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Abstract In this paper, simple random walks on a class of graphs induced by quasi-periodic tilings of

the Euclidean space Rd are investigated. Roughly speaking, these graphs are obtained by considering a

d-dimensional slice of the Cayley graph of ZN . The quasi-periodicity of the underlying tilings implies

that these graphs are not space homogeneous (roughly speaking, there is no transitive group action). In

this context, we prove that the asymptotic entropy of the simple random walk is zero and characterize

the type (recurrent or transient) of the simple random walk. These results are similar to the classical

context of random walks on the integer lattice. In this sense, it suggests that a varying local curvature

does not modify the global behavior of the simple random walk as long as the graph remains roughly

globally flat.
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1 Introduction and notations

In this paper, we study random walks on a class of graphs that are roughly a d-dimensional
slice of the standard integer lattice ZN . These graphs are induced by aperiodic tilings of the
Euclidean space and consequently are not homogeneous spaces — roughly speaking there is
no transitive group action. Compared to the homogeneous context or more particularly the
context of groups, new stochastic behaviors can be observed for the underlying random walks.
For instance, in [5], the simple random walk on an example of directed graph with vertex set
Z2 is shown to be transient.

Let G = (G0,G1) be an undirected graph : G0 is a countable set named the set of vertices
and G1 denotes the set of edges, that is a symmetric subset G0 × G0, in symbols, a subset
satisfying (x, y) ∈ G1 if and only if (y, x) ∈ G1 (such an undirected edge is also denoted by
{x, y}). A random walk on G is nothing but a Markov chain on the countable state space G0

whose transitions P (x, y) are strictly positive as soon as (x, y) ∈ G1. Let us denote the degree of
a vertex x ∈ G0 by deg x and defined as the number of vertices y ∈ G0 such that (x, y) ∈ G1. A
random walk is said to be simple if P (x, y) = (deg (x))−1 for any y ∈ G0 such that (x, y) ∈ G1,
and zero otherwise. This definition implicitly assumes there is no isolated vertex so that deg ≥ 1.
Finally, a random walk is said to be reversible if there exists a σ-finite measure m, satisfying
m(x) ∈ (0,+∞) for all x ∈ G0, and such that m(x)P (x, y) = m(y)P (y, x). Recall that the
simple random walk on an undirected graph is reversible with m = deg. For the terminology
on reversible random walks, we mainly refer to [19].

The class of graphs (or groupoids) considered in this paper are obtained as 1-dimensional
complexes by tiling the standard real vector space Rd with the help of the cut-and-project
scheme. More precisely, let E be a d-dimensional vector subspace of RN , named the real space,
and denote by E⊥ the orthogonal complement of E, called the internal space. Let K be the unit
cube in ZN . An edge in the Cayley graph of ZN is accepted and projected on E (orthogonally)
if it can be translated by a vector of E in the unit cube K + t, t ∈ E⊥. Under suitable
assumptions this method gives rise to a family of tilings Tt of the space E whose prototiles
are the projections of the d-dimensional facets of the N -dimensional unit cube K. Moreover,
depending on the orientations of the space E and E⊥ those tilings will be periodic or aperiodic
— the group of translations is given by E ∩ ZN . Such a tiling naturally defines a connected
graph embedded in the space Rd, called the cut-and-project graph — the vertex and edge sets
are respectively the sets of vertices and sides defining the tiles. In [17, 3], the authors considered
random walks on the tiles (that are rhombuses) of the Penrose tiling so that, at each step, the
walker can move to exactly four directions. In this sense, such a random walk is combinatorially
similar to the classical random walk on Z2. On the contrary, as the main motivation of paper,
random walks on the sides of the tiles are considered so that the local degree of the graph is no
longer constant.

Among interesting properties about random walks, one of them is related to the asymptotic
entropy. For a general Markov chain, the asymptotic entropy is intimately connected with the
tail — or asymptotic — σ-algebra. Namely, the tail σ-algebra is trivial, i.e. it only contains
measurable sets of probability 0 or 1, if and only if the asymptotic entropy is zero. This kind
of result can be seen as an analogue of the Kolmogorov 0-1 law for independent and identically
distributed random variables. In fact, the triviality of the tail σ-algebra can be interpreted as
a certain asymptotic independence. Noting that the invariant σ-algebra is contained in the tail
σ-algebra, the triviality of the former follows from the triviality of the latter.

For a general Markov chain, the tail σ-algebra is connected to the so-called tail boundary
which is itself isometrically isomorphic to the space of sequences of bounded harmonic functions
on the state space — for this general context, see [11]. Also, the invariant σ-algebra is intimately
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related to the Poisson boundary which is isometrically isomorphic to the space of bounded
harmonic functions. Thus, the tail (resp. the invariant) σ-algebra is trivial if and only if
there is no non constant sequences of bounded harmonic functions (resp. bounded harmonic
functions).

It turns out that the two σ-algebras coincide for a random walk on a locally compact
topological group provided the starting distribution is a Dirac mass. As a consequence, the
Poisson boundary is trivial — the random walk is also called Liouville — if and only if the
asymptotic entropy is zero. However, in the general case of Markov chains, it can happen that
the Poisson boundary is trivial whereas the asymptotic entropy remains strictly positive (see
[11, Theorem 4.1] or the original reference [15] for a simple example and [4] for a more elaborated
one). Consequently, even though the polynomial growth rate of balls in these graphs suggests
the Poisson boundary is trivial, the computation of the asymptotic entropy still gives a valuable
information on the tail boundary.

