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NULL-CONTROLLABILITY OF THE KOLMOGOROV EQUATION

IN THE WHOLE PHASE SPACE

JÉRÔME LE ROUSSEAU AND IVÁN MOYANO

Abstract. We prove the null controllability, in arbitrary positive time, of the
Kolmogorov equation ∂t+v ·∇x−∆v with (x, v) ∈ R

d×R
d, with a control region

of the form ω = ωx × ωv, where both ωx and ωv are open subsets of Rd that are
sufficiently spread out throughout the whole space R

d. The proof is based on, on
the one hand, a spectral inequality in R

d with an observation on ωx, and, on the
other hand, a Carleman-based observability inequality for a family of parabolic
operators, ∂t − iv · ξ−∆v, coupled with a knowledge of the decay rate of the free
solutions of the Kolmogorov equation.

Keywords: controllability; unbounded domain; Carleman estimates; spectral
inequality.
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1. Introduction

1.1. Main Results. For d ≥ 1 and Ω ⊆ R
2d an open subset, we consider the

Kolmogorov equation,
(

∂t + v · ∇x −∆v

)

f(t, x, v) = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× Ω,

where ω is an open subset of Ω, whose characteristic function is denoted by 1ω. This
is a control system, where the function f(t, x, v) represents the state and the source
term u(t, x, v), supported in ω, is the control. Here, x ·y denotes the Euclidean inner
product in R

d.
The null-controllability of this system has been studied with various configurations

of (Ω, ω) (see Section 1.2 below). Here, we consider the case Ω = R
2d and an

unbounded control/observation region ω ⊂ Ω. To be precise, we consider the Cauchy
problem

(1.1)

{

(

∂t + v · ∇x −∆v

)

f(t, x, v) = 1ω(x, v)u(t, x, v), (t, x, v) ∈ (0, T )× Ω,

f|t=0(x, v) = f0(x, v), (x, v) ∈ Ω,

where ω contains a product open set,

(1.2) ωx × ωv ⊆ ω,

with both ωx and ωv open subsets of Rd satisfying the following property.

DEFINITION 1.1. We say that an open set O of Rd is an observability open set
on the whole space if there exist δ > 0 and r > 0 such that

∀y ∈ R
d, ∃y′ ∈ O such that BRd(y′, r) ⊂ O and |y − y′| ≤ δ.(1.3)

Here, BRd(y′, r) denotes the open Euclidean ball of radius r centered at y′. This
property states that the open set O is sufficiently spread out throughout the whole
space R

d.

The aim of the present article is to prove the following null-controllability result.

THEOREM 1.2. Let Ω = R
2d and assume that ω satisfies (1.2) with both ωx and

ωv fulfilling property (1.3). Then, for every T > 0 and f0 ∈ L2(R2d), there exists a
control u ∈ L2((0, T )× R

2d) such that the solution of (1.1) satisfies f|t=T ≡ 0.

As we shall see below in Section 2, the solution of (1.1), to be understood in
the sense of distributions, is unique in C 0([0, T ];L2(R2d)). The initial condition, at
t = 0, and the final condition, at t = T , are thus unambiguously well defined.

REMARK 1.3. The condition we impose on the set ω ⊂ R
2d is sufficient to obtain

the null-controllability result. Any improvement on this condition is of interest (see
Section 1.3).

A classical duality result (see for instance [9, Lemma 2.48]) shows that Theorem
1.2 above is equivalent to an observability inequality involving the adjoint system of
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(1.1), namely,

(1.4)

{

(∂t − v · ∇x −∆v) g(t, x, v) = 0, (t, x, v) ∈ (0, T ) × Ω,

g|t=0(x, v) = g0(x, v), (x, v) ∈ Ω.

THEOREM 1.2′. Let Ω = R
2d and assume that ω satisfies (1.2) with both ωx and

ωv fulfilling property (1.3). Then, for every T > 0, there exists Cobs > 0 such that
for every g0 ∈ L2(R2d), the solution of (1.4) satisfies

(1.5) ‖g|t=T ‖L2(R2d) ≤ Cobs‖g‖L2((0,T )×ω).

Note in particular that the constant Cobs is such that the null-controllabilty of
(1.1) can be achieved with a control function u that satisfies

‖u‖L2((0,T )×R2d) ≤ Cobs‖f0‖L2(R2d).

1.2. Existing results and techniques. The null-controllability of parabolic equa-
tions has been extensively studied. For the heat equation, the problem is well
understood in bounded domains since the seminal works of G. Lebeau and L. Rob-
biano [18], and of A. Fursikov and O. Yu. Imanuvilov [10]. For results on the
null-controllability of the heat equation on unbounded domains, we mention the
works of L. Miller [21, 22], M. González-Burgos and L. de Teresa [11], V. Barbu [1],
and references therein. A result in a different functional framework was obtained
by P. Cannarsa, P. Martinez and J. Vancostenoble in [7], where the observability
region can be taken of finite measure, provided that an observability inequality holds
in some weighted L2-space. Note that, in one dimension, the control/observation
region given in [11, Example 2 of Section 2], expressly fulfills the condition given in
Definition 1.1.

The Kolmogorov equation was first proposed in 1934 by A.N. Kolmogorov in [14].
It was subsequently studied by L. Hörmander in [12] as a model of a hypoelliptic
operator. Controllability questions for the Kolmogorov equation have been studied
in Ω ⊂ R

2, where the controlled equation reads

(1.6)
(

∂t + v∂x − ∂2v
)

f(t, x, v) = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× Ω,

and null-controllability was proven for various choices of (Ω, ω).
On a bounded domain Ω = T× (−1, 1), null-controllability holds in the following

cases.

• The nonempty open subset ω of Ω is arbitraty and the Kolmogorov equa-
tion (1.6) is associated with periodic-type boundary conditions in the v vari-
able that are adapted to the transport part of the equation [2]:

f(t, x− t,−1) = f(t, x+ t, 1), ∂vf(t, x− t,−1) = ∂vf(t, x+ t, 1),

for (t, x) ∈ (0, T ) × T.
• The nonempty open subset ω of Ω is a horizontal strip, ω = T× (a, b), with
−1 < a < b < 1, and the Kolmogorov equation (1.6) is associated with
homogeneous Dirichlet-type boundary conditions in the v variable [2]:

f(t, x,±1) = 0 (t, x) ∈ (0, T ) × T.
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With such boundary conditions, arbitrary control region ω may not be ap-
propriate (see [3]), which hints towards a strong influence of the boundary
conditions.

