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Abstract

In this paper, we study random walks on quasi-periodic graphs induced by tiling the standard real vector
space Rd using the cut-and-project method. We first show a dichotomy of Pólya type, namely we prove
that the simple random walk on a cut-and-project graph is recurrent if d ≤ 2 and transient otherwise.
Nonetheless the aperiodic graphs we consider here are no longer the Cayley graph of a group but of a
groupoid. Secondly, we prove the asymptotic entropy of such random walks is zero.

1 Introduction and motivations

Starting with the theorem of Pólya stating that the simple random walk on the integer lattice
Zd is recurrent if and only if d ≤ 2 and transient, otherwise, random walks on finitely generated
groups has been intensively studied in the literature. As a matter of fact, a random walk on
a group belongs to the class of random processes with independent and stationary increments.
These two properties make the study of random walks more tractable. However, the notion of
random walk need not to be reduced to the group structure. It appears that many questions
related to random walks on weaker algebraic structures like groupoids or semi-groupoids are still
open. Loosing the independence and stationarity properties, there is no reason a priori that
those structures carry the same theory of random walks. For instance, in [CP03], the simple
random walk on an example of sub-semigroupoid on vertices of Z2 is shown to be transient.

The class of graphs (or groupoids) considered in this paper are obtained by tiling the stan-
dard real vector space Rd with the help of the cut-and-project scheme. More precisely, let E be
a d-dimensional vector subspace of RN , named the real space, and set Eint = E⊥ the orthogonal
complement of E, called the internal space. Let K be the unit cube in ZN . An edge in the
Cayley graph of ZN is accepted and projected on E (orthogonally) if it can be translated by a
vector of E in the unit cube K + t, t ∈ Eint. Under suitable assumptions this method gives rise
to a family of tilings Tt of the space E whose prototiles are the projections of the d-dimensional
facets of the N -dimensional unit cube K. Moreover, depending on the orientations of the space
E and Eint those tilings will be periodic or aperiodic — the group of translations is given by
E ∩ZN . Such a tiling naturally defines a connected graph embedded in the space Rd, called the
cut-and-project graph — the vertex and edge sets are respectively the sets of vertices and sides
defining the tiles. An important example which can be constructed using the cut-and-project
scheme (see section 2.1 for the details or [ODK88] for the original statement) is the Penrose’s
third tiling of R2 with two types of rhombs — thin and thick — which has been initially defined
by Penrose using matching rules forcing the tiling to be aperiodic. Another interesting example
is the icosahedral tiling of R3 (see section 2.1 for its definition) because of its connection with
quasi-crystals. The quasi-crystals have been discovered by Shechtman in 1982 observing that
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the diffraction patterns of an alloy of Al-Mn has a 10-fold symmetry which contradicts the
classical theory of crystallography. The theoretical description of this discovery can be found in
the seminal paper [SBGC84] of D. Shechtman, I. Blech and J. W. Cahn. The icosahedral tiling
appears to be the mathematical description of this alloy (see also [KD86]).

Avoiding technical assumptions, which are generic, a first theorem related to the type prob-
lem in the context of random walks on cut-and-project graphs can be written as follows (see
theorem 2.3 in section 2.3 for further details).

Theorem 1.1. Denoting by Pn(x, y) the n-step transition probability between x and y ∈ G0,
and setting d = dim E, generically, the following asymptotic estimates hold :

• P 2n(x, x) ≥ C0(n log n)−d/2, and

• Pn(x, y) ≤ C1n
−d/2,

for some constants C0, C1 > 0. Consequently, the simple random walk on the cut-and-project
graph is recurrent if d ≤ 2 and transient otherwise.

The proof of this theorem involves an estimate of the growth rate of balls for the statement
related to the lower bound of the return probability, whereas we establish an d-dimensional
isoperimetric inequality to obtain the upper bound of the n-step transition probabilities. As
far as we are considering the type problem, many technics such as “civilized” embedding — see
[DS84] — or Nash-Williams inequalities — see [Woe00] for a modern approach — are available.
However, in the sequel we obtain finer informations on the decreasing of the heat kernel. In
particular, the establishment of a Nash-Williams inequality is often at least as difficult as finding
isoperimetric inequalities while the former provides with a weaker result than the latter. Since,
these techniques are part of the folklore of the theory of reversible Markov chains, the proof of
those heat kernel estimates are given at the end of this paper in section 4.

Among properties about random walks we shall be interested in, one of them is related
to the asymptotic entropy. For a general Markov chain, the asymptotic entropy is intimately
connected with the tail — or asymptotic — σ-algebra. Namely, the tail σ-algebra is trivial, i.e.
it only contains measurable sets of probability 0 or 1, if and only if the asymptotic entropy is
zero. This kind of result can be seen as an analogue of the Kolmogorov 0-1 law for independent
and identically distributed random variables. In fact, the triviality of the tail σ-algebra can be
interpreted as a certain asymptotic independence. Notice that the invariant σ-algebra is always
contained in the tail σ-algebra. Consequently, the triviality of the latter implies the triviality
of the former.

For a general Markov chain, the tail σ-algebra is connected to the so-called tail boundary
which is itself isometrically isomorphic to the space of sequences of bounded harmonic functions
on the state space — for this general context, see [Kai92]. Also, the invariant σ-algebra is
intimately related to the Poisson boundary which is isometrically isomorphic to the space of
bounded harmonic functions. Thus, the tail (resp. the invariant) σ-algebra is trivial if and only
if there is no non constant sequences of bounded harmonic functions (resp. bounded harmonic
functions).

It turns out that the two σ-algebras always coincide for a random walk on a locally compact
topological group provided the starting distribution is a Dirac mass. As a consequence, the
Poisson boundary is trivial — or equivalently the random walk is Liouville — if and only if
the asymptotic entropy is zero. But in the general case of Markov chains, it can happen that
the Poisson is trivial but the asymptotic entropy is positive (see [Ben13] for an example of this
fact). Consequently, the strategy consisting in proving the triviality of the Poisson boundary,
or the Liouville property, fails to prove the entropy is zero in full generality, and fails to give the
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triviality of the tail σ-algebra. Therefore, we can expect an estimate of the asymptotic entropy
to give valuable informations about the asymptotic behavior of the random walk.