In the context of random walks on groups — see [10, 6] and references therein — or ran-
dom walks on homogeneous spaces — see [12] — the asymptotic entropy satisfies the so-called
fundamental inequality h ≤ ` · v where h is the asymptotic entropy of the random walk, ` the
linear rate of escape and v the exponential growth rate of the group. This inequality no longer
holds in the general case of Markov chains for mainly two reasons. First, the asymptotic en-
tropy of a Markov chain heavily depends on the initial distribution which is not the case in the
context of random walks on groups — the Markov transition kernel related to such a random
walk is actually invariant under the group action. In particular, this prevents from identifying
the asymptotic entropy to the more tractable Avez entropy (see [2]). Secondly, the space of
sequences of increments of random walks is structurally an ergodic Bernoulli shift, and from this
observation a Shannon-McMillan-Breiman type theorem can be stated. In [9], this inequality
is extended to the context of Random Walk with Random Transition Probabilities, for short
RWRTP, that is a random process whose increments are still independent but no longer iden-
tically distributed. The distribution of an increment is chosen accordingly to the configuration
of an ergodic dynamical system which permits to recover, somehow, the stationarity of incre-
ments as in the context of random walk on groups. More precisely, let (Ω, T, λ) be a probability
measure preserving dynamical system T on Ω and {µω}ω∈Ω a collection of probability measures
on a group G, a RWRTP is a Markov chain on the space Ω ×G whose Markov operator R is
given, for any real bounded measurable function f on Ω×G by

Rf(ω, g) =

∫
G
f(Tω, gh)dµω(h), (ω, g) ∈ Ω×G.

In this sequel, it is shown that the simple random walk on a cut-and-project graph is a
RWRTP whose underlying dynamics admits an invariant probability measure. At this level, we
do not enter in the details of the assumptions which are generic (see Section 3.2).

Theorem 1.1. Generically, the asymptotic entropy of the simple random walk on a cut-and-
project is zero. Consequently, the tail and invariant σ-algebras are trivial.

Note that the existence of an invariant probability measure for the underlying probability
measure is essential. In fact, the polynomial growth rate of the balls in a cut-and-project graphs
is not sufficient to ensure that the asymptotic entropy is zero. This is made precise in Remark
1.

Following a remark of [11], this result suggests that random walks on quasi-periodic graphs
satisfy a Central Limit Theorem (CLT) or even an invariance principle. Such results have been
obtained in [17, 3] in the substantially different context of random walks on the tiles of the
Penrose tiling that are combinatorially analogous to standard random walks on Z2.
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Another classical question in the field of random walks on graphs is the type problem : is
the random walk recurrent or transient ? Note that this characterization can not be deduced,
in general, from a CLT (it is worth noting that the estimates obtained in the following theorem
are actually very close to those given in a Local Limit Theorem (LLT) so that the type problem
is somehow an intermediate problem between CLT and LLT). Here again, avoiding the technical
but generic assumptions (see Theorem 4.1 in Section 4 for further details), the following theorem
gives a complete characterization of the type of the simple random walk on quasi-periodic graphs.

Theorem 1.2. Denoting by Pn(x, y) the n-step transition probability between two vertices x
and y of a cut-and-project graph, and setting d = dim E, generically, the following asymptotic
estimates hold :

• P 2n(x, x) ≥ C0(n log n)−d/2, and

• Pn(x, y) ≤ C1n
−d/2,

for some constants C0, C1 > 0. Consequently, the simple random walk on the cut-and-project
graph is recurrent if d ≤ 2 and transient otherwise.

The proof of this theorem involves standard arguments in the context of random walks on
undirected graphs. More precisely, it is based on an estimate of the growth rate of balls for
the statement related to the lower bound of the return probability, whereas a d-dimensional
isoperimetric inequality is stated in order to obtain the upper bound of the n-step transition
probabilities. As far as we are considering the type problem, many technics such as “civilized”
embedding — see [7] — or Nash-Williams inequalities — see [19] for a modern approach — or
rough isometries are available. However, all of them require at some step an argument that is
more or less equivalent to the statement on the growth rate of balls and spheres. In fact, all
the strategies consist of proving that the cut-and-project graphs are of curvature zero globally
— even though locally the curvature is varying.

Section 2.1 is devoted to the basic notation and definitions related to tilings and the de-
scription of the cut-and-project method. We also construct the induced cut-and-project graphs
on which the simple random walks are investigated. In Section 3, it is shown that the simple
random walk on a cut-and-project is a RWRTP and its asymptotic entropy is shown to be zero.
Section 4 is related to the type problem.

2 Cut-and-project graphs

2.1 Tiling the standard d-dimensional real vector space

We start with the description of the cut-and-project scheme to tile the real line. We consider the
standard integer lattice Z2 of R2. Let E be an irrational line in R2, i.e. satisfying E∩Z2 = {0},
and denote by E⊥ the orthogonal of E. We denote by K the unit square in Z2. Thus, the
translation of K along E defines a strip (see Figure 1).

Consequently, we obtain a tiling of the space E with two types of segments (short and long).
The short and long segments correspond to the projections of vertical and horizontal sides of
the unit square which are entirely contained in the strip. Actually, it can be noticed that there
is an ambiguity in the example of Figure 1 since two opposite sides of the same unit square are
completely contained in the strip so that we have to choose which one we project. However,
the strip can be translated by a vector t ∈ E⊥ in such a way that there is no ambiguity. And
since the projection of the lattice Z2 on the internal space is countable, there is no ambiguity
for all but countably many t ∈ E⊥.
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Figure 1: Quasi-periodic tiling of the real line within the cut-and-project scheme.

Finally, in a non-ambiguous case, we observe that there is a unique broken line which is
completely contained in the strip. This is the theorem of [14], recalled at the end of this section,
for the case of dimension 1. To keep the exposition self-contained, we recall some definitions
introduced in [14].

Definition 2.1. A subset F of Rd is termed regular — for the usual topology of Rd — if it is
bounded, has a non-empty interior Int(F ), and is such that its closure Clos(F ) coincides with
Clos(Int(F )) and its interior Int(F ) equals Int(Clos(F )).

Two regular subsets F1 and F2 are termed congruent if F1 = F2 up to a translation. The
property of congruence induces an equivalence relation on the set of tiles; an equivalence class
is termed a prototile.

Let T be a set of regular subsets of Rd, we denote by P the corresponding set of prototiles,
i.e. the factor set of T with respect to the equivalence relation of congruence.

Definition 2.2. A denumerable set T = {Fi}i∈I of regular subsets is a tiling of Rd if

• the corresponding set P of prototiles is finite,

• Rd =
⋃
i∈I Fi, and

• Int(Fi) ∩ Int(Fj) 6= ∅ for i 6= j ∈ I.