In the case of the whole phase-space, that is Ω = R
2, null controllability is proven

in [4], in the case ω = R× (R\ [a, b]), that is, ω is the complement set of a horizontal
strip. The goal of the present article is to improve upon this last result by proving
the null-controllability of (1.1) in the case of more general control regions ω in,
possibly, higher dimension, that is d ≥ 1.

The first step of the strategy used in [2, 4, 3], where Ω = Ωx × Ωv, consists in
applying a partial Fourier transform or Fourier decomposition, with respect to the
x variable. In the case x ∈ R, with

f̂(t, ξ, v) :=

∫

R

f(t, x, v)e−ixξ dx, (t, ξ, v) ∈ (0, T )× R
2,

this reduces the study of the Kolmogorov equation (1.6) to the study of a family of
one-dimensional parabolic equations

(1.7)
(

∂t − ivξ − ∂2v
)

f̂(t, ξ, v) = û(t, ξ, v)1ωv (v), (t, v) ∈ (0, T ) × R,

with the Fourier frequency ξ treated as a parameter. Such a transformation is
possible if, for instance, ω takes the form ω = R× ωv, for some ωv ⊂ Ωv.

Then, the proof of the null-controllability relies on the following two ingredients:

(1) A precise dependency of the decay rate in times of the free solution of (1.7),
with respect to the Fourier variable ξ.

(2) An precise estimate of the ‘cost’ of the null-controllability of (1.7), in par-
ticular with respect to the Fourier variable ξ.

If the control region ω is also localized in the x variable, these two ingredients can be
coupled by means of the Lebeau-Robbiano control strategy as done in [2] following
an idea of [5]. This strategy relies on a spectral inequality. In one dimension, on a
bounded domain, it takes the following form.

PROPOSITION 1.4. Let c, d ∈ R be such that 0 < d − c ≤ 2π. There exists
C > 0 such that, for every N ∈ N and (bn)|n|≤N ∈ C

2N+1, the following inequality
holds

(1.8)

n=N
∑

n=−N
|bn|2 ≤ eC(N+1)

∫ d

c

∣

∣

∣

n=N
∑

n=−N
bne

inx
∣

∣

∣

2
dx.

The functions x 7→ einx/
√
2π on 2πT are orthonormal eigenfunctions of the

Laplace operator ∂2x.
In arbitrary dimension, for a second-order symmetric elliptic operator, typically

the Laplace-Beltrami operator ∆g on a bounded Riemannian manifold M of dimen-
sion d, with or without boundary, the spectral inequality takes the form

‖u‖L2(M) ≤ CeC
√
µ‖u‖L2(ω), u ∈ span{φj ; µj ≤ µ},(1.9)

where ω ⊂ M is an open subset and where the functions φj form a Hilbert basis
of L2(M) of eigenfunctions of −∆g associated with the nonnegative eigenvalues µj,
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j ∈ N, counted with their multiplicities. (In the case of a manifold with boundary,
one can consider homogeneous Dirichlet or Neuman boundary conditions.) This was
proven in [18, 20, 19]. For instance, it allows one to prove the null-controllability
of the heat equation (see [17] for a presentation). It was adapted much later to
the case of separated variables, for the null-controllability of parabolic equation in
stratified media in [5]. Therein, in one direction, one has observability by means of
a Carleman estimate for a one-dimensional parabolic operator with parameter, and,
in the transverse direction, a spectral inequality such as (1.9) is used. This later
approach was successfully transposed to the study of the null-controllability of the
Kolmogorov equation in [2]. We follow this latter method in the present article, here
in the case of an unbounded domain. Hence, one of the goals of the present article
is to perform the Lebeau-Robbiano control strategy on an unbounded domain. We
shall thus prove an adapted spectral inequality; see Theorem 3.1 below.

REMARK 1.5. The idea of exploiting a cartesian product form of the geometry
can also be found in [11]. Therein, the authors prove that, if a Carleman estimate
holds for the heat equation in (0, T ) × R

d1 (resp. (0, T ) × R
d2) with an observation

region (0, T ) × ω1 (resp. (0, T ) × ω2), then a similar estimate holds for the same
equation in (0, T ) × R

d1+d2 with (0, T ) × ω1 × ω2 as an observation region.

1.3. Open questions and perspectives. An open (and most likely difficult) ques-
tion is the proof of the null-controllability of the Kolmogorov equation in R

2d with
a control region ω ⊂ R

2d arbitrary located, without imposing the product structure
we assumed here. An assumption similar to that stated in Definition 1.1 seems,
however, to be a reasonnable assumption to make on the open subset ω. For such a
study, a profond analysis of the properties of the Kolmogorov operator is necessary.
Here, the product structures of both Ω and ω allow one to circumvent this difficulty.

Another interesting question would be the study of the influence on the condition
imposed on the control region of the addition of an unbounded potential function in
the Kolmogorov equation.

Following the works of K. Beauchard et al. [2, 3], the controllability properties
of evolution operators of the form ∂t − |v|γ−1v · ∇x − ∆v, with γ > 1, would be
of interest. More generally, one would also be interested in operators of the form
∂t − r(x, v)v · ∇x + A(x, v, ∂v), where the scalar function r(x, v) is homogeneous of
degree γ − 1 with respect to v, and the operator A(x, v, ∂v), that only acts in the v
direction, is elliptic and positive with respect to that variable.

1.4. Outline. The article is organized as follows. In Section 2, we present the well-
posedness result in L2(R2d) for system (1.1) and the decay estimate of the L2-norm
of the solutions of (1.7). In Section 3, we prove an elliptic global Carleman estimate
and the Lebeau-Robbiano spectral inequality. In Section 4, we prove a parabolic
global Carleman estimate, the observability of Fourier-mode packets and we finally
construct a control, which leads to Theorem 1.2.

1.5. Notation. We collect here some of the notation we use throughout the article.
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The Euclidean inner product in R
d is denoted by x · y, whereas the Hermitian

inner product in L2(Q;C) is noted by (., .). Let S > 0. We shall sometimes write
Q := (0, S)× R

d for simplicity.
If ∂ denotes the derivation with respect to the variables s, x or v, we shall use

the standard notation D := 1
i ∂. For F ∈ C 2(Q;R), we define

∇F (s, x) = (∂sF, ∂x1F, . . . , ∂xdF )
t(s, x), F ′′(s, x) :=

(

∂2ijF
)

0≤i,j≤d (s, x),

for (s, x) ∈ (0, S)×R
d, We also write ∆F (s, x) := (∂2sF +∆2

xF )(s, x). For concision,
in particular in the course of a proof, we shall often write F ′ in place of ∇F .

We define ∂Q := {0, S} × R
d. If w ∈ C 2([0, S] × R

d), the derivative with respect
to n, the normal outward vector of ∂Q, is denoted by ∂nw := ∇w · n.