In the context of random walks on groups — see [KV83, Der86] and references therein —
or random walks on homogeneous spaces — see [KW02] — the asymptotic entropy satisfies the
so-called fundamental inequality h ≤ ` · v where h is the asymptotic entropy of the random
walk, ` the linear rate of escape and v the exponential growth rate of the group considered.
This inequality no longer holds in the general case of Markov chains for mainly two reasons.
First, the asymptotic entropy of a Markov chain heavily depends on the initial distribution
considered which is not the case in the context of random walks on groups — the Markov
transition kernel related to such a random walk is actually invariant under the group action.
In particular, this prevents from identifying the asymptotic entropy to the more tractable Avez
entropy (see [Ave72]). Secondly, the space of sequences of increments of random walks is
structurally an ergodic Bernoulli shift, and from this observation a Shannon-McMillan-Breiman
type theorem can be stated. In [KKR04], this inequality is extended to the context of Random
Walk with Random Transition Probabilities1, that is a random process whose increments are
still independent but no longer identically distributed. And the distribution of an increment
is chosen accordingly to the configuration of an ergodic dynamical system which permits to
recover, somehow, the stationarity of increments as in the context of random walk on groups.

It turns out that our random walks on cut-and-project graphs can be seen as a RWRTP,
more specifically it can be seen as a Random Walk with Internal Degree of Freedom 2 — see
for instance [KS83]. Consequently, we may estimate the asymptotic entropy of this RWRTP by
taking advantage of the estimate of [KKR04]. However, note that the following theorem is not
a direct corollary, since, as it will be clear in the sequel, the underlying probability preserving
dynamical system actually depends on the random walk itself. Once again, for the sake of
simplicity, we do not enter in the details of the assumptions which are also generic in a sense
which will be made precise in section 3.2.

Theorem 1.2. Generically, the asymptotic entropy of the simple random walk on a cut-and-
project is zero. Consequently, the tail and invariant σ-algebras are trivial.

The section 2.1 is devoted to the basic notation and definitions related to tilings and the
description of the cut-and-project method. We also construct the induced cut-and-project graph
on which we study the simple random walk. At the end of this section, we give the statement
of the theorem related to the type problem precising the assumptions hidden behind the term
“generically”. The proof of this theorem is given in the last section. In the section 3, we present
the main object of this paper, that is RWRTP and RWIDF. More precisely, we show how the
simple random walk on a cut-and-project graph can be seen as a RWIDF. We end this section
by proving the asymptotic entropy is zero.

2 Cut-and-project graph and the type problem

2.1 Tiling the standard d-dimensional real vector space

We start with the description of the cut-and-project scheme to tile the real line. We consider the
standard integer lattice Z2 of R2. Let E be an irrational line in R2, i.e. satisfying E∩ZN = {0}
and Eint be the line orthogonal to E. We denote by K the unit square in R2. Thus, the
translation of K along E defines a strip (see figure 1).

1 RWRTP
2 RWIDF
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Eint

E

Fig. 1: Quasi-periodic tiling of the real line within the cut-and-project scheme.

Consequently, we obtain a tiling of the space E with two types of segments (short and long).
The short and long segments correspond to the projections of vertical and horizontal sides of
the unit square which are entirely contained in the strip. Actually, it can be noticed that there
is an ambiguity in the example of the figure 1 since two opposite sides of the same unit square
are completely contained in the strip so that we have to choose which one we project. However,
the strip can be translated by a vector t ∈ Eint in such a way that there is no ambiguity. And
since the projection of the lattice Z2 on the internal space is countable, there is no ambiguity
for all but countably many t ∈ Eint.

Finally, in a non-ambiguous case, we observe that there is a unique broken line which is
completely contained in the strip. This is the theorem of [ODK88], recalled at the end of this
section, for the case of dimension 1.

Definition 2.1. A subset F of Rd is termed regular — for the usual topology of Rd — if it is
bounded, has a non-empty interior Int(F ), and is such that its closure Clos(F ) coincides with
Clos(Int(F )) and its interior Int(F ) equals Int(Clos(F )).

Two regular subsets F1 and F2 are termed congruent if F1 = F2 up to a translation. The
property of congruence induces an equivalence relation on the set of tiles; an equivalence class
is termed a prototile.

Let T be a set of regular subsets of Rd, we denote by P the corresponding set of prototiles,
i.e. the factor set of T with respect the equivalence relation of congruence.

Definition 2.2. A denumerable set T = {Fi}i∈I of regular subsets is a tiling of Rd if

• the corresponding set P of prototiles is finite,

• Rd =
⋃
i∈I Fi, and

• interior(Fi) ∩ interior(Fj) if i 6= j ∈ I.

If T is a tiling, then a regular set F ∈ T is called a tile.

Let E be a d-dimensional subspace of RN , and Eint be its orthogonal supplement in RN .
The spaces E and Eint are termed respectively real space and internal space. We will denote by
p and pint the canonical projections from RN = E ⊕Eint to E and from E ⊕Eint to Eint. Thus
we have the following

E E ⊕ Eint
poo pint // Eint .
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We denote by K the unit cube in ZN , namely

K =

{
N∑
i=1

αiεi : 0 ≤ αi ≤ 1

}
,

where (ε1, · · · , εN ) is the canonical basis of RN .
Let p be an integer 0 ≤ p ≤ N and Mp =

{
I = (i1, . . . , ip) ⊂ {1, . . . , N}

}
be the set of index

sets with p elements. The p-facets of the unit cube are indexed by Mp as follows :

KI =

{∑
i∈I

αiεi : αi ∈ [0, 1]

}
for all I ∈Mp and p > 0,

and K∅ = {0}. Obviously, the unit cube K admits the decomposition K = KI +KI{ .