If T is a tiling, then a regular set F ∈ T is called a tile.

Let E be a d-dimensional subspace of RN , and E⊥ be its orthogonal supplement in RN .
The spaces E and E⊥ are termed respectively real space and internal space. We will denote by
p and p⊥ the canonical projections from RN = E⊕E⊥ to E and from E⊕E⊥ to E⊥. Thus we
have the following

E E ⊕ E⊥poo p⊥ // E⊥ .

We denote by K the unit cube in ZN , namely

K =

{
N∑
i=1

αiεi : 0 ≤ αi ≤ 1

}
,

where (ε1, · · · , εN ) is the canonical basis of RN .
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Let p be an integer 0 ≤ p ≤ N and Mp =
{
I = {i1, . . . , ip} ⊂ {1, . . . , N}

}
be the set of

index sets with p elements. The p-facets of the unit cube are indexed by Mp as follows :

KI =

{∑
i∈I

αiεi : αi ∈ [0, 1]

}
for all I ∈Mp and p > 0,

and K∅ = {0}. Obviously, the unit cube K admits the decomposition K = KI +KI{ .

Assumption 1. The decomposition RN = E ⊕ E⊥ is non degenerated, i.e. for any I =
{i1, . . . , id} ∈ Md, the system

{
p(εi), i ∈ I

}
is of rank d and the system

{
p⊥(εi), i ∈ I{

}
is of

rank N − d.

Actually, the rank of the two systems of vectors are simultaneously maximal or not maximal
by orthogonality. Moreover, maximality is a generic property and under this condition the d-
facets of the unit cube are isomorphic to their projections on E by p, and also, the (N−d)-facets
are isomorphic to their projections on E⊥ by p⊥. We will denote by DI the projection p(KI)
of the d-facet related to I ∈Md. According to [14], under Assumption 1, for (Lebesgue) almost
every t ∈ E⊥, the set

Tt =

{
x+DI : x = p(ξ), for some ξ ∈ ZN , p⊥(ξ) ∈ p⊥(KI{ + t), I ∈Md

}
(1)

is a tiling. It is, moreover, the projection of the unique d-dimensional faceted manifold entirely
contained in the strip Kt = K +E+ t. A vector t ∈ E⊥ for which this latter property does not
hold is said to be ambiguous. Finally, the group of translation of Tt is given by E ∩ ZN .

The Penrose’s third tiling can be obtained by the cut-and-project method if we consider the
real space E in R5 spanned by the two following vectors (see [14])

v1 = (1, cos(2π/5),− cos(π/5),− cos(π/5), cos(2π/5)),

and,
v2 = (0, sin(2π/5), sin(π/5),− sin(π/5),− sin(2π/5)).

For the icosahedral tiling of R3 — see [13] —, the vector subspaces E and E⊥ of R6 are
defined with the help of projectors

p =
1

2
√

5


√

5 1 −1 −1 1 1
1
√

5 1 −1 −1 1
−1 1

√
5 1 −1 1

−1 −1 1
√

5 1 1
−1 −1 −1 1

√
5 1

1 1 1 1 1
√

5

 and p⊥ =
1

2
√

5


√

5 −1 1 1 −1 −1
−1
√

5 −1 1 1 −1
1 −1

√
5 −1 1 −1

1 1 −1
√

5 −1 −1
−1 1 1 −1

√
5 −1

−1 −1 −1 −1 −1
√

5

 .

2.2 Constructive definition of a cut-and-project tiling

In the next section, it is proved that the simple random walk is in fact a RWRTP. The definition
of this RWRTP relies on the constructive definition of cut-and-project tilings we present at this
level.

Denote by J = {±1, . . . ,±N} and let t ∈ E⊥ be non ambiguous. Start from an arbitrary
point ξ ∈ Kt ∩ ZN and initialise the vertex, edge and d-dimensional facet sets by Vt0 = {ξ},
Et0 = ∅ and Ft0 = ∅. For j ∈ J, denote by

V t
j (ξ) =

{
{ξ + εj} if p⊥(ξ + εj) ∈ p⊥(K) + t
∅ otherwise
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the set of nearest neighbours of ξ. In this definition, εi for a negative index i ∈ J has to
be understood as −ε|i|. Also, denote the set of indices corresponding to these neighbours by
J t(ξ) = {j ∈ J : V t

j (ξ) 6= ∅}.
Allowed undirected egdes are given locally by the set Et(ξ) =

{
{ξ, ξ′} : ξ′ ∈ ∪j∈JV t

j (ξ)
}

whereas allowed d-dimensional facets are given locally by

F t(ξ) =

{
KI : I ⊂ J t(ξ), card I = d, dim span (εi, i ∈ I) = d, p⊥(ξ +KI) ∈ p⊥(K) + t

}
.

The recursion is then given for n ≥ 0 by
Vtn+1 = Vtn ∪

[⋃
ξ∈Vtn

⋃
j∈Jt(ξ) V

t
j (ξ)

]
Etn+1 =

⋃
ξ∈Vtn E

t(ξ)

Ftn+1 =
⋃
ξ∈Vtn

⋃
K∈F t(ξ)(ξ +K).

Furthermore, one may define the vertex and edge sets of the resulting cut-and-project graph Gt

as follows
G0
t = p

(
∪n≥0V

t
n

)
and G1

t = p
(
∪n≥0E

t
n

)
,

whereas the tiling Tt is given by p(∪n≥0F
t
n). Note that the characterization of projected facets are

slightly different between this definition of Tt and the one of (1). Still the two characterizations
are equivalent as shown in [14, Theorem VI.1].

Remark that card J t(ξ) is nothing but the degree deg ξ of ξ in the subgraph of the Cayley
graph of ZN whose vertex and edge sets are given respectively by Vt = ∪n≥0V

t
n and Et = ∪n≥0E

t
n.