For a function f(t, x, v) defined on (0, T )×R
2d, we denote by f̂(t, ξ, v) its partial

Fourier transformation with respect to x ∈ R
d:

(1.10) f̂(t, ξ, v) :=

∫

Rd

f(t, x, v)e−ix·ξ dx, (t, ξ, v) ∈ R× R
2d.

Applying this transformation, the (adjoint) Kolmogorov (1.4) equation becomes

(1.11) (∂t − iv · ξ −∆v) ĝ(t, ξ, v) = 0, (t, ξ, v) ∈ (0, T )× R
d × R

d.

In what follows the letter C will always denote a constant whose value may change
from one line to another. If we wish to keep track of the precise value of a constant we
shall use another letter. Often, to avoid the introduction of such a generic constant,
especially in the course of proofs, we shall use the usual notation A . B to be read
as A ≤ CB for some C > 0.

2. Well-posedness and exponential decay rate

In the whole phase-space, a fundamental solution for the evolution Kolmogorov
operator can be derived explicitly [13, Section 7.6]. Here, we provide semigroup
properties that yield the well-posedness of the evolution Kolmogorov equation. We
also provide a decay rate for the free solution, that is used in the proof of the
null-controllability in Section 4. Proofs are provided in Appendix A.

PROPOSITION 2.1. The Kolmogorov operator

K : L2(R2d) → L2(R2d)

f 7→ v · ∇xf −∆vf,

with domain D(K) = {f ∈ L2(R2d); v ·∇xf −∆vf ∈ L2(R2d)}, generates a strongly
continuous semigroup of contraction S(t) on L2(R2d). The semigroup S(t) is not
differentiable for any positive time.

PROPOSITION 2.2. Let K be the Kolmogorov operator as defined above.

(1) Let f0 ∈ D(K) and let F ∈ C 0([0, T ];L2(R2d)). Assume moreover that
F ∈ L1(0, T ;D(K)) or F ∈ W 1,1((0, T );L2(R2d)). Then, there exists a
unique f ∈ C 0([0, T ];D(K)) ∩ C 1([0, T ];L2(R2d)) solution of

(∂t +K)f = F, t ∈ [0, T ], f|t=0 = f0.
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(2) Let f0 ∈ L2(R2d) and let F ∈ L1(0, T ;L2(R2d)). There exists a unique
f ∈ C 0([0, T ];L2(R2d)) solution of

(∂t + v · ∇x −∆v)f = F in D
′((0, T ) × R

2d), f|t=0 = f0.

(3) In both cases, the solution is given by the Duhamel formula

f(t) = S(t)f0 +

∫ t

0
S(t− s)F (s) ds, t ∈ [0, T ].(2.1)

We shall use the second case of the previous proposition in what follows. The
solutions we shall consider are thus weak solutions and are given by the so-called
mild solution provided in (2.1).

The next proposition describes the natural decay of the L2-norm of a free solution
of the Kolmogorov equation. This will be used in the proof of the null-controllability
in Section 4.

PROPOSITION 2.3. Let f0 ∈ L2(R2d). If f(t, x, v) =
(

S(t)f0
)

(x, v), we have

(2.2) ‖f̂(t, ξ, .)‖L2(R2d) ≤ ‖f̂0(ξ, .)‖L2(R2d)e
−|ξ|2t3/12, ξ ∈ R

d, t ≥ 0.

REMARK 2.4. The decay rate obtained for the homogeneous Cauchy problem in
Proposition 2.3 is somewhat analogous1, in the ξ variable, to that of the heat equation.
Note, however, that such a decay rate does not hold when considering Kolmogorov-
type equations on a rectangle with Dirichlet boundary conditions in v [2, 3], since
a weaker decay in the ξ variable occurs. Null-controllability, with arbitrary control
support, may then not hold.

3. A spectral inequality

The goal of this section is to prove the following result, which states an inequality
that is the counterpart of (1.8) in our context.

THEOREM 3.1 (Spectral inequality). Let ωx ⊂ R
d be an observability open set

on the whole space R
d as in Definition 1.1. Then, there exists a constant C > 0

such that

(3.1) ‖f‖L2(Rd) ≤ eC(N+1)‖f‖L2(ωx)

for N ≥ 0 and f ∈ L2(Rd) such that supp(f̂) ⊂ BRd(0, N), the closed ball of radius
N and center 0.

Inequalities (1.8) and (1.9) have appeared in several settings [18, 20, 19]. In the
case of a bounded domain, the original proof is based on an interpolation inequality
that can be found in [18]. Some details can be found in the expository article [17].
The proof of the interpolation inequality is based on local Carleman estimates for
an augmented elliptic operator, that first imply local versions of the interpolation

1This analogy remains limited as the semigroup S(t) is not analytic here, nor differentiable. The
L2-norm of the solutions does decay. Yet, solutions do not become more regular as the evolution
time grows, as opposed to what can be observed for parabolic equations.
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inequality. These local inequalities are then concatenated using compactness argu-
ments thanks to the boundedness of the domain. Here such an argument is not
possible as we consider unbounded domains. However, we circumvent this difficulty
by proving a global Carleman estimate for the augmented elliptic operator. This
approach for the proof of the spectral inequality was introduced in [16], in the case
of bounded domains, and later successfully applied to the case of discrete elliptic
operators [6]. Here, we extend this approach to the case of an unbounded domain.

3.1. A global elliptic Carleman estimate. Our proof of the spectral inequality
(3.1) follows from a global elliptic Carleman estimate for the operator D2

s+Dx ·Dx in
(0, S)×Ω, for some S > 0, which is stated in Proposition 3.3 below. We need first to
construct an appropriate weight function. To that purpose, we adapt an argument
by A. V. Fursikov and O. Yu. Imanuvilov, that can be found in [9, Lemma 2.68,
p.80] and [10, p.20-21], to the case of unbounded domains.

PROPOSITION 3.2 (Weight function for the elliptic Carleman estimate). Let
S > 0, Q = (0, S) × R

d, and let ωx ⊂ R
d be an observability open set on the whole

space R
d, as in Definition 1.1. There exists a function ψ ∈ C 2([0, S]×R

d;R+) such
that

|∇s,xψ(s, x)| ≥ C, ∀(s, x) ∈ Q,(3.2)

∂sψ|s=0 ≥ C, ∀x ∈ R
d \ ωx,(3.3)

∂sψ|s=S ≤ −C < 0,(3.4)

ψ|s=S = 0,(3.5)

for some real constant C > 0.

Proof. Let L > 2(δ + r) and let us define

ψ̃(s, x) :=
4s(S − s)

S2

d
∏

j=1

(

2 + sin
(πxj
L

)

)

, s ∈ R, x = (x1, . . . , xd) ∈ R
d.