Assumption 1. We assume that the configuration RN = E ⊕ E⊥ is non degenerated, i.e. for
any I = {i1, . . . , id} ∈Md, the system

{
p(εi), i ∈ I

}
is of rank d and the system

{
pint(εi), i ∈ I{

}
is of rank N − d.

Actually, the two systems of vectors are simultaneously maximal or not maximal since
Eint = E⊥. Moreover, maximality is a generic property and under this condition the d-facets
of the unit cube are isomorphic to their projections on E by p, and also, the (N − d)-facets
are isomorphic to their projections on pint. We will denote by DI the projection p(KI) of the
d-facet related to I ∈Md. According to [ODK88] the set

Tt =

{
x+DI : x = p(ξ), pint(ξ) ∈ pint(KI{ + t), I ∈Md

}
is a tiling for every non ambiguous t ∈ Eint whose group of translations is given by E ∩ ZN .
Moreover, Tt is the projection of the unique d-dimensional faceted manifold entirely contained
in the strip Kt = K + E + t — for almost every t ∈ Eint.

The Penrose’s third tiling is obtained by the cut-and-project method if we consider the real
space E in R5 spanned by the two following vectors (see [ODK88])

v1 = (1, cos(2π/5),− cos(π/5),− cos(π/5), cos(2π/5)),

and,
v2 = (0, sin(2π/5), sin(π/5),− sin(π/5),− sin(2π/5)).

For the icosahedral tiling of R3 — see [KD86] —, the vector subspaces E and Eint of R6 are
defined with the help of projectors (which are both given here for the sake of simplicity)

p =
1

2
√

5


√

5 1 −1 −1 1 1
1
√

5 1 −1 −1 1
−1 1

√
5 1 −1 1

−1 −1 1
√

5 1 1
−1 −1 −1 1

√
5 1

1 1 1 1 1
√

5

 and pint =
1

2
√

5


√

5 −1 1 1 −1 −1
−1
√

5 −1 1 1 −1
1 −1

√
5 −1 1 −1

1 1 −1
√

5 −1 −1
−1 1 1 −1

√
5 −1

−1 −1 −1 −1 −1
√

5

 .

2.2 Constructive definition of a cut-and-project tiling

We shall generalise the definition of Md by introducing the set M±d of every subset with d indices
in {±1, . . . ,±N}, namely

M±d =

{
{i1, . . . , id}, il ∈ {±1, . . . ,±N}, l = 1, . . . , d

}
.
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With this notation, we will denote the d-dimensional facet of index I by

KI =

{
d∑
l=1

αlεl : αl ∈ [0, 1], l = 1, . . . , d

}

where ε−|i| has to be understood as −ε|i|.
Let t ∈ Eint be non ambiguous and let ξ ∈ ZN ∩Kt. We will say that a d-dimensional facet

KI is admissible with respect to the point ξ (or equivalently that I is admissible) if and only if

pint

(
ξ −

∑
i∈I:il<0

ε|i|

)
∈ pint(K|I|{ + t),

where |I| = {|i|, i ∈ I, l = 1, . . . , d} so that |I| ∈ Md, the complement being defined as in
the previous section. The figure 2 clarifies this notion of admissibility and more precisely the
condition above.

Fig. 2: Local patch of the cut manifold.

Denoting by S± = {±ε1, . . . ,±εd}, we will say that ξ is connected to ξ + εi0 if and only if
there exist I1, . . . , Id ∈M±d admissible with respect to ξ such that

I1 ∩ · · · ∩ Id = {i0}.

As a matter of fact that the connection of ξ to ξ + εi0 is equivalent to the connection of ξ + εi0
to ξ. Such a connection will be denoted by ξ ↔ ξ + εi0 .

We set Xt = pint(K + t) and denote by S̄± the projection of the set S± on the space Eint.
For facets I1, . . . , Id ∈M±d , and a point x = pint(ξ) for some ξ ∈ ZN ∩Kt, we define

χt(I1, . . . , Id, x) =
d∏
l=1

1pint(K|Il|{
+t)

(
x−

∑
i∈Il:i<0

s̄|i|

)
.
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This map is {0, 1}-valued and is equal to 1 if and only if every set I1, . . . , Id are admissible with
respect to ξ which is projected on x ∈ Eint

3.
Now, we can give a constructive definition of a tiling by setting

Tt0 =

{
ξ +KI : I ∈M±d , pint

(
ξ −

∑
i∈I:i<0

ε|i|

)
∈ pint(K|I|{ + t)

}
,

Vt0 = {ξ}, Et0 = ∅. For n ≥ 0, we define

Vtn+1 =
⋃
ξ∈Vn

{
ξ + εi : {εi} =

d⋂
l=1

KIl : χt(I1, . . . , Id, pint(ξ)) = 1

}
,

Etn+1 =
⋃
ξ∈Vn

{
(ξ, ξ + εi) : {εi} =

d⋂
l=1

KIl : χt(I1, . . . , Id, pint(ξ)) = 1

}
and

Ttn+1 =
⋃

ξ∈Vn+1

{
ξ +KI : I ∈M±d , pint

(
ξ −

∑
i∈I:i<0

ε|i|

)
∈ pint(K|I|{ + t)

}
.

Then by construction, p
(⋃

n≥0 T
t
n

)
is the cut-and-project tiling indexed by t ∈ Eint. In ad-

dition, the cut-and-project, denoted by Gt, is the graph whose vertex and edge sets are given
respectively by

G0
t = p

⋃
n≥0

Vtn

 and G1
t = p

⋃
n≥0

Etn

 .

Note that there is a natural action of ZN × Z ∩ E on the tilings Tt and the cut-and-project
graphs Gt:

(u, v) · Tt = Tt+pint(u) + v + p(u) and (u, v) ·Gt = Gt+pint(u) + v + p(u),

for (u, v) ∈ ZN × Z ∩E. We say that two graphs or two tilings are congruent if they belong to
the same orbit with respect to this action.