Moreover, the simple random walk on the graph Gt, denoted by (Mn)n≥0 in the sequel, and the
random walk on (Vt, Et) are obviously combinatorially identical since the restriction to the set
Kt ∩ ZN of the map p : E ⊕ E⊥ → E is bijective.

3 The asymptotic entropy estimate

In this section, we shall estimate the asymptotic entropy of the simple random walk defined in
the previous section. First, we shall prove that this random walk is the projection on E by p of
a RWRTP. The underlying dynamics is given by a Markov chain whose Markov operator Q is
defined by (3). It turns out that this Markov chain admits an invariant probability measure (see
Proposition 3.2). Proposition 3.3 explicits how the original random walk (Mn)n≥0 is related to
the RWRTP. It follows that the asymptotic entropy of the initial random walk can be expressed
in terms of the asymptotic entropy of the RWRTP (see Proposition 3.4). Finally, Theorem 3.5
gives the statement announced in the introduction.

3.1 Random walk with random transition probabilities

Let t ∈ E⊥ be non ambiguous and set Xt = p⊥(K) + t. The definition of V t
j (ξ), ξ ∈ Kt ∩ ZN ,

j ∈ J, can be rewritten as follows

V t
j (x) =

{
{x+ p⊥(εj)} if x+ p⊥(εj) ∈ Xt
∅ otherwise,

where x = p⊥(ξ). (2)

Thus, this set is a priori defined for x ∈ Xt ∩ p⊥(ZN ) but still makes sense on the whole set Xt.
The set of allowed indices is denoted by J t(x).

A point x ∈ Xt is termed ambiguous if p⊥(ZN )∩{x+u} 6= ∅ for some u ∈ E⊥ such that u−t
is ambiguous for the cut-and-project scheme. The set of ambigous points is denoted by Nt. The
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set Nt inherits the properties of the set of ambiguous t ∈ E⊥ for the cut-and-project scheme.
It is shown in [14] to be a closed with empty interior negligible (with respect to the Lebesgue
measure on E⊥) set. Let us also point out that for any x ∈ Xt \ Nt, j ∈ J, V t

j (x) ∩Nt = ∅ and

for any t, t′ ∈ E⊥ it holds Nt′ = Nt − (t+ t′). The ambigous points are pathological since they
correspond in the cut-and-project scheme to the case for which the map p, when restricted to
the strip Kt∩ZN , is no longer injective. Consequently, these points shall not be considered and
the definitions below have to be understood up to this set of pathological points.

With these notations, one can define, respectively, the conductance and the Markov kernels
for x ∈ Xt \ Nt

Ct(x, dy) =
∑
j∈J

δVj(x)(dy), Qt(x, dy) =
Ct(x, dy)

mt(x)
with mt(x) =

∫
Xt

Ct(x, dy). (3)

Remark that mt(x) = card J t(x) ≤ 2N . These quantities are invariant by translation as states
in the following proposition.

Proposition 3.1. Let t, t′ ∈ E⊥ be non ambiguous and x ∈ Xt \Nt, then x− (t− t′) ∈ Xt′ \Nt′
and for any measurable subset A ⊂ Xt \ Nt

Qt(x,A) = Qt′(x− (t− t′), A− (t− t′)).

Proof. Let j ∈ J. Obviously, x− (t− t′) ∈ Xt′ \ Nt′ . Furthermore, since x+ p⊥(εj) ∈ Xt if and
only if x−(t−t′)+p⊥(ε) ∈ Xt′ , it follows that V t

j (x) = V t′
j (x−(t−t′)) and J t(x) = J t

′
(x−(t−t′)).

Then, it is straightforward that the following equalities hold for any measurable set A ⊂ Xt

Ct(x,A) = Ct′(x− (t− t′), A− (t− t′)), mt(x) = mt′(x− (t− t′)).

This proposition implies that the Markov kernels Qt and Qt′ define the same Markov chain.
In the sequel, the indices t and t′ in the notations shall be dropped and implicitly understood
as t = 0.

Let us define the following finite measure on X

π̃(dx) = 1X(x)m(x)Leb(dx)

where Leb is the Lebesgue measure on E⊥, and denote by π the probability measure obtained
after renormalization.

Proposition 3.2. The probability measure π is stationary with respect to Q.

Proof. Let f : X→ R be a non negative real measurable function and compute

π̃Qf =

∫
X×X

π̃(dx)Q(x, dy)f(y)

=
∑
j∈J

∫
X

1X(x)1Vj(x)(x+ p⊥(εj))f(x+ εj)Leb(dx)

=
∑
j∈J

∫
X

1X(z)1Vj(z−p⊥(εj))(z)f(z)Leb(dz)

after the change of variable z = x+ p⊥(εj) in each integral terms. Remarking that

1X(z − p⊥(εj))1Vj(z−p⊥(εj))(z) = 1X(z)1V−j(z)(z + p⊥(ε−j)),
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one deduce that

π̃Qf =
∑
j∈J

∫
X

1X(z)1V−j(z)(z + p⊥(ε−j))f(z)Leb(dz) = π̃f.

On the state space X×ZN , we define the Markov chain (Xn, M̃n)n≥0 whose initial distribu-
tion is δx ⊗ δ0 for some x ∈ X \ N and transition kernel R is given by

R((x, z), (y, z′)) = Q(x, y)µx,y(z′ − z),

where {µx,y}x,y∈X is the family of distributions defined by

µx,y =

∑
j∈J:p⊥(εj)=y−x δεj

card{j ∈ J : p⊥(εj) = y − x}
. (4)

As a matter of fact, the Markov chain (Xn, M̃n)n≥0 is a RWRTP : the underlying dynamical
system is given by the time-shift T on Ω = XN preserving the Markovian probability measure Qπ,
that is the canonical probability measure on the path space Ω induced by the initial distribution
π and the Markov operator Q. In addition, the probability measures µω, ω ∈ Ω, defined in (4),
actually depend only on the two first coordinates (ω0, ω1) ∈ X2. In fact, (Xn, M̃n)n≥0 is more
specifically a Markov additive process.