Observe that

∂sψ̃(0, x) ≥
4

S
and ∂sψ̃(S, x) ≤ − 4

S
, x ∈ R

d.

We note that ∇s,xψ̃(s, x) = 0 if and only if s = S
2 and x ∈ w + LZd, with w =

(

L
2 , . . . ,

L
2

)

∈ R
d.

Firstly, we define the following periodicty cells in R
d,

Kα := Tα(K), K := [0, 2L]d, Tα(x) := x+ 2Lα, α ∈ Z
d.

Then, Rd =
⋃

α∈Zd Kα. We decompose the model cell K into the following subcells,

Kβ := T ′
β(K), K := [0, L]d, T ′

β(x) := x+ Lβ, β ∈ {0, 1}d .
We introduce

Kα,β := Tα(Kβ) = Tα,β(K), Tα,β := Tα ◦ T ′
β, α ∈ Z

d, β ∈ {0, 1}d .
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L

L

K
r

y

O′
α,β

δ + ρ

δ

w

ρ
w(i)

w(j)

Figure 1. Local geometry in the x variable for the construction of
the weight function.

We also define the following translation operators in R× R
d,

T̃α(s, x) := (s,Tα(x)) , T̃α,β(s, x) := (s,Tα,β(s, x)) , α ∈ Z
d, β ∈ {0, 1}d .

For each β ∈ {0, 1}d, we define on K

ψ̃β(s, x) := ψ̃ ◦ T̃ ′
β(s, x), (s, x) ∈ R×K,

which is a translated version of ψ̃|Kβ
. Since ψ̃ is 2L-periodic in each variable xj,

j = 1, . . . , d, we find

ψ̃β(s, x) = ψ̃β ◦ T̃α(s, x), α ∈ Z
d.

Thus, ψ̃β is also a translated version of ψ̃|Kα,β
, for α ∈ Z

d.

Secondly, we work in the elementary compact cell K. For any β ∈ {0, 1}d, observe
that the only critical point of ψ̃β is

(

S
2 , w

)

, recalling that ψ̃β is only defined in R×K.

Let 0 < ρ < min{r/2, S/4}. Using compactness, there exist
{

w(i)
}

i∈I ⊂ BRd(w, δ),
with #I < +∞, such that

(3.6) BRd(w, δ) ⊂
⋃

i∈I
BRd(w(i), ρ).

This covering by balls of radius ρ is illustrated in Figure 1.
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S/2

0

−S

S

L L

Γ(j)

(S/2, w)

−S/2

s

Γ(i)

(0, w(i))(0, w(j))

Figure 2. Local geometry in the s, x variables for the construction
of the weight function.

We pick, for any i ∈ I, a path γ(i) ∈ C∞([0, 1]; [−S/2, S/2] ×BRd(w, δ + ρ)) such
that

γ(i)(0) =
(

− S/2, w(i)
)

, γ(i)(1) =
(

S/2, w
)

,

Γ(i) ∩ {s = 0} ⊂ BRd(w(i), ρ), where Γ(i) :=
{

γ(i)(t) : t ∈ [0, 1]
}

.

These paths are illustrated in Figure 2.
We also choose a smooth vector field V (i) ∈ C∞

c ((−S, S)×BRd(w, δ);R1+d) such
that

V (i)(γ(i)(t)) = (γ(i))′(t), t ∈ [0, 1], supp(V (i)) ∩ {s = 0} ⊂ BRd(w(i), ρ),

We denote by χ(i)(t, s, x) the flow associated to V (i). We set

φ(i)(s, x) := χ(i)(1, s, x), (s, x) ∈ K,

which is a diffeomorphism of (−S, S)×BRd(w, δ) onto itself and coincides with IdR1+d

outside the support of V (i). In particular, φ(i) leaves unchanged a neighborhood of
∂ ([−S, S]×K). We have φ(i)

(

−S/2, w(i)
)

= (S/2, w).
On the compact K we define

ψ
(i)
β := ψ̃β ◦ φ(i), i ∈ I, β ∈ {0, 1}d ,



NULL-CONTROLLABILITY OF THE KOLMOGOROV EQUATION 11

and we observe that ∇s,xψ
(i)
β (s, x) = 0 if and only if (s, x) =

(

−S/2, w(i)
)

. As

#I < +∞, there exists C0 > 0 such that

|∇s,xψ
(i)
β (s, x)| ≥ C0, in ([−S, S]×K) \BR1+d

(

− S/2, w(i), ρ
)

,

for i ∈ I and β ∈ {0, 1}d. Note that, in particular,

|∇s,xψ
(i)
β (s, x)| ≥ C0, for (s, x) ∈ [0, S]× [0, L]d, i ∈ I, β ∈ {0, 1}d .

Thirdly, let α ∈ Z
d, β ∈ {0, 1}d. We consider the sets Oα,β := Kα,β ∩ O and

O′
α,β := T −1

α,β (Oα,β). Since O is an observability open set in R
d, there exists y ∈ O′

α,β

such that |y−w| ≤ δ and BRd(y, r) ⊂ O′
α,β, using that 2(δ+r) < L and the fact that

the property of Definition 1.1 is translation invariant. As a consequence of (3.6),

and since 0 < ρ ≤ r/2, there exists j ∈ I such that y ∈ BRd(w(j), ρ). We then have

(3.7) BRd(w(j), ρ) ⊂ BRd(y, r) ⊂ O′
α,β .

This is illustrated in Figures 1 and 2. We introduce the following function on the
cell Kα,β,

ψα,β(s, x) := ψ
(j)
β ◦ T −1

α,β (s, x),

which is well defined, for Tα,β : K → Kα,β. We deduce

(3.8) |∇s,xψα,β(s, x)| ≥ C0 on [0, S] ×Kα,β .

We also have ψα,β(0, x) = ψ̃α,β(0, x), ∀x ∈ Kα,β\O and ψα,β(S, x) = ψ̃α,β(S, x), ∀x ∈
Kα,β . We thus see that (2)-(4) are fulfilled. Finally, we define ψ ∈ C 2([0, S]×R

d;R)
by

ψ(s, x) := ψα,β(s, x), (s, x) ∈ [0, S] ×Kα,β,

and (3.2)–(3.5) hold by the above construction, according to (3.7) and (3.8). �

We now state a global Carleman estimate for the augmented elliptic operator

P := −∆s,x = −∂2s −∆2
x = D2

s +Dx ·Dx in Q = (0, S) × R
d.

