
K̃
≤ det (γ(t), γ′(t)) ≤ 3

h
m
K̃
,

which exactly gives (2.4) with a ratio ν/µ equal to 3 (observe that in (2.4), the parametrization
is not normal but satisfies |γ′| = mσ which does not change anything to the ratio ν/µ). The
claim is proved provided one chooses a h0 that satisfies (6.2) and (6.8).

�

6.2. Example of application : the heat equation with dynamic Ventcell boundary
conditions. As an illustration of the previous discussion we shall briefly describe a finite
volume approximation of the following model problem

(6.9a)
(6.9b)

(6.9c)


∂tu−∆u = 0, in ]0, T [×Ω,

α∂tu|Γ −∆Γu|Γ + u|Γ + ∂nu = 0, in ]0, T [×Γ,

u(0, .) = u0, in Ω.

Here, α ≥ 0 is a parameter, u|Γ denotes the trace of u on the boundary Γ = ∂Ω and ∆Γ

denotes the Laplace-Beltrami operator on Γ.
REMARK 6.1. The second equation of this system has to be understood as a boundary

condition associated with the heat equation. It is usually refered to as a (dynamic, if α > 0)
Ventcell boundary condition, see for instance [9] for a recent work on this kind of problem.

We also refer to [8] where the result of the present paper was used as an important
tool to give a complete convergence result (and as by-product a well-posedness result) for a
much more complex model. This model is known as the Cahn-Hilliard equation with dynamic
boundary condition. It is a fourth-order non-linear parabolic equation assorted with a non-
linear dynamic boundary condition.

The natural energy space for the problem (6.9) is the space

H1
Γ = {u ∈ H1(Ω), u|Γ ∈ H1(Γ)},

endowed with the norm

‖u‖H1
Γ

= (‖∇u‖2L2(Ω) + ‖u|Γ‖2L2(Γ) + ‖∇Γu|Γ‖2L2)
1
2 ,

where∇Γ denotes the tangential gradient on Γ.
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A well-posedness result can be proved in this space, the main ingredient being the fol-
lowing formal energy estimate, obtained by multiplying the first equation by ∂tu and the
boundary condition by ∂tu|Γ

d

dt
‖u(t)‖2H1

Γ
=

d

dt

Å∫
Ω

|∇u(t, .)|2 +

∫
Γ

|u|Γ(t, .)|2 +

∫
Γ

|∇Γu|Γ(t, .)|2
ã

= −2

∫
Ω

|∂tu|2 − 2α

∫
Γ

|∂tu|Γ|2.

Let M be a finite volume mesh of Ω as defined in Section 6.1. We recall here the main
notations of the mesh M (see Figure 6.3) used to obtain the finite volume scheme and we
refer the reader to [6], for example, for more details.

We decompose E (the set of all the edges in the mesh) into the subset of exterior edges
Eext = {σ ∈ E : σ ⊂ Γ} and the subset of interior edges Eint = {σ ∈ E : σ 6⊂ Γ}. Similarly
we use the notations E intK and EextK for the edges of a given control volume K ∈ M. If σ is
an interior edge which separates the control volumes K and L, we note σ = K|L. For any
neighboring exterior edges σ, σ̃ ∈ Eext, we note v = σ|σ̃ their common vertex (that belongs
to Γ).

Let us remark that we have to solve an equation on the boundary Γ, thus we have to define
boundary unknowns. In this context, we define a boundary mesh ∂M which is in fact equal
to the set of exterior edges of the initial mesh M. Thus, when we want to refer to the set of
exterior edges we will note Eext and we want to refer to the set of boundary control volumes
we will note ∂M. At each control volume K ∈ M we associate a point xK ∈ K called the
center of the control volume K and at each edge σ ∈ E we associate a center xσ ∈ σ. We
assume that they satisfy the following orthogonality condition:

[xK, xL]⊥σ, and xσ = [xK, xL] ∩ σ, ∀σ = K|L ∈ Eint,
[xK, xσ]⊥eσ, ∀σ ∈ EextK ,K ∈Mext,

where eσ is the chord associated with σ in the second case.
For K ∈M and any edge σ ∈ EK, we note dK,σ the distance between the center xK and

the center xσ, and for interior edges σ = K|L ∈ Eint, we set dK,L = dK,σ + dL,σ.
For any vertex v = σ|σ̃, we define dσ,σ̃ as the length of the arc included in Γ whose ends

are xσ, xσ̃ and passing through v = σ|σ̃ (drawn with larger dashes on figure 6.3).
With these new notation, we can now measure the regularity of the mesh with respect to

the position of the centers in each control volume and each edge by the following quantity

reg2(M) = max

Ñ
max
K∈M
σ∈EK

mσ

dK,σ
, max
v=σ|σ̃

mσ +mσ̃

dσ,σ̃

é
.