If t ∈ E⊥ is chosen non ambiguous, the map p realizes a bijection between the subset
ZN ∩Kt and G0

t . Therefore, for x ∈ G0
t , we shall denote by x̃ the unique point of ZN ∩Kt

such that p(x̃) = x and x̄ = p⊥(x̃− t) ∈ X. In a similar way, suppose that f : G0
t → R satisfies

f(x) = f(y), x, y ∈ G0
t , as soon as x̄ = ȳ, then f̄ : X→ R is the function satisfying f(x) = f̄(x̄),

for all x ∈ G0
t . Finally, we shall make use of the following compact notation for the convolution

of µω, . . . , µT
nω:

µω ∗ · · · ∗ µTnω = µω0,n.

Obviously, the choice of the set X0 as a representative of X is irrelevant, other choices would
only lead to a different formula for x̄ and f̄ .

With these notations we can now state the following proposition which makes precise how
the RWRTP and the original simple random walk on a cut-and-project graph are related.

Proposition 3.3. Let t ∈ E⊥ be non ambiguous, Gt the corresponding cut-and-project graph
and x ∈ G0

t . Then for any y ∈ G0
t , the following holds:

(i) P (x, y) = Ex̄(µω(ỹ − x̃)),

(ii) for n ≥ 1, δxP
n(y) = Ex̄(µω0,n−1(ỹ − x̃)),

(iii) Pf(x) = Qf̄(x̄).

where Ex̄ stands for the expectation with respect to Qx̄.

Proof. First recall that the map p : Kt ∩ ZN → G0
t is bijective. Let x, y ∈ G0

t for some non
ambiguous t ∈ E⊥ and compute

Ex̄(µω(ỹ − x̃)) =

∫
X
Q(x̄, dz)µx̄,z(ỹ − x̃)

=
1

card J(x̄)

∑
j∈J

1Vj(x̄)(x̄+ p⊥(εj))

∑
j′∈J 1{p⊥(εj)}(p⊥(εj′))1{ỹ−x̃}(εj′)

card {j′ ∈ J : p⊥(εj′) = p⊥(εj)}

=
1

card J(x̄)

∑
j,j′∈J

1Vj(x̄)(x̄+ p⊥(εj))1{p⊥(εj)}(p⊥(εj′))1{ỹ−x̃}(p⊥(εj′))

card {j ∈ J : p⊥(εj′) = εj}
.
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Then, one of the three following distinct cases must prevail.

a) For all j ∈ J, ỹ 6= x̃+ εj and obviously Ex̄(µω(ỹ − x̃)) = 0.

b) There exists a j0 ∈ J (necessarily unique) such that ỹ = x̃ + εj0 and x̄ + p⊥(εj0) /∈
p⊥(K). Obviously, for all j ∈ J such that p⊥(εj) = p⊥(εj0), x̄ + p⊥(εj) /∈ p⊥(K) so that
Ex̄(µω(ỹ − x̃)) = 0.

c) There exists a j0 ∈ J such that ỹ = x̃ + εj0 but x̄ + p⊥(εj0) ∈ p⊥(K). With the same
argument as in the case b), it comes that Ex̄(µω(ỹ − x̃)) = 1/card J(x̄).

In case a), P (x, y) = 0. Consider the case b) and suppose ỹ = x̃+εj0 is an admissible neighbour
of x̃, then p⊥(x̃ + εj0) ∈ p⊥(K) + t and also x̄ + p⊥(εj0) ∈ p⊥(K) which is a contradiction.
Consequently, P (x, y) = 0. Finally, in case c), ỹ = x̃+ εj0 is obviously an admissible neighbour
of x̃. The equalities

deg x = deg x̃ and
{
j ∈ J : p⊥(x̃+ εj) ∈ p⊥(K) + t} = {j ∈ J : x̄+ p⊥(εj) ∈ p⊥(K)

}
imply that deg x = card J(x̄) and ends the proof of point (i).

By equality (i), the equality (ii) holds for n = 1. We start with

Pn+1(x, y) =
∑

ξ∈ZN∩Kt

P (x, p(ξ))Pn(p(ξ), y).

By the point (i) and the induction assumption, it follows

Pn+1(x, y) =
∑

ξ∈ZN∩Kt

Q(x̄, ξ̄)µx̄,ξ̄(ξ − x̃)Eξ̄(µω0,n−1(ỹ − ξ)), ξ̄ = p⊥(ξ − t).

Remark that for z ∈ ZN , we have the following equivalence

µx̄,z̄(ξ − x̃) 6= 0⇐⇒ ξ̄ = z̄. (5)

Consequently, the simple sum above can be rewritten as the following double sum∑
z∈ZN∩Kt

∑
ξ∈ZN∩Kt

Q(x̄, z̄)µx̄,z̄(ξ − x̃)Ez̄(µω0,n−1(ỹ − ξ)),

which, by Markov property, is nothing but∑
z,ξ∈ZN∩Kt

Q(x̄, z̄)Ex̄(µω(ξ − x̃)|X1 = z̄)Ex̄(µTω0,n−1(ỹ − ξ)|X1 = z̄).

Since past and future of a Markov chain, conditionally to the present, are independent, the sum
becomes ∑

z∈ZN∩Kt

Q(x̄, z̄)Ex̄(µω0,n(ỹ − x̃)|X1 = z̄) = Ex̄(µω0,n(ỹ − x̃)),

which ends the proof of (ii).
The last point can be proved almost similarly, in fact we write

Pf(x) =
∑

ξ∈ZN∩Kt

P (x, p(ξ))f(p(ξ))

=
∑

ξ∈ZN∩Kt

Q(x̄, ξ̄)µx̄,ξ̄(ξ − x̃)f̄(ξ̄).

But with the equivalence (5), this sum is equal to the double sum∑
z,ξ∈ZN∩Kt

Q(x̄, z̄)µx̄,z̄(ξ − x̃)f̄(z̄).

Since µx̄,z̄ is a probability, the result follows.
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3.2 Entropy estimate of RWRTP

We now have the ingredients to state a generic estimate of the asymptotic entropy of the simple
random walk on a cut-and-project graph. The notion of genericity will be made precise at the
end of this section.