PROPOSITION 3.3 (Global elliptic Carleman estimate). Let ωx ⊂ R
d be an

observability open set on the whole R
d in the sense of Definition 1.1. Let ψ be as

given by Proposition 3.2. For ϕ(s, x) = exp
(

λψ(s, x)
)

, there exist C > 0, τ0 ≥ 1,
and λ0 ≥ 1 such that

(3.9) τ3‖eτϕu‖2L2(Q) + τ‖eτϕ∇s,xu‖2L2(Q) + τ‖eτϕ(0)∂su|s=0‖2L2(Rd)

+ τe2τ‖∂su|s=S‖2L2(Rd) + τ3e2τ‖u|s=S‖2L2(Rd)

≤ C
(

‖eτϕPu‖2L2(Q) + τe2τ‖∇xu|s=S‖2L2(Rd) + τ‖eτϕ|s=0∂su|s=0‖2L2(ωx)

)

,

for τ ≥ τ0, λ = λ0, and u ∈ C 2([0, S];S (Rd;C)) such that u|s=0 ≡ 0.

We follow essentially the derivation made in [15, section 2.1.2], which is adapted
from the original proof of [10].
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Proof. We define the conjugated operator Pϕ := eτϕPe−τϕ, where τ ≥ 1. This can
be written as follows

Pϕ = eτϕPe−τϕ = (Ds + iτ∂sϕ)
2 + (Dx + iτ∇xϕ) · (Dx + iτ∇xϕ)

= P − τ2|ϕ′|2 + iτ(Ds∂sϕ+ ∂sϕDs +Dx · ∇xϕ+∇xϕ ·Dx)

= P − τ2|ϕ′|2 + 2iτϕ′ ·D + τ∆ϕ.

We then write Pϕ = A+ iB̃, with

A = A1 +A2, B̃ = B1 + B̃2,

where A1 = P , A2 = −τ2|ϕ′|2, B1 = 2τϕ′ · D, B̃2 = −iτ∆ϕ. We introduce yet
another parameter µ > 0 to be chosen below and we write

(3.10) Pϕ + τµ∆ϕ = A+ iB,

where B = B1 +B2, and B2 = −i(1 + τ)µ∆ϕ.
Let v ∈ C 2([0, S];S (R;C)). From (3.10), taking the L2-norm and applying the

triangular inequality, we have

(3.11) ‖Av‖2L2(Q) + ‖Bv‖2L2(Q) + 2Re(Av, iBv)L2(Q)

. ‖Pϕv‖2L2(Q) + τ2µ2‖v‖2L2(Q).

Developing the scalar product we write

(3.12) Re(Av, iBv)L2(Q) =
∑

1≤j,k≤2

Ijk, with Ijk = Re(Ajv, iBkv)L2(Q).

We first compute the terms Ij,k separately. In the various computations we shall

perform below we shall obtain interior integral terms over Q = (0, S) × R
d and

boundary integral terms over ∂Q = {0, S} × R
d.

Term I11. Integrating by parts twice, we obtain

I11 = Re(A1v, iB1v)L2(Q) = Re
(

Pv, 2iτϕ′ ·Dv
)

L2(Q)
(3.13)

= −2τ Re
(

∆v, ϕ′ · v′
)

L2(Q)

= 2τ Re

∫

Q
v′ · ∇

(

ϕ′ · v′
)

dxds− 2τ Re

∫

∂Q
∂nv ϕ

′ · v′ dx

= 2τ Re

∫

Q

(

v′ · ϕ′′v′ + v′ · v′′ϕ′
)

dxds− 2τ Re

∫

∂Q
∂nv ϕ

′ · v′ dx

= 2τ Re

∫

Q
v′ · ϕ′′v′ dxds+ τ

∫

Q
∇|v′|2 · ϕ′ dxds

− 2τ Re

∫

∂Q
∂nv ϕ

′ · v′ dx

= J11 +BT11,

where

J11 := 2τ Re

∫

Q
v′ · ϕ′′v′ dxds− τ

∫

Q
∆ϕ|v′|2 dxds,
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and

BT11 := τ

∫

∂Q
|v′|2∂nϕdx− 2τ Re

∫

∂Q
∂nv ϕ

′ · v′ dx.

Term I12. Integrating by parts once, we obtain

I12 = Re(A1v, iB2v)L2(Q) = −τ(1 + µ)Re(∆v,∆ϕv)L2(Q)(3.14)

= τ(1 + µ)Re

∫

Q
v′ · ∇

(

∆ϕv
)

dxds− τ(1 + µ)Re

∫

∂Q
∂nv∆ϕv dx

= J12 +BT12,

where

J12 := τ(1 + µ)

∫

Q
∆ϕ|v′|2 dxds+ τ(1 + µ)Re

∫

Q
v′ · ∇(∆ϕ)v dxds,

and

BT12 := −τ(1 + µ)Re

∫

∂Q
∂nv∆ϕv dx.

Term I21. Analogously, integrating by parts once, we obtain

I21 = Re(A2v, iB1v)L2(Q) = Re(−τ2|ϕ′|2v, 2iτϕ′ ·Dv)L2(Q)(3.15)

= −2τ3 Re

∫

Q
|ϕ′|2vϕ′ · v′ dxds

= −τ3
∫

Q
|ϕ′|2ϕ′ · ∇|v|2 dxds

= J21 +BT21,

where

J21 := τ3
∫

Q
div

(

|ϕ′|2ϕ′)|v|2 dxds and BT21 := −τ3
∫

∂Q
∂nϕ|ϕ′|2|v|2 dx.

Term I22. We obtain directly

I22 = Re(A2v, iB2v)L2(Q) = Re(−τ2|ϕ′|2v, τ(1 + µ)∆ϕv)L2(Q)(3.16)

= −τ3(1 + µ)Re

∫

Q
|ϕ′|2∆ϕ|v|2 dxds.

Collecting (3.12)–(3.16), we obtain

Re(Av, iBv) = J +BT,

with J := J11 + J12 + J21 + I22 and BT := BT11 +BT12 +BT21.

We now treat separately the interior terms collected in J and the boundary terms
collected in BT .
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Interior terms. We write

J = τ3
∫

Q

(

div(|ϕ′|2ϕ′)− (1 + µ)|ϕ′|2∆ϕ
)

|v|2 dxds+ τµ

∫

Q
∆ϕ|v′|2 dxds(3.17)

+ 2τ Re

∫

Q
v′ · ϕ′′v′ dxds+ τ(1 + µ)

∫

Q
v′ · ∇(∆ϕ)v ds dx

= τ3
∫

Q
γ0|v|2 dxds+ τ

∫

Q
γ1|v′|2 dxds+X,

where

γ0 := div(|ϕ′|2ϕ′)− (1 + µ)|ϕ′|2∆ϕ, γ1 := µ∆ϕ,

X := 2τ Re

∫

Q
v′ · ϕ′′v′ dxds+ τ(1 + µ)

∫

Q
v′ · ∇(∆ϕ)v ds dx.