The simple random walk on the graph G is the Markov chain (Mn)n≥0 whose state space is
the set G0 and the transition probabilities are defined for all x, y ∈ G0 by

P (x, y) =

{
P (x, y) = 1

deg(x) if (x, y) ∈ G1,

0 otherwise,

where deg(x) denotes the degree of point x ∈ G0, i.e deg(x) = card{y ∈ G0 : (x, y) ∈ G1}.
We can also define the graph embedded in ZN , denoted by G̃t, whose vertex and edge sets

are respectively given by

G̃0
t =

⋃
n≥0

Vtn and G̃1
t =

⋃
n≥0

Etn.

In the sequel, we will denote by (M̃n)n≥0 the simple random walk on the graph G̃t.

Assumption 2. The restriction of p : E ⊕ Eint → E to the subset ZN ∩Kt is bijective.

The assumption 2 implies that M̃n = p−1Mn for all n ≥ 0. This assumption is equivalent,
in our model, to the condition Eint ∩ZN = {0}. Furthermore, it turns out that this assumption
is generic in the sense it is satisfied for all but countably many configurations E ⊕ Eint.

3 Note that this maps is well defined in the sense that the admissibility condition depends only on the relative
position of x ∈ Xt, i.e. on its convex coordinates. Thus, if x ∈ Xt has no preimage in ZN ∩ Kt, this notion of
admissibility still makes sense.
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2.3 The type problem for the simple random walk on a cut-and-project graph.

A first theorem dealing with heat kernel estimates allows to deduce a Pólya dichotomy type
results.

Theorem 2.3. Set d = dim E ≤ N and assume that RN = E ⊕ Eint = E ⊕ E⊥, and the non
degeneracy assumption 1. Consider the simple random walk (Mn)n≥0 on the cut-and-project
graph G induced by the tiling Tt for a generic t ∈ Eint. If Eint ∩ ZN = {0}, then the following
estimates hold for x, y ∈ G0,

• P 2n(x, x) ≥ C0(n log n)−d/2, and

• Pn(x, y) ≤ C1n
−d/2,

for some constants C0, C1 > 0. Obviously, we obtain the following dichotomy:

• if dim E ≤ 2 then (Mn)n≥0 is recurrent,

• if dim E ≥ 3 then (Mn)n≥0 is transient.

Even though the theorem is stated for simple random walk, it can be trivially extended to
strongly reversible random walks, uniformly irreducible, and with bounded range (see [Anc90]
for instance).

In the example of the icosahedral tiling, it is easy to check that Eint∩Z6 = {0} and that the
non-degeneracy hypothesis is fulfilled. Thus, the theorem applies and for all generic t ∈ Eint

the simple random walk is transient. Unfortunately, it is obvious that the vector (1, 1, 1, 1, 1)
belongs to Eint in the configuration considered for the Penrose’s third tiling so that we might
ask for weaker hypothesis.

The proof of theorem 2.3 is postponed to section 4.

3 The asymptotic entropy estimate

3.1 Random walk with internal degree of freedom

Definition 3.1. A point x ∈ X0 is ambiguous if

pint(ZN ) ∩ {x+ u} 6= ∅

implies that u is ambiguous in Eint for the cut-and-project scheme. We denote by N the set of
ambiguous points.

Let x ∈ X0 \ N , and define the conductance kernel for t ∈ Eint non ambiguous

Ct(x, dy) =
∑

I1,...,Id∈M±d :

card
⋂d

l=1 Il=1

χt(I1, . . . , Id, x)
∑
s∈S±

δx+s̄(dy)1⋂d
l=1KIl

(s).

Setting mt(x) =
∫
Xt
Ct(x, dy), we define the Markov transition kernel by

Qt(x, dy) =
Ct(x, dy)

mt(x)
.

Proposition 3.2. Let t ∈ Eint non ambiguous and x ∈ X0 \ N , then

Qt(x, dy) = Q0(x− t, dy − t).

8



Proof. This is a consequence of the relation

χt(I1, . . . , Id, x) = χ0(I1, . . . , Id, x− t)

for t ∈ Eint non ambiguous, x ∈ X0 and I1, . . . , Id ∈M±d .

Because of this proposition, all the useful informations are actually contained in C0 and Q0
4.

On the state space X0 × ZN , we define the Markov chain (Xn, M̃n)n≥0 whose initial distri-
bution is δx ⊗ δ0 for some x ∈ X0 \ N and transition kernel R is given by

R((x, z), (y, z′)) = Q0(x, y)µx,y(z′ − z),

where (µx,y)x,y∈X0 is the family of probability measures defined by

µx,y =

∑
s∈S±:pint(s)=y−x δs

card{s ∈ S± : pint(s) = y − x}
.

The second coordinate (M̃n)n≥0 is named a random walk with internal degree of freedom 5,
whereas the first coordinate is the Markov chain governing the internal degrees of freedom.

Let us define the following finite measure on X0 \ N

π̃(dx) = 1X0(x)m0(x)Leb(dx)

where Leb is the Lebesgue measure on X0, and denote by π the normalised probability measure.

Proposition 3.3. The probability measure π is stationary with respect to Q.

Proof. Let f : X0 → R be a non negative real measurable function and compute

π̃Qf =

∫
π̃(dx)

∫
Q(x, dy)f(y) =

∫
1X0(x)Leb(dx)

∫
C(x, dy)f(y)

=

∫ ∑
I1,...,Id:

card
⋂d

l=1 Il=1

∑
s∈S±

χ(I1, . . . , Id, x)1⋂d
l=1KIl

(s)f(x+ s̄)1X0(x)Leb(dx).