Finally, for simplicity, we shall assume that the interior control volumes are triangles but
the approach can easily be generalized to more general convex polygonal interior control
volumes.

In order to obtain the semi-discrete finite volume scheme associated with problem (6.9)
we integrate equation (6.9a) on all control volumes K ∈M and we integrate equation (6.9b)
on all boundary control volumes σ ∈ ∂M. Then we use a consistent two-point flux approxi-
mation for the Laplace operator in Ω and for the Laplace-Beltrami operator on Γ. A solution
of this scheme is thus a set of time-dependent unknowns

u(t) =

Å
(uK(t))K∈M, (uσ(t))σ∈∂M

ã
∈ RM × R∂M.
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v = σ|σ̃
xσ

xK
K ∈Mext

xL

L ∈Mint

d
K,L

d
K
,σ

xσ̃

FIG. 6.3. Finite volume mesh M of Ω

The scheme reads as follows: Find t 7→ u(t) ∈ RM × R∂M such that,

(6.10)


mK∂tuK +

∑
σ=K|L∈EintK

mσ

uK − uL
dK,L

+
∑

σ∈EextK

mσ

uK − uσ
dK,σ

= 0, ∀K ∈M,

αmσ∂tuσ +
∑

v=σ|σ̃

uσ − uσ̃
dσ,σ̃

+mσuσ −mσ

uK − uσ
dK,σ

= 0, ∀σ ∈ ∂M.

We postpone the important discussion on the choice of the discrete initial condition u(0) =
u0 to Theorem 6.2.

The discrete version of the H1
Γ norm is defined as follows

‖u‖1,M,∂M =
(
‖u‖21,M + ‖u‖20,∂M + ‖u‖21,∂M

) 1
2 ,

where each term is given by

‖u‖21,M =
∑

σ=K|L∈Eint

mσdK,L

Å
uK − uL
dK,L

ã2

+
∑

K|σ∈Eext

mσdK,σ

Å
uK − uσ
dK,σ

ã2

,

‖u‖20,∂M =
∑
σ∈∂M

mσ(uσ)2, and ‖u‖21,∂M =
∑

v=σ|σ̃

dσ,σ̃

Å
uσ − uσ̃
dσ,σ̃

ã2

.

A discrete energy estimate is obtained by multiplying the first equation in (6.10) by ∂tuK, the
second equation by ∂tuσ and by summing the resulting equalities on M and ∂M. We obtain

d

dt
‖u(t)‖21,M,∂M ≤ 0,

where we did not specify the form of the dissipation terms, since it is not important for our
purpose.

This estimate shows that the discrete H1
Γ norm of the approximate solution decreases

along the time and thus satisfies

sup
t∈[0,T ]

‖u(t)‖1,M,∂M ≤ ‖u0‖1,M,∂M.
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This a priori estimate is the main tool to prove the convergence of the numerical method.
However, in order to be useful, we see that the discrete initial data u0 needs to be a stable
approximation of u0 in the sense that ‖u0‖1,M,∂M has to be bounded uniformly with respect
to the mesh size, for any u0 ∈ H1

Γ.
In this framework, the inequality we proved in this paper leads to the following stability

result, which was our main motivation.
THEOREM 6.2. Let ξ0 > 0 and h0 > 0 given by Proposition 6.1. There exists a C > 0

such that for any finite volume mesh M of Ω satisfying

reg1(M) ≤ ξ0, reg2(M) ≤ ξ0, and size(M) ≤ h0,

and for any u0 ∈ H1
Γ, we have

‖u0‖1,M,∂M ≤ C‖u0‖H1
Γ
,

where u0 =

Å
(u0
K)K∈M, (u

0
σ)σ∈∂M

ã
is defined by

(6.11)


u0
K =

1

mK

∫
K

u0(x) dx, ∀K ∈M,

u0
σ =

1

mσ

∫
σ

u0
|Γ dx, ∀σ ∈ ∂M.

Notice first that, in order to take advantage of the assumed regularity of the trace of u0

on Γ in the estimate of the tangential gradient term ‖u0‖1,∂M, we absolutely need to define
the boundary terms u0

σ by using only the values of the trace of u0 on Γ and not, for instance,
the values of u0 on the chords associated with each boundary control volume σ.
Proof.

• The estimate of the L2 term ‖u0‖0,∂M is a straightforward consequence of Jensen’s
inequality.

• For any two neighboring boundary control volumes σ and σ̃, one can easily prove
by using a Taylor formula on the manifold Γ, that∣∣∣∣ 1

mσ

∫
σ

u0 − 1

mσ̃

∫
σ̃

u0

∣∣∣∣2 ≤ (mσ +mσ̃)

∫
σ∪σ̃
|∇Γu

0|2.