As in [15, Lemma 2.10], if we choose µ ∈ (0, 2), the coefficients γ0 and γ1 satisfy,

(3.18) γ0 & λ4ϕ3, γ1 & λ2ϕ.

For a proof of this fact, we follow [15, section 8.5]. Indeed, according to the form of
the weight function ϕ, taking derivatives with respect to s and x, we obtain that

∂2ijϕ = (λ2∂iψ∂jψ + λ∂2ijψ)ϕ, i, j = 1, 2.

This allows one to write

γ0 = div
(

λ3ϕ3|ψ′|2ψ′)− (1 + µ)λ2ϕ2|ψ′|2
(

λ2|ψ′|2ϕ+ λ(∆ψ)ϕ
)

= 3λ4ϕ3|ψ′|4 + λ3ϕ3|ψ′|2∆ψ + λ3ϕ3∇(|ψ′|2)ψ′

− (1 + µ)
(

λ4|ψ′|4ϕ3 + λ3ϕ3|ψ′|2∆ψ
)

= (2− µ)λ4|ψ′|4ϕ3 + λ3ϕ3
(

∇(|ψ′|2)ψ′ − µ|ψ′|2∆ψ
)

& λ4ϕ3,

using (3.2), choosing µ ∈ (0, 2), and taking λ ≥ 1 sufficiently large. Analogously, we
write

γ1 = µ∆ϕ = µ
(

λ2|ψ′|2 + λ∆ψ
)

eλψ & λ2ϕ,

for λ ≥ 1 chosen sufficiently large.

We proceed now with the terms bound together in X, that will be ’absorbed’ by
the two other terms composing J in (3.17) thanks to the estimates (3.18). We write

X = 2τλ2
∫

Q
ϕ|ψ′ · v′|2 dxds+ 2τλRe

∫

Q
ϕv′ · ψ′′v′ dxds

+ τ(1 + µ)Re

∫

Q
v′ · ∇(∆ϕ)v dxds

≥ 2τλRe

∫

Q
ϕv′ · ψ′′v′ dxds+ τ(1 + µ)Re

∫

Q
v′ · ∇(∆ϕ)v dxds

=: Y.
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Using that |ψ′′| . 1 and |∇(∆ϕ)| . λ3ϕ, the Young inequality gives

|Y | . τ‖ϕ1/2v′‖2L2(Q) + τλ3
∫

Q
ϕ|v′||v|dxds

. (1 + ελ2)τ‖ϕ1/2v′‖2L2(Q) + ε−1τλ4‖ϕ1/2v‖2L2(Q).

Choosing ε > 0 sufficiently small, τ and λ sufficiently large we have

(3.19) J & τ3‖v‖2L2(Q) + τ‖v′‖2L2(Q).

Boundary terms. We consider the different terms composing the compound BT
defined above.
Term BT11. From Proposition 3.2 we have ϕ|s=S = 1 and since v|s=0 = 0 we

obtain

BT11 = τ

∫

Rd

∂sϕ|s=S |v′|s=S|2 dx− 2τ

∫

Rd

∂sϕ|s=S|∂sv|s=S|2 dx

+ τ

∫

Rd

∂sϕ|s=0|∂sv|s=0|2 dx

= τλ(E + F ),

with

E = −
∫

Rd

∂sψ|s=S |∂sv|s=S|2 dx,

F =

∫

Rd

(ϕ∂sψ)|s=0|∂sv|s=0|2 dx+

∫

Rd

∂sψ|s=S|∇xv|s=S|2 dx.

Using (3.4), we have

E & ‖∂sv|s=S‖2L2(Rd).

Using again (3.4) and (3.3), we obtain

F =

∫

ωx

(ϕ∂sψ)|s=0|∂sv|s=0|2 dx+
∫

Rd\ωx

(ϕ∂sψ)|s=0|∂sv|s=0|2 dx

+

∫

Rd

∂sψ|s=S|∇xv|s=S|2 dx

≥ C‖ϕ1/2∂sv|s=0‖2L2(Rd\ωx)
− C ′(‖ϕ1/2∂sv|s=0‖2L2(ωx)

+ ‖∇xv|s=S‖2L2(Rd)

)

,

for some C,C ′ > 0. This yields

BT11 ≥ Cτλ
(

‖∂sv|s=S‖2L2(Rd) + ‖ϕ1/2∂sv|s=0‖2L2(Rd\ωx)

)

(3.20)

− C ′τλ
(

‖ϕ1/2∂sv|s=0‖2L2(ωx)
+ ‖∇xv|s=S‖2L2(Rd)

)

.
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Term B12. Since v|s=0 = 0, using (3.5), the Young inequality gives

BT12 = −τ(1 + µ)Re

∫

Rd

(

∂2sϕv ∂sv
)

|s=S dx

= −τ(1 + µ)Re

∫

Rd

(

(λ∂2sψ + λ2(∂sψ)
2) v ∂sv

)

|s=S dx.

We then have, for λ ≥ 1,

|BT12| . τλ2
∫

Rd

|∂sv|s=S||v|s=S|dx(3.21)

. τ
1
2λ‖∂sv|s=S‖2L2(Rd) + τ

3
2λ3‖v|s=S‖2L2(Rd).

Term B21. Since v|s=0 = 0, using (3.5), together with (3.4), we obtain

BT21 = −τ3
∫

Rd

|ϕ′
|s=S|2∂sϕ|s=S|v|s=S |2 dx(3.22)

= −τ3λ3
∫

Rd

(∂sψ|s=S)
3|v|s=S |2 dx & τ3λ3‖v|s=S‖2L2(Rd).

Collecting estimations (3.20)–(3.22), we obtain

BT ≥ Cτ3λ3‖v|s=S‖2L2(Rd) + Cτλ
(

‖∂sv|s=S‖2L2(Rd) + ‖ϕ1/2∂sv|s=0‖2L2(Rd\ωx)

)

(3.23)

− C ′τλ
(

‖∇xv|s=S‖2L2(Rd) + ‖ϕ1/2∂sv|s=0‖2L2(ωx)

)

,

choosing τ chosen sufficiently large.
We may now put together the estimates obtained for the interior and the boundary

terms. From (3.11), (3.19) and (3.23) we obtain

τ3‖v‖2L2(Q) + τ‖v′‖2L2(Q) + τ3‖v|s=S‖2L2(Rd) + τ
(

‖∂sv|s=S‖2L2(Rd) + ‖∂sv|s=0‖2L2(Rd)

)

. ‖Pϕv‖2L2(Q) + τ2µ2‖v‖2L2(Q) + τ
(

‖∇xv|s=S‖2L2(Rd) + ‖∂sv|s=0‖2L2(ωx)

)

.