Exchange the sums and the integral,∫ ∑
I1,...,Id:

card
⋂d

l=1 Il=1

∑
s∈S±

χ(I1, . . . , Id, x)1⋂d
l=1KIl

(s)f(x+ s̄)1X0(x)Leb(dx)

=
∑

I1,...,Id:

card
⋂d

l=1 Il=1

∑
s∈S±

∫
χ(I1, . . . , Id, x)1⋂d

l=1 KIl
(s)f(x+ s̄)1X0(x)Leb(dx),

set in each integral terms z = x+ s̄,

=
∑

I1,...,Id:

card
⋂d

l=1 Il=1

∑
s∈S±

∫
Leb(dz)f(z)1X0(z − s̄)1⋂d

l=1 KIl
(s)χ(I1, . . . , Id, z − s̄)

=

∫
Leb(dz)f(z)

∑
I1,...,Id:

card
⋂d

l=1 Il=1

∑
s∈S±

1X0(z − s̄)1⋂d
l=1KIl

(s)χ(I1, . . . , Id, z − s̄)

=

∫
Leb(dz)f(z)m(z)1X0(z) = π̃f,

4 In the sequel, we shall forget the zero indices if there is no ambiguity.
5 RWIDF
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since
1X0(z − s̄)1⋂d

l=1KIl
(s)χ(I1, . . . , Id, z − s̄)

is non zero if and only if z − s̄ and z are connected via s̄ and in this case 1X0(z − s̄) = 1X0(z)
by construction.

As a consequence of this proposition (see [KKR04]), the associated random walk with random
transition probabilities, RWRTP for short, is determined by the path space Ω = XZ

0 with the
shift-invariant Markov measure Qπ and the map

(. . . , ω−1, ω0, ω1, . . .) 7→ µω0,ω1 .

Introduce the following notation for the convolution of µω, . . . , µT
nω:

µω ∗ · · · ∗ µTnω = µω0,n.

Under the assumption 2, the map pint ◦ p−1 is well defined for x ∈ G0
t and t ∈ Eint non

ambiguous. Therefore we shall introduce the notation x̃ = p−1(x) and x̄ = pint(x̃) − t. In
addition, if f : G0

t → R is a function satisfying f(x) = f(y) if x̄ = ȳ, we will denote by
f̄ : X0 → R the function such that f(x) = f̄(x̄) for all x ∈ G0

t . With this notation we can now
state the following proposition which makes precise the connection between the RWIDF and
the original simple random walk on a cut-and-project graph.

Proposition 3.4. Let t ∈ Eint be non ambiguous, Gt the corresponding cut-and-project graph
and x ∈ G0

t . Then, for any y ∈ G0
t , the following holds:

(i) P (x, y) = Ex̄(µω(ỹ − x̃)),

(ii) for n ≥ 1, δxP
n(y) = Ex̄(µω0,n−1(ỹ − x̃)),

(iii) Pf(x) = Qf̄(x̄).

where Ex̄ is the expectation with respect to Qx̄.

Proof. By construction, Ex̄(µω) is the uniform probability on admissible neighbours x̃ + εi of
x̃. Then, the equality (i) comes from the assumption 2.

By equality (i), the equality (ii) holds for n = 1. We start with

Pn+1(x, y) =
∑
ξ∈ZN

P (x, p(ξ))Pn(p(ξ), y).

By the point (i) and the induction assumption, it follows

Pn+1(x, y) =
∑
ξ∈ZN

Q(x̄, ξ̄)µx̄,ξ̄(ξ − x̃)Eξ̄(µω0,n−1(ỹ − ξ)).

Remark that for z ∈ ZN , we have the following equivalence

µx̄,z̄(ξ − x̃) 6= 0⇐⇒ ξ̄ = z̄. (1)

Consequently, the simple sum above can be rewritten as the following double sum∑
z∈ZN

∑
ξ∈ZN

Q(x̄, z̄)µx̄,z̄(ξ − x̃)Ez̄(µω0,n−1(ỹ − ξ)),

10



which, by Markov property, is nothing but∑
z,ξ∈ZN

Q(x̄, z̄)Ex̄(µω(ξ − x̃)|X1 = z̄)Ex̄(µTω0,n−1(ỹ − ξ)|X1 = z̄).

Since past and future of a Markov chain, conditionally to the present, are independent, the sum
becomes ∑

z∈ZN

Q(x̄, z̄)Ex̄(µω0,n(ỹ − x̃)|X1 = z̄),

that is
Ex̄(µω0,n(ỹ − x̃)),

which ends the proof of (ii).
The last point can be proved almost similarly, in fact we write

Pf(x) =
∑
ξ∈ZN

P (x, p(ξ))f(p(ξ))

=
∑
ξ∈ZN

Q(x̄, ξ̄)µx̄,ξ̄(ξ − x̃)f̄(ξ̄).

But with the equivalence 1, this sum is equal to the double sum∑
z,ξ∈ZN

Q(x̄, z̄)µx̄,z̄(ξ − x̃)f̄(z̄).

Since µx̄,z̄ is a probability, the result follows.

3.2 Entropy estimate of RWIDF

We now have the ingredients to state a generic estimate of the asymptotic entropy of the simple
random walk on a cut-and-project graph. The notion of genericity will be made precise at the
end of this section.

For a discrete measure µ, we define its entropy H(µ) by

H(µ) = −
∑
z∈ZN

µ(z) logµ(z).

The asymptotic entropy of the simple random walk on a cut-and-project is given (see [Kai92]
for instance for a definition in the context of Markov chains) for any x ∈ G0 by

h(x) = lim
n→∞

H(δxP
n)−

∑
y∈G0

P (x, y)H(δyP
n−1).

Proposition 3.5. There exists a function h̄ : X0 −→ R+ such that for all t ∈ Eint non
ambiguous and x ∈ G0

t a vertex of the corresponding cut-and-project graph, the following equality
holds

h(x) = h̄(x̄)

where x̄ = pint(p
−1x)− t.

11



Proof. By proposition 3.4 we get that

H(δyP
n−1) = H

(∫
Ω

Qȳ(dω)µω0,n−2

)
,

and also that

h(x) = lim
n→∞

H

(∫
Ω

Qx̄(dω)µω0,n−1

)
−
∑
ỹ∈ZN

Q(x̄, ȳ)H

(∫
Ω

Qȳ(dω)µω0,n−2

)
.

This form only depends on x̄ ∈ X0.