For a discrete measure µ, we define its entropy H(µ) by

H(µ) = −
∑
z∈ZN

µ(z) logµ(z).

The asymptotic entropy of the simple random walk on a cut-and-project graphe Gt, t ∈ E⊥

non ambiguous, is given (see [11] for instance for a definition in the context of Markov chains)
for any x ∈ G0

t by

h(x) = lim
n→∞

H(δxP
n)−

∑
y∈G0

P (x, y)H(δyP
n−1). (6)

Proposition 3.4. Let t ∈ E⊥ and x ∈ G0
t . Then, the asymptotic entropy h depends on x ∈ G0

t

only through x̄ = p⊥(x̃− t) where x̃ is the unique point in ZN ∩Kt such that p(x̃) = x.

Proof. By Proposition 3.3 we get that

H(δyP
n−1) = H

(∫
Ω

Qȳ(dω)µω0,n−2

)
,

and also that

h(x) = lim
n→∞

H

(∫
Ω

Qx̄(dω)µω0,n−1

)
−
∑
ỹ∈ZN

Q(x̄, ȳ)H

(∫
Ω

Qȳ(dω)µω0,n−2

)
. (7)

This form only depends on x̄ ∈ X.

Theorem 3.5. There exists a subset Wπ of X of full measure such that h(x) = 0 for all x ∈ G0
t ,

t ∈ E⊥ non ambiguous, satisfying x̄ ∈ Wπ.

This theorem states that asymptotic entropy of the simple random walk on a cut-and-project
graph is generically zero. In fact, if a point x ∈ X is non ambiguous thus any u ∈ E⊥ such that
p⊥(ZN )∩{x+ u} 6= ∅ is non ambiguous for the cut-and-project scheme. Consequently, one can
define the graph Gu and it follows that any non ambiguous point x ∈ X corresponds to at least
one vertex of some cut-and-project graph. Thus, genericity in the set X give rises to genericity
for random walks on cut-and-project graphs.

Proof. Integrating in (7) with respect to the stationary measure π, and exchanging the limit
and the integral (the quantity inside the limit is non negative and monotonically decreasing,
see [11]), we get

lim
n→∞

∫
X
π(dx̄)H

(∫
Ω

Qx̄(dω)µω0,n−1

)
−
∫
X
Q(x̄, dȳ)H

(∫
Ω

Qȳ(dω)µω0,n−2

)
= lim

n→∞

∫
X
π(dx̄)H

(∫
Ω

Qx̄(dω)µω0,n−1

)
−H

(∫
Ω

Qx̄(dω)µω0,n−2

)
= lim

n→∞

∫
X dπ(dx̄)H

(∫
Ω Qx̄(dω)µω0,n−1

)
n

,

(8)

by stationarity of π. The polynomial growth rate of ZN gives the majorization

H

(∫
Ω

Qx̄(dω)µω0,n−1

)
≤ N log(n) + log(κ),

for some constant κ > 0. Consequently, the limit in (8) is zero π-a.s. and the theorem follows.
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Remark 1. It is worth noting that arguments involving a polynomial growth rate of balls is
useless in general because of the difference in (6) and the fact there is no non trivial lower
bound for the Shannon entropy. Also, the existence of a stationary probability measure is
essential to deal with the more tractable expression of the asymptotic entropy appearing in (8)
that can be majorized using the polynomial growth rate of balls. For an example of graphs with
linear growth rate with positive asymptotic entropy, we refer to [11, Theorem 4.1].

4 The type problem

In this section, the following theorem is proved. It gives a characterization of the recurrent or
transient behavior of the simple random walk induced by a cut-and-project tiling.

Theorem 4.1. Set d = dim E ≤ N and µ⊥ the Lebesgue measure on E⊥. Under Assumption
1, consider the simple random walk (Mn)n≥0 on the cut-and-project graph Gt induced by the
tiling Tt for some t ∈ E⊥ non ambiguous. Then, for µ⊥-a.e. t ∈ E⊥, the following estimates
hold for x, y ∈ G0,

• P 2n(x, x) ≥ C0(n log n)−d/2, and

• Pn(x, y) ≤ C1n
−d/2,

for some constants C0, C1 > 0. Obviously, we obtain the following dichotomy:

• if dim E ≤ 2 then (Mn)n≥0 is recurrent,

• if dim E ≥ 3 then (Mn)n≥0 is transient.

Even though the theorem is stated for simple random walk, it can be trivially extended
to strongly reversible, uniformly irreducible with bounded range random walks (see [1] for
instance).

The proof of Theorem 4.1 relies on a suitable estimate of the growth rate of balls for the
statement related to the lower bound of the return probability and d-dimensional isoperimetric
inequalities for the upper bound of the decreasing rate of the heat kernel. In particular, we shall
apply in Section 4.2 the standard machinery related to reversible random walk. Intuitively, the
vertices of cut-and-project graphs satisfy an equirepartition theorem. This result is shown in [8]
(a slightly more general statement is also given in [16]) and Theorem 4.2 is a version adapted
to our context and notations.

At this level, we need to stress that other strategies, involving argument such as “civilized
embedding” (see [7], Nash-Williams inequalities, rough isometries or Dirichlet forms (see [19]
for a modern approach), eventually rely on estimates of the growth rate of balls and spheres.
This growth rate reveals the global flatness (in a combinatorial sense) of the cut-and-project
graph that can not be seen directly since locally the curvature is varying.

4.1 Equirepartition theorem

Fixing a basis {a(1), . . . , a(d)} of E, we denote by ‖ · ‖p the p-norm on E, namely,

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

, for x =
d∑
j=1

xja
(j)

Also, the p-metric induced by the p-norm is denoted by dp. We denote by Bp(x, r) the ball of
radius r > 0 centered at x ∈ Rd, and by ∂Bp(x, r) the corresponding sphere. We simply write
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B and ∂B, without subscripts, if the choice of a specific metric is irrelevant to the statement
of the result. Finally, the space E (resp. E⊥) comes with the d-dimensional (resp. (N − d)-
dimensional) Lebesgue measure denoted in the sequel µ (resp. µ⊥). Then, the following theorem
is a slight generalization of the equirepartition theorem given in [8].