For τ ≥ τ0, with τ0 chosen sufficiently large, we find

τ3‖v‖2L2(Q) + τ‖v′‖2L2(Q) + τ3‖v|s=S‖2L2(Rd) + τ
(

‖∂sv|s=S‖2L2(Rd) + ‖∂sv|s=0‖2L2(Rd)

)

. ‖Pϕv‖2L2(Q) + τ
(

‖∇xv|s=S‖2L2(Rd) + ‖∂sv|s=0‖2L2(ωx)

)

.

If we now set v = eτϕu for u ∈ C 2([0, S];S (Rd;C)) we obtain the desired inequality
by classical arguments. �

3.2. Proof of the spectral inequality. We now give the proof of the spectral
inequality (3.1) of Theorem 3.1.

Proof of Theorem 3.1. LetN ≥ 0 and f ∈ L2(Rd) be such that supp(f̂) ⊂ BRd(0, N).
In particular, f ∈ C∞(Rd). We introduce the function

(3.24) u(s, x) :=
1

(2π)d

∫

B
Rd

(0,N)

sinh(ξs)

ξ
f̂(ξ)eiξ·x dξ,
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which belongs to C∞([0, S] × R
d;C) ∩ H2(Q;C) and satisfies Pu = 0 in Q, for

P = D2
s +Dx ·Dx, and u|s=0 ≡ 0. The Carleman inequality (3.9) of Proposition 3.3

holds for functions in H2(Q;C) by density. It can thus be applied to the function
u(s, x). This yields

(3.25) Kτ2e2τ‖u|s=S‖2L2(Rd) ≤ e2τ‖∇xu|s=0‖2L2(Rd) + ‖eτϕ∂su|s=0‖2L2(ωz)
,

for τ ≥ τ0. By the Plancherel equality we have

‖∇xu|s=S‖2L2(Rd) =
1

(2π)d

∫

B
Rd

(0,N)

|ξû(S, ξ)|2 dξ

≤ N2

(2π)d
‖û|s=S‖2L2(Rd) = N2‖u|s=S‖2L2(Rd).

Thus, (3.25) gives
(

Kτ2 −N2
)

e2τ‖u|s=S‖2L2(Rd) ≤ ‖eτϕ∂su|s=0‖2L2(ωx)
.

Now, we choose τ such that τ ≥ τ0 ≥ 1 and Kτ2 −N2 ≥ 1. For instance, we choose
τ2 = max

(

τ20 ,K
−1

)

(N + 1)2. Then, we have

(3.26) e2τ‖u|s=S‖2L2(Rd) ≤ e2τ supRd
ϕ|s=0‖∂su|s=0‖2L2(ωx)

.

By the Plancherel equality, we have

‖u|s=S‖2L2(Rd) =
S2

(2π)d

∫

B
Rd

(0,N)

∣

∣

∣

sinh(ξS)

ξS
f̂(ξ)

∣

∣

∣

2
dξ

≥ S2

(2π)d
‖f̂‖2L2(Rd) = S2‖f‖2L2(Rd).

Note that ∂su(0, .) = f. Thus, (3.26) reads

‖f‖2L2(Rd) ≤
1

S2
e2τ(supRd

ϕ|s=0−1)‖f‖2L2(ωx)
,

which proves the result, using the value chosen for τ above. Note that S > 0 is
chosen arbitrary here and kept fixed. �

A natural question at this stage can be the following: in the spectral inequality of
Theorem 3.1, can one replace the factor eC(N+1) by some factor eg(N) with g(N) ≪
N+1, as N → ∞, e.g. g(N) = (N+1)α, with α ∈ [0, 1), or g(N) = (N+1)/ ln(N+2),
etc.? The answer is in fact negative as described in the following proposition: one
can construct a sequence of functions (fN )N that saturates the inequality with the
form given in Theorem 3.1, up to some constant.

PROPOSITION 3.4. Let A ⊂ R
d be such that A 6= R

d. There exist C0 > 0 and
N0 > 0 such that ∀N ≥ N0, ∃f ∈ L2(Rd) with supp(f̂) ⊂ BRd(0, N) and

(3.27) ‖f‖L2(Rd) ≥ eC0N‖f‖L2(A).
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This result is the counterpart of Proposition 5.5 in [17]. The proof is inspired by
the argument developed therein.

Proof. At several places we shall use the following simple estimate
∫

|x|≥α

e−|x|2 dx ≤ Cde
−α2/2, α ≥ 1.(3.28)

In fact if d = 1 we simply write
∫

|x|≥α

e−x
2
dx ≤ 2

α

∫ ∞

α
xe−x

2
dx =

1

α
e−α

2
, α > 0.

If d ≥ 2, we write
∫

|x|≥α

e−|x|2 dx = |Sd−1|
∫

r≥α

rd−1e−r
2
dr ≤ Cd

∫

r≥α

re−r
2/2dr = Cde

−α2/2.

Since A 6= R
d, there exists x0 ∈ R

d \A such that

(3.29) d0 := dist(x0, A) > 0.

We may assume, without any loss of generality, that x0 = 0. We consider the heat

kernel φs(x) := (4πs)−d/2e−
|x|2

4s , for s > 0 and x ∈ R
d, whose Fourier transform is

given by

(3.30) φ̂s(ξ) = e−|ξ|2s, s > 0, ξ ∈ R
d.

We define f ∈ L2(Rd) by its Fourier transform as follows

f̂(ξ) := e−
|ξ|2

N 1{|ξ|≤N}(ξ), ξ ∈ R
d, N > 0.

We first give an estimation of the L2-norm of f over the whole domain R
d; we have

‖f‖L2(Rd) & Nd/4.(3.31)

In fact, with the Plancherel theorem, (3.30), and the inverse Fourier transformation,
we write

‖f‖2L2(Rd) =
1

(2π)d
‖f̂‖2L2(Rd) =

1

(2π)d

∫

B
Rd

(0,N)

e−
2|ξ|2

N dξ

= φs= 2
N
(0) − 1

(2π)d

∫

|ξ|≥N

e−
2|ξ|2

N dξ.