Theorem 3.6. The function h̄ is zero π-a.s. .

Proof. Integrating with respect to the stationary measure π, and exchanging the limit and the
integral (the quantity inside the limit is non negative), we get

lim
n→∞

∫
X0

π(dx̄)H

(∫
Ω

Qx̄(dω)µω0,n−1

)
−
∫
X0

Q(x̄, dȳ)H

(∫
Ω

Qȳ(dω)µω0,n−2

)
= lim

n→∞

∫
X0

π(dx̄)H

(∫
Ω

Qx̄(dω)µω0,n−1

)
−H

(∫
Ω

Qx̄(dω)µω0,n−2

)
= lim

n→∞

∫
X0
dπ(dx̄)H

(∫
Ω Qx̄(dω)µω0,n−1

)
n

,

by stationarity of π. The following majoration is immediate

H

(∫
Ω

Qx̄(dω)µω0,n−1

)
≤ N log(n).

Consequently, h̄ = 0, π-a.s.

This theorem gives the existence of a subset Nπ of X0, such that π(Nπ) = 1 and h̄ = 0 on
Nπ. Let t ∈ Eint non ambiguous, and x ∈ G0

t , then proposition 3.5 implies h(x) = 0 if and only
if x̄ ∈ Nπ. We summarize the aforementioned results into the following.

Theorem 3.7. The asymptotic entropy of the simple random walk on a cut-and-project graph is
generically zero, that is h(x) = 0 for all x ∈ G0

t with t ∈ Eint non ambiguous such that x̄ ∈ Nπ.

In the context of Markov chains, the asymptotic entropy is zero if and only its tail σ-algebra
is trivial, i.e. its measurable sets have measure 0 or 1. The invariant σ-algebra is also trivial
since the latter is contained in the former. The converse is not true in general; there exists
Markov chains for which the invariant σ-algebra is trivial and its asymptotic entropy strictly
positive.

4 A proof of the recurrence and transience

The proof of theorem 2.3 involves an equirepartition theorem of points in the cut-and-project
graph. This can be deduced from a theorem of Schlottmann on model sets. The notion of
model sets involved in the theorem of Schlottmann appears in a slightly different context which
is recalled below.

12



4.1 Model sets and uniform distribution

We still denote by E a d-dimensional vector subspace of the real standard vector space RN , and
by Eint the orthogonal complement of E. We also denote by p and pint the canonical projections
on E and Eint respectively. However, we need not restrict ourselves to the integer lattice ZN .

Definition 4.1. A subset Λ ⊂ E ⊕Eint is called a lattice if Λ is a discrete Abelian subgroup of
E ⊕Eint such that there exists a compact K ⊂ E ⊕Eint satisfying Λ +K = E ⊕Eint (Λ is said
relatively dense).

In the context of model sets, it is usually assumed that pint(Λ) is dense in Eint, and that
p restricted to Λ is bijective on its image p(Λ). Under such assumptions, we will say that the
spaces E and Eint are in a standard configuration.

We denote by µ and µint the Lebesgue measure on E and Eint respectively. A window is a
bounded subset W of Eint which is the closure of its interior with zero measure boundary (with
respect to the Lebesgue measure µint). The set L = {p(x) : x ∈ Λ, pint(x) ∈ W} is termed a
regular cut-and-project set (or a regular model set). If the real space E and the internal space
Eint are in a standard configuration, it can be shown that a regular cut-and-project set is a
Delone set (see [Moo00] for instance).

Definition 4.2. A subset S of RN is a Delone (Delaunay) set if the following holds

1. Λ is relatively dense: there exists a non empty open set O such that, for any v ∈ E, v+O
contains a point of Λ ;

2. Λ is uniformly discrete: there exists a non empty open set O′ such that, for any v ∈ E,
v +O′ contains at most one point of Λ.

Fixing a basis of E, we denote by ‖ · ‖p the standard p-norm on E, namely for x ∈ E,

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

.

In addition, the p-metric induced by the p-norm is denoted by dp. We denote by Bp(x, r) the ball
of radius r > 0 centered at x ∈ Rd, and by ∂Bp(x, r) the corresponding sphere. We simply write
B and ∂B, without subscripts, if the choice of a specific metric is irrelevant to the statement of
the result.

The version given here can be found in [Sch98], but a similar statement is shown in [Hof98].

Theorem 4.3. Let E ∼= Rd, Eint
∼= R(N−d). Let Λ be a lattice in E ⊕ Eint. Assume that the

space E and Eint are in a standard configuration. Then, uniformly in t ∈ E ⊕ Eint,

lim
r→∞

card(Λ ∩ (t+B(0, r) +W ))

µ(B(0, r))
=

µint(W )

µ⊗ µint(Λ̃)

where Λ̃ is a fundamental domain of Λ.

Combining arguments of [Hof98], we can deduce that when Λ is supposed to be the standard
integer lattice ZN , the density of pint(Z

N ) in Eint can be substituted with the simpler condition
ZN ∩Eint = {0}, which is itself equivalent to the injectivity of p restricted to the integer lattice
ZN . Moreover, the window we consider in the sequel is given by W = Wt = pint(K + t), for
t ∈ Eint.
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4.2 Isoperimetric inequalities, reversible random walks

A Markov chain (Mn)n≥0 on an undirected graph G = (G0,G1) is reversible if there exists a
measure — the total conductance — m : G0 7→ (0,∞) such that

m(x)p(x, y) = m(y)p(y, x) (2)

for all x, y ∈ G0. Since the graph is undirected, the degree (deg(x))x∈G0 is a measure satisfying
(2) for the simple random walk. We view m indiscernably as a measure or as a combinatorial
object.

Let us denote by dG the usual graph metric on the cut-and-project graph G and by BG(x, n)
the ball of radius n centered at x, i.e.

BG(x, n) = {y ∈ G0 : dG(x, y) ≤ n}.

For a finite subset A ⊂ G0 we will denote by ∂A the boundary of A defined as

∂A = {x ∈ A : ∃y /∈ A with dG(x, y) = 1}.