Theorem 4.2. Let t = tE + tE⊥ ∈ RN = E⊕E⊥ with dim E = d. Then, under Assumption 1,
there exists a non negative function ` on E⊥ satisfying µ⊥(` = 0) = 0 such that

lim
r→∞

card(ZN ∩ (t+B(0, r) + X0))

µ(B(0, r))
= `(tE⊥), (9)

for all tE ∈ E uniformly.

Remark 2. The theorem in [8] is stated under the additional assumption ZN ∩ E⊥ = {0} so
that the limit holds uniformly. Also, in this case, the estimates given in Theorem 4.1 hold for
all non ambiguous t ∈ E⊥. This condition is satisfied, for instance, for the icosahedral tilings
of R3 and not satisfied for the Penrose’s third tiling (the vector (1, 1, 1, 1, 1) belongs to E⊥).

The proof of Theorem 4.2 is adapted from the one in [8]. In fact, our contribution consists
of identifying the limit in (10) which is no longer constant as soon as ZN ∩ E⊥ 6= {0}.

Proof. Let Γ = RN/ZN be endowed with the Haar probability measure, denoted by λ. Theorem
4.2 is in fact a consequence of the ergodic theorem applied to the flow {Tu}u∈Rd , defined for
x ∈ Γ by

Tux = πΓ

x+
d∑
j=1

uja
(j)

 , u = (u1, · · · , ud) ∈ Rd,

where πΓ is the canonical projection of RN on Γ.
In [8], it is shown, under the assumption ZN∩E⊥ = {0} (which is equivalent to the ergodicity

of the flow {Tu}u∈Rd on Γ),that

lim
r→∞

card(ZN ∩ (t+B1(0, r) + X0))

µ(B1(0, r))
= δ−dλ(πΓ(A×B)), (10)

where A ⊂ E⊥ is contained in a translate of the fundamental domain of Γ and B = [0, δ)d with
δ > 0 chosen so small that LebN (A× B) = λ(πΓ(A× B)). If the flow is no longer ergodic, the
limit is given by λI(πΓ(A × B)) with λI the conditional probability measure with respect to
the σ-algebra I of measurable sets invariant under the flow.

Thus, we need to compute this limit (which is no longer constant). Defining PI as the
projector in L2(Γ) on the closed subspace ker (Id − PI) of invariant functions, it follows for
f ∈ L2(Γ) that ∫

Γ
fdλI = PIf, λ− a.s..

Setting χξ(x) = e2iπ〈ξ,x〉 for ξ ∈ ZN and x ∈ RN , one can check that the family {χξ : ξ ∈
ZN ∩ E⊥} is an orthonormal basis of ker (Id− PI). Consequently, we get

PIf =
∑

ξ∈ZN∩E⊥
f̂ξχξ, where f̂ξ =

∫
Γ
fξχξdλ.

Setting f = 1πΓ(A×B) a simple computation shows that

λI(πΓ(A×B)) = δd
∑
ξ∈ZN

χξγξ with γξ =

∫
E⊥

1A(x)e−2iπ〈ξ,x〉µ⊥(dx).
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Also, the limit in the ergodic theorem is λ-a.s. zero if and only if A ⊂ (ZN ∩ E⊥)⊥ which is
excluded under Assumption 1. Moreover, the value of the limit is invariant on the orbit of the
flow which implies the uniformity with respect to translation in E.

Remark 3. Theorem 4.2 is stated for any p-norm but its proof only involves the 1-norm which
is obviously sufficient since all the norms are equivalent.

4.2 Isoperimetric inequalities, reversible random walks

In this section, we fix t ∈ E⊥ unambiguous and consider the cut-and-project graph Gt which
shall be denoted G to keep notation light. Let us denote by dG the usual graph metric on the
cut-and-project graph G and by BG(x, n) the ball of radius n centered at x, i.e.

BG(x, n) = {y ∈ G0 : dG(x, y) ≤ n}.

The Cayley graph of ZN (with standard generators) is naturally endowed with the graph metric
dΛ which is nothing but the metric induced by the 1-norm on RN in the canonical basis which
shall be denoted in the sequel ‖ · ‖Λ. The following lemma compares the graph metrics dG and
dΛ.

Lemma 4.3. Under Assumption 1, for any x, y ∈ G0,

dΛ(ξ, η) = dG(x, y),

where (ξ, η) ∈ ZN × ZN is the unique pair in the strip Kt = K + E + t, for t ∈ E⊥, such that
p(ξ) = x and p(η) = y.

This lemma states that a geodesic path in the graph can not be the projection of a non
geodesic path of the integer lattice ZN .

Proof. This lemma is a direct consequence of the fact, due to [14], that the tiling Tt is the
projection of a unique d-dimensional faceted manifold entirely contained in the strip Kt (recall
that t ∈ E⊥ is chosen unambiguous).

Theorem 4.2 together with Lemma 4.3 yields the following ball growth estimates.

Proposition 4.4. Under Assumption 1, the following estimate is satisfied for all x ∈ G0

k−1ld ≤ card BG(x, l) ≤ kld, d = dim E,

for a constant k > 1 independent of x ∈ G0.

Proof. Let x, y ∈ G0 and let (ξ, η) ∈ (ZN ∩Kt)
2 be the unique pair of points such that p(ξ) = x

and p(η) = y. On one hand, we obtain

d2(x, y) ≤ ‖p‖dΛ(ξ, η)

where ‖p‖ is the matrix norm defined by

‖p‖ = sup
y∈E⊕E⊥:‖y‖Λ≤1

‖p(y)‖2
‖y‖Λ

.

On the other hand, there exist u, v ∈ Xt such that ξ = x+ u and η = y + u (and obviously
these u, v are uniquely determined). Thus, we get the following obvious inequality :

dΛ(ξ, η) = ‖ξ − η‖Λ ≤ ‖x− y‖Λ + ‖u− v‖Λ ≤ c0‖x− y‖2 + diam(Xt).
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Consequently, by Lemma 4.3, we get

‖p‖−1d2(x, y) ≤ dG(x, y) ≤ c0d2(x, y) + diam(Xt).