It follows that

‖u0‖21,∂M =
∑

v=σ|σ̃

1

dσ,σ̃

Å
1

mσ

∫
σ

u0 − 1

mσ̃

∫
σ̃

u0

ã2

≤
∑

v=σ|σ̃

mσ +mσ̃

dσ,σ̃

∫
σ∪σ̃
|∇Γu

0|2,

≤ 2reg2(M)

∫
Γ

|∇Γu
0|2.

• It remains to estimate the term ‖u0‖21,M. To this end, we first estimate the term
corresponding to the interior edges as follows∑
σ=K|L∈Eint

mσdK,L

Å
u0
K − u0

L

dK,L

ã2

=
∑

σ=K|L∈Eint

mσ

dK,L

(
u0
K − u0

L

)2
≤ 2

∑
σ=K|L∈Eint

mσ

dK,L

[
(u0
K − u0

σ)2 + (u0
σ − u0

L)2
]
,
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where we have introduced the mean-values on the edges u0
σ as in (6.11) but for

interior edges now.
Gathering this computation with the other term in ‖u0‖21,M, we obtain

‖u0‖21,M ≤ 2
∑
K∈M

∑
σ∈EK

mσ

dK,σ
(u0
K − u0

σ)2.

We can now use Theorem 2.1 and Proposition 6.1, to obtain

‖u0‖21,M ≤ Cξ0
∑
K∈M

∑
σ∈EK

mσ

dK,σ
(mσ + diam(K))2 1

mK

∫
K

|∇u0|2

≤ Cξ0reg2(M)(1 + reg2(M))2
∑
K∈M

∑
σ∈EK

diam(K)2 1

mK

∫
K

|∇u0|2

≤ 3Cξ0reg2(M)(1 + reg2(M)2)reg1(M)

∫
Ω

|∇u0|2,

and the claim is proved. Notice that the assumptions of Theorem 2.1 are satisfied
with a uniform ratio ν/µ thanks to Proposition 6.1, and to the fact that for interior
control volumes K, which are real triangles, the ratio ν/µ is equal to 1 (see Remark
2.1).

�

Appendix A. An intermediate result.
LEMMA A.1. There exists a C1 diffeomorphism ψ : Qn−1 → Qn−1 such that, setting

γ̃ = γ ◦ ψ, for every θ ∈ Qn−1,

|∂1γ̃ ∧ · · · ∧ ∂n−1γ̃|(θ) = mσ.

Proof. This follows from the proof of [7, Lemma 2], see also [2, Theorem 7, Proposition
A.2]. However, in the former reference, all the data are assumed to be smooth. In the latter
(which gives a result on more general domains than a cube), the map ψ is merelyC1 onQn−1

instead of Qn−1. For the convenience of the reader, we detail the proof.
Let f = 1

mσ
|∂1γ ∧ · · · ∧ ∂n−1γ|. Then

∫
Qn−1 f = 1.

For every k = 1, . . . , n−1, there exists aC1 map fk : Qk → R such that f = f1 . . . fn−1

and

(A.1)
∫ 1

0

fk(x1, . . . , xk−1, t) dt = 1 , (x1, . . . , xk−1) ∈ Qk−1.

Indeed, let

f1(x1) =

∫
Qn−2

f(x1, t2, . . . , tn−1) dt2 . . . dtn−1 , x1 ∈ [0, 1]

and then define by induction on 1 ≤ k ≤ n− 1, the map fk by

f1(x1) . . . fk(x1, . . . , xk) =

∫
Qn−1−k

f(x1, . . . , xk, tk+1, . . . , tn−1) dtk+1 . . . dtn−1.

(When k = n − 1, the right-hand side is simply f(x1, . . . , xn−1).) One easily checks that
(A.1) is satisfied. We now define the map ρ = (ρ1, . . . , ρn−1) by

ρi(x1, . . . , xi) =

∫ xi

0

fi(x1, . . . , xi−1, t) dt , 1 ≤ i ≤ n− 1.
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Then xi 7→ ρi(x1, . . . , xi) maps diffeomorphically [0, 1] onto [0, 1]. Moreover,

Jac ρ =
n−1∏
i=1

∂ρi
∂xi

=
n−1∏
i=1

fi = f.

We then define ψ = ρ−1. Then

1 = Jac (ρ ◦ ψ) = ((Jac ρ) ◦ ψ)Jacψ = f ◦ ψJacψ.

Since

∂1γ̃ ∧ · · · ∧ ∂n−1γ̃ = ((∂1γ ∧ · · · ∧ ∂n−1γ) ◦ ψ) Jacψ,

this completes the proof of the lemma.
�
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