The boundary of a ball BG(x, n) will be denoted by ∂BG(x, n). The growth function of (G, P )
at the point x is given by VP (x, n) = m(BG(x, n)). We set

VP (n) = inf
x∈G0

VP (x, n).

We omit the index P when the operator P defines the simple random walk.
To prove the statement on recurrence of theorem 2.3 we will use the following which can be

found in [LP95], but see [Woe00] for an equivalent statement.

Theorem 4.4. Suppose that VP (x, n) ≤ Cnd and that the invariant measure m satisfies
infx∈G0 m(x) > 0. Then

p(2n)(x, x) ≥ C(n log n)−d/2,

for some C > 0.

Note that the graph metric of the Cayley graph of Λ = Zn is nothing but the metric dΛ

induced by the 1-norm on RN in the canonical basis which is denoted in the sequel ‖ · ‖Λ. This
allows us to compare the graph metrics dG and dΛ.

Lemma 4.5. For all x, y ∈ G0,
dΛ(ξ, η) = dG(x, y),

where (ξ, η) ∈ Λ2 is the unique pair in the strip Kt = K+E+ t, for t ∈ Eint, such that p(ξ) = x
and p(η) = y.

This lemma states that a geodesic path in the graph can not be the projection of a non
geodesic path of the lattice Λ.

Proof. This lemma is a direct consequence of the fact, due to [ODK88], that the tiling Tt
is the projection of a unique d-dimensional faceted manifold entirely contained in the strip
K + E + t.

Consequently, the theorem of Schlottmann, [Sch98], with lemma 4.5 yields the following ball
growth estimates.
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Proposition 4.6. Under the assumptions of theorem 2.3, the following estimate is satisfied for
all x ∈ G0

k−1ld ≤ cardBG(x, l) ≤ kld

for a constant k > 1 independent of x ∈ G0.

Proof. Let x, y ∈ G0 and let (ξ, η)2 ∈ (Λ∩Kt)
2 be the unique pair of points such that p(ξ) = x

and p(η) = y. On one hand, we obtain

d2(x, y) ≤ ‖p‖dΛ(ξ, η)

where ‖p‖ is the matrix norm defined by

‖p‖ = sup
y∈E⊕Eint:‖y‖Λ≤1

‖p(y)‖2
‖y‖Λ

.

On the other hand, there exist u, v ∈ W ⊂ Eint such that ξ = x + u and η = y + u (and
obviously these u, v are uniquely determined). Thus, we get the following obvious inequality :

dΛ(ξ, η) = ‖ξ − η‖Λ ≤ ‖x− y‖Λ + ‖u− v‖Λ ≤ c0‖x− y‖2 + diam(W ).

Consequently, by lemma 4.5, we get

‖p‖−1d2(x, y) ≤ dG(x, y) ≤ c0d2(x, y) + diam(W ).

Applying theorem 4.3 and remarking that

B2(x, c−1
0 (n− diam(W ))) ⊂ BG(x, n) ⊂ B2(x, n‖p‖),

we get the inequality of the proposition.

Denote by a the conductance defined by a(x, y) = m(x)p(x, y). For every f ∈ c0(G0) — the
space of functions with compact support on G0 — we define

‖f‖2D =
1

2

∑
x,y∈G0

a(x, y)|f(x)− f(y)|2

the Dirichlet norm of f . Recall the following.

Theorem 4.7 (Theorem 1 of [Var85]). Let α ≥ 2, if for every f ∈ c0(G0)

‖f‖r ≤ C‖f‖D where r =
2α

α− 2
, (3)

C > 0 is independent of f , and ‖ · ‖r is the standard norm in lr(G0,m). Then we have,

sup
x,y∈G0

pn(x, y)

m(y)
= O(n−α/2).

The isoperimetric inequality does not imply, in full generality, the inequality of theorem 4.7.
However, for a function f ∈ c0(G0), the Sobolev norm is defined by

‖f‖S =
∑

x,y∈G0

a(x, y)|f(x)− f(y)|,

and according to proprosition of section 3 of [Var85], we have the following.
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Proposition 4.8. Let α > 2 and assume that there exists C > 0 such that for all f ∈ c0(G0)
the Sobolev inequality holds

‖f‖α/(α−1) ≤ C‖f‖S .

Then, there exists C ′ > 0 such that for all f ∈ c0(G0) the following holds

‖f‖2α/(α−2) ≤ C ′‖f‖D.

As a matter of fact, a d-dimensional isoperimetric inequality is equivalent to a Sobolev
inequality with α = d (see [Woe00], proposition (4.3), p. 40). Because of technical difficulties,
we will not be able to prove a d-dimensional isoperimetric inequality for the initial graph but
only for its k-fuzz. Nonetheless, the k-fuzz construction leaving the type of the simple random
walk invariant, the conclusion will be immediate.

If G is a graph, the k-fuzz of G, denoted by Fuzzk(G), has the same set of vertices as G
and (x, y) is an edge in Fuzzk(G) if and only if 1 ≤ dG(x, y) ≤ k. We note ρ the graph metric
on Fuzzk(G). It is well known that the balls in the two graphs can be compared as well as the
spheres, namely

Bρ(x, n) = BG(x, kn) and ∂Bρ(x, n) =
kn⋃

l=kn−k+1

∂BG(x, l).

Proposition 4.9. Let d = dim E. The k-fuzz Fuzzk(G) satisfies a d-dimensional isoperimetric
inequality for k large enough, i.e.

cardBρ(x, n) ≤ kcard∂Bρ(x, n)d/(d−1)

for some k > 0.

Proof. According to proposition 4.6 there exist C−, C+ > 0 such that for all n ≥ 1

C−(kn)d ≤ cardBρ(x, n) ≤ C+(kn)d.

Hence, we need a lower bound of card∂Bρ(x, n), namely, we have to show that

card∂Bρ(x, n) ≥ κ(kn)d−1.

By lemma 4.5, and from the proof of 4.6, we get

‖p‖−1d2(x, y) ≤ dG(x, y) ≤ c0d2(x, y) + diam(W ).