Applying Theorem 4.2 and remarking that

B2(x, c−1
0 (n− diam(Xt))) ⊂ BG(x, n) ⊂ B2(x, n‖p‖),

we get the inequality of the proposition.

If G is a graph, the k-fuzz of G, denoted by Fuzzk(G), has the same set of vertices as G and
two vertices x and y are neighbors in Fuzzk(G) if and only if 1 ≤ dG(x, y) ≤ k. We note ρ the
graph metric on Fuzzk(G). It is well known that the balls in the two graphs can be compared
as well as the spheres, namely

Bρ(x, n) = BG(x, kn) and ∂Bρ(x, n) =

kn⋃
l=kn−k+1

∂BG(x, l).

Proposition 4.5. Let d = dim E. The k-fuzz Fuzzk(G) satisfies a d-dimensional isoperimetric
inequality for k large enough, i.e.

card Bρ(x, n) ≤ k card ∂Bρ(x, n)d/(d−1)

for some k > 0.

Proof. According to Proposition 4.4 there exist C−, C+ > 0 such that for all n ≥ 1

C−(kn)d ≤ card Bρ(x, n) ≤ C+(kn)d.

Hence, we need a lower bound of card∂Bρ(x, n), namely, we have to show that

card ∂Bρ(x, n) ≥ κ(kn)d−1.

By Lemma 4.3, and from the proof of 4.4, we get

‖p‖−1d2(x, y) ≤ dG(x, y) ≤ c0d2(x, y) + diam(Xt).

Consequently, a point y ∈ ∂Bρ(x, n) satisfies

c−1
0 (kn− k + 1− diam(Xt)) ≤ d2(x, y) ≤ ‖p‖kn,

and in terms of balls we get

B2(x, ‖p‖kn) \B2(x, c−1
0 (kn− k + 1− diam(Xt))) ⊂ ∂Bρ(x, n).

Since c0‖p‖ ≥ 1, it is obvious that for any k ≥ 1

B2(x, c−1
0 kn) \B2(x, c−1

0 kn− c−1
0 (k − 1 + diam(Xt))) ⊂ ∂Bρ(x, n).

In the sequel, we adapt the proof of [16, Proposition 2.1]. Setting r = c−1
0 kn and w =

w(k) = c−1
0 (k − 1 + diam(Xt)), and defining

N(r, w, x,Xt) =
card(ZN ∩ (B2(x, r) \B2(x, r − w)) + Xt))

µ(B2(x, r) \B2(x, r − w))
,
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we want to show that the inequality

αµ⊥(Xt) ≤ N(r, w, x,Xt) ≤ (1− α)µ⊥(Xt) (11)

holds for some α > 0. Obviously, we have,

N(r, w, x,Xt) = βr
card(ZN ∩ (B2(x, r) + Xt))

µ(B2(x, r))

+ (1− βr)
card(ZN ∩ (B2(x, r − w) + Xt))

µ(B2(x, r − w))
,

where βr = µ(B2(x,r))
µ(B2(x,r)\B2(x,r−w)) . Consequently, we can majorize

|N(r, w, x,Xt)− µ⊥(Xt)| ≤ βr
∣∣∣∣card(ZN ∩ (B2(x, r) + Xt))

µ(B2(x, r))
− µ⊥(Xt)

∣∣∣∣
+ (βr − 1)

∣∣∣∣card(ZN ∩ (B2(x, r − w) + Xt))
µ(B2(x, r − w))

− µ⊥(Xt)
∣∣∣∣ .

It follows from relations (3.20) and (3.23) in [16] that

|N(r, w, x,Xt)−µ⊥(Xt)| ≤ µ⊥(Xt)
[
βr
µ{B2(x, r + δ + ε) \B2(x, r − δ − ε)}

µ(B2(x, r))

+(βr − 1)
µ{B2(x, r − w + δ + ε) \B2(x, r − w − δ − ε)}

µ(B2(x, r − w))

]
,

for some δ, ε > 0. Obviously, for r large enough, there exists κ0 > 0 such that βr ≤ κ0
r
dw and

κ1 > 0 such that

βr
µ{B2(x, r + δ + ε) \B2(x, r − δ − ε)}

µ(B2(x, r))
≤ κ1

δ + ε

w(k)
.

Since w can be made arbitrarily large with k ≥ 1, the quantity κ1
δ+ε
w can be made strictly

smaller than 1, and we conclude that

|N(r, w, x,Xt)− µ⊥(Xt)| ≤ (1− α)µ⊥(Xt),

for some α = α(w) = α(k) > 0. Consequently, the following holds for large enough k

card ∂Bρ(x, n) ≥ card(ZN ∩ (B2(x, r) \B2(x, r − w)) + Xt)) ≥ κ(kn)d−1,

and the k-fuzz Fuzzk(G) satisfies a d-dimensional isoperimetric inequality.

Proof of Theorem 4.1. Proposition 4.4 together with [19, Theorem 14.22, p. 159], remarking
that 1 ≤ deg(x) ≤ 2N , x ∈ G0, imply that

p(2n)(x, x) ≥ C0(n log n)−d/2,

for some constant C0 > 0 and the lower bound in 4.1 follows.
For the upper bound, we assume d ≥ 3. The k-fuzz graph Gk satisfies a d-dimensional

isoperimetric inequality by Proposition 4.5. Obviously, the original graph satisfies, also, a d-
dimensional isoperimetric inequality by [19, Theorem 4.7, p. 42] and a rough isometry argument.
Applying, successively [19, Proposition 4.3, p. 40], [18, Proposition of section 3, p. 221] and
[18, Theorem 1, p. 215], we get the expected estimate on the n-step transition probabilities :

p(n)(x, y) ≤ C1n
−d/2,

for some C1 > 0.

Acknowledgments : The author wishes to thank the referee for his advices and useful
suggestion about the exposition of Section 2.2 making it more straighforward.

16



References
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