Consequently, a point y ∈ ∂Bρ(x, n) satisfies

c−1
0 (kn− k + 1− diam(W )) ≤ d2(x, y) ≤ ‖p‖kn,

and in terms of balls we get

B2(x, ‖p‖kn) \B2(x, c−1
0 (kn− k + 1− diam(W ))) ⊂ ∂Bρ(x, n).

Since c0‖p‖ ≥ 1, it is obvious that for any k ≥ 1

B2(x, c−1
0 kn) \B2(x, c−1

0 kn− c−1
0 (k − 1 + diam(W ))) ⊂ ∂Bρ(x, n).

In the sequel, we need to adapt the proof of proposition 2.1 in [Sch98]. Setting r = c−1
0 kn

and w = w(k) = c−1
0 (k − 1 + diam(W )), and defining

N(r, w, x,W ) =
card(Λ ∩ (B2(x, r) \B2(x, r − w)) +W ))

µ(B2(x, r) \B2(x, r − w))
,
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we want to show that the inequality

αµint(W ) ≤ N(r, w, x,W ) ≤ (1− α)µint(W ) (4)

holds for some α > 0. Obviously, we have,

N(r, w, x,W ) = βr
card(Λ ∩ (B2(x, r) +W ))

µ(B2(x, r))

+ (1− βr)
card(Λ ∩ (B2(x, r − w) +W ))

µ(B2(x, r − w))
,

where βr = µ(B2(x,r))
µ(B2(x,r)\B2(x,r−w)) . Consequently, we can majorize

|N(r, w, x,W )− µint(W )| ≤ βr
∣∣∣∣card(Λ ∩ (B2(x, r) +W ))

µ(B2(x, r))
− µint(W )

∣∣∣∣
+ (βr − 1)

∣∣∣∣card(Λ ∩ (B2(x, r − w) +W ))

µ(B2(x, r − w))
− µint(W )

∣∣∣∣ .
It follows from relations (3.20) and (3.23) in [Sch98] that

|N(r, w, x,W )−µint(W )| ≤ µint(W )

[
βr
µ{B2(x, r + δ + ε) \B2(x, r − δ − ε)}

µ(B2(x, r))

+(βr − 1)
µ{B2(x, r − w + δ + ε) \B2(x, r − w − δ − ε)}

µ(B2(x, r − w))

]
,

where δ > 0 depends on the window W and ε > 0 only depends on the lattice Λ. Obviously, for
r large enough, there exists κ0 > 0 such that βr ≤ κ0

r
dw and κ1 > 0 such that

βr
µ{B2(x, r + δ + ε) \B2(x, r − δ − ε)}

µ(B2(x, r))
≤ κ1

δ + ε

w(k)
.

Since w can be made arbitrarily large with k ≥ 1, the quantity κ1
δ+ε
w can be made strictly

smaller than 1, and we conclude that

|N(r, w, x,W )− µint(W )| ≤ (1− α)µint(W ),

for some α = α(w) = α(k) > 0. Consequently, the following holds for large enough k

card∂Bρ(x, n) ≥ card(Λ ∩ (B2(x, r) \B2(x, r − w)) +W )) ≥ κ(kn)d−1,

and the k-fuzz Fuzzk(G) satisfies a d-dimensional isoperimetric inequality.

Proof of theorem 2.3. Assume that dim E = d then the proposition 4.6 with the theorem 4.4,
remarking that 1 ≤ deg(x) ≤ 2N , x ∈ G0, imply that

p(2n)(x, x) ≥ C0(n log n)−d/2.

The k-fuzz graph Gk satisfies a d-dimensional isoperimetric inequality by proposition 4.9.
Obviously, the original graph satisfies, also, a d-dimensional isoperimetric inequality (theorem
4.7 in [Woe00]). Then, according to theorem of [Var85], it satisfies a Dirichlet inequality with
parameter α = d, thus theorem 4.7 implies the estimate on the n-step transition probabilities :

p(n)(x, y) ≤ C1n
−d/2,

for some C1 > 0.
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5 Conclusions

As examples in [CP03] suggest, when the graph considered is no longer the Cayley graph of
group, we can observe new behaviors of simple random walks. More precisely, a 2-dimensional
random walk appears to be transient. It turns out that the random walk considered by Cam-
panino and Petritis can, as in our context, be seen as RWIDF. On this family of examples,
we can remark that when the internal Markov chain driving the RWIDF admits a stationary
probability measure, the resulting process is recurrent, otherwise it is transient. Somehow, the
internal Markov chain introduces a notion of memory. The existence of an invariant probability
implies that this memory is bounded in a certain sense so that the resulting process behaves as
in the memoryless case (i.e. as a random walk with i.i.d. increments).

For a transient Markov chain, we can ask for the determination of the Martin boundary.
Generally speaking, the study of Martin boundary involves sharp estimates on the asymptotic
of the Green function. In [Uch07, KU08], such estimates are given in the context of Markov
additive processes which is just a RWIDF on the lattice ZN . These results involve the Doeblin
condition for the internal Markov chain. Such condition seems to be quite difficult to prove in
our context so that the determination of the Martin boundary is still an open problem even
though there is no reason to expect a different result compared to the standard case of random
walk on the lattice.

Since the asymptotic entropy is shown to be zero, we shall expect to state a Strong Law of
Large Number and a Central Limit Theorem. However, it would require a precise description
of ergodic properties of the invariant probability measure given in this paper for identifying the
limit in the law of large number and the covariance matrix in the central limit theorem.
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[Ave72] André Avez. Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A-B,
275:A1363–A1366, 1972.

[Ben13] Itai Benjamini. Nonamenable liouville graphs. In Coarse Geometry and Randomness,
Lecture Notes in Mathematics, pages 121–124. Springer International Publishing,
2013.

[CP03] M. Campanino and D. Petritis. Random walks on randomly oriented lattices. Markov
Process. Related Fields, 9(3):391–412, 2003.
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