Then, with a change of variables and (3.28) we obtain

‖f‖2L2(Rd) =
(N

8π

)d/2
− 1

(2π)d

(N

2

)d/2
∫

|ξ|≥
√
2N

e−|ξ|2 dξ & Nd/2,

by using (3.28) and by choosing N sufficiently large.
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We now wish to estimate the L2-norm of f over the subset A. Again, the inverse
Fourier transformation gives

f(x) =
1

(2π)d

∫

|ξ|≤N

e−
|ξ|2

N
+ix·ξ dξ = φs= 1

N
(x)−R(x),(3.32)

with R(x) := (2π)−d
∫

|ξ|≥N e
− |ξ|2

N
+ix·ξ dξ. For the first term in (3.32), we use (3.29)

and we write, with a change of variables,

‖φs= 1
N
‖2L2(A) ≤

∫

|x|>d0

(

φs= 1
N
(x)

)2
dx =

(N

4π

)d
∫

|x|>d0

e−
N|x|2

2 dx

=
(2N)d/2

(4π)d

∫

|x|≥d0
√

N
2

e−|x|2 dx.

This yields, by using (3.28), ‖φs= 1
N
‖L2(A) . Nd/4e−d

2
0N/8. For the second term in

(3.32), the Plancherel theorem gives

‖R‖2L2(A) ≤ ‖R‖2L2(Rd) =
1

(2π)d

∫

|ξ|≥N

e−
2|ξ|2

N dξ =
1

(2π)d

(N

2

)d/2
∫

|ξ|≥
√
2N

e−|ξ|2 dξ,

which gives, with (3.28), ‖R‖L2(A) . Nd/4e−N/2. Setting C1 = min(1/2, d20/8), we
thus obtain

‖f‖L2(A) . Nd/4e−C1N ,(3.33)

and we conclude the proof with (3.31)–(3.33) and by choosing C0 such that 0 <
C0 < C1. �

4. Null-controllability of the Kolmogorov equation

This section is devoted to the proof of the main result of this article, Theorem 1.2,
that is the null-controllability of the Kolmogorov equation (1.1) in the whole phase
space with a control region as given in (1.2)–(1.3).

The proof is first carried out in the Fourier domain with respect to the space
variable x.

4.1. Observability of one Fourier mode. Here, we shall prove the following
result, that states the observability of the Fourier transformed (adjoint) Kolmogorov
equation, as in (1.10)–(1.11). Most important, we make explicit the dependency of
the observability constant upon the Fourier variable ξ, dual to the variable x.

PROPOSITION 4.1 (Observability inequality). Let ωv ⊂ R
d be an observability

open set on the whole space R
d as in Definition 1.1. Then, there exists a constant

C > 0 such that the solution of
{

∂tgξ − iv · ξgξ −∆vgξ = 0 in (0, T )× R
d,

gξ |t=0 = g0,ξ in R
d,
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for T > 0, ξ ∈ R
d, and g0,ξ ∈ L2(Rd;C) satisfies

(4.1) ‖gξ |t=T ‖L2(Rd) ≤ eC
(

1+ 1
T
+
√

|ξ|
)

‖gξ‖L2((0,T )×ωv).

The proof of inequality (4.1) follows from a global Carleman estimate for the
following parabolic operator

(4.2) Pξ = ∂t − iv · ξ −∆2
v = iDt − iv · ξ +Dv ·Dv

on Q = (0, T ) × R
d, where the frequency ξ ∈ R

d acts as a parameter here. In the
following proposition, constants can be chosen uniform with respect to the parameter
ξ. This is an important feature of the Carleman estimate.

PROPOSITION 4.2 (Global parabolic Carleman estimate). We set θ =
(

t(T −
t)
)−1

and τ̃(t) = τθ(t). Let ωv ⊂ R
d be an observability open set on the whole space

R
d as in Definition 1.1. There exist a negative weight function ϕ ∈ C∞(Rd), C > 0,

and τ0 ≥ 1 such that

(4.3) ‖τ̃3/2eτ̃ϕu‖L2(Q) + ‖τ̃1/2eτ̃ϕ∂vu‖L2(Q)

≤ C
(

‖eτ̃ϕPξu‖L2(Q) + ‖τ̃3/2eτ̃ϕu‖L2((0,T )×ωv)

)

,

for ξ ∈ R
d, T > 0, τ ≥ τ0(T + T 2 +

√

|ξ|T 2), and for u ∈ C 1([0, T ];S (Rd)).

An analogous result was proven in [2]. Here, as we consider the whole phase-
space we need to construct an adapted weight function. The property of ωv as
given in Definition 1.1 turn out to be crucial in this construction. in the proof of
Proposition 4.2 we shall follow the derivation of a Carleman estimate as given in
[17].

In the proof of Proposition 4.2 we shall need the following result which enables
us to choose open subsets of ωv that satisfy the same properties of Definition 1.1.

LEMMA 4.3. Let O ⊂ R
d be an observability open set on the whole space R

d as
in Definition 1.1. Then, there exits Õ ⊂ O ⊂ R

d that is also an observability open
set on the whole space R

d satisfying (1.3), with different values of δ > 0 and r > 0,

and moreover dist(Õ, ∂O) > 0.

Proof. Let y ∈ Z
d. There exists y′ = y′(y) ∈ O such that BRd(y′, r) ⊂ O and

|y − y′| ≤ δ. We then set Õ as the following open subset

Õ :=
⋃

y∈Zd

BRd(y′(y), r/2).

We have Õ ⊂ O and dist(Õ, ∂O) ≥ r/2 by construction. Next, for z ∈ R
d there

exists y ∈ Z
d such that |y − z| ≤

√
d/2. Then, y′(y), as introduced above, is such

that y′(y) ∈ Õ and

BRd(y′(y), r/2) ⊂ Õ and |z − y′(y)| ≤ δ +
√
d/2.

We thus have the properties of Definition 1.1 for the values δ+
√
d/2 and r/2 of the

two parameters. �
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The following lemma provides the details of the construction of an weight function
associated with an observability set O that will fits our needs for the derivation of
the Carleman estimate of Proposition 4.2 for a well chosen O ⊂ ωv.

LEMMA 4.4. Let O be a observability open set on the whole R
d, in the sense of

Definition 1.1. Then, there exist ψ ∈ C∞(Rd) and C > 0 such that |ψ′(v)| ≥ C for
v ∈ R

d \ O.

The proof is very much connected to that of Proposition 3.2. At places we refer
to that proof so as to avoid too much redundancy. Some redundancy is, however,
necessary for the sake of readability, as this constuction is technical.

Proof. If O is an observability open set on R
d we let δ and r be the positive constants

used in Definition 1.1. Letting L > 2(δ + r) we set

ψ̃(v) :=
d
∏

j=1

(

2 + sin(πvj/L)
)

, v = (v1, . . . , vd) ∈ R
d.

This function is 2L-periodic in each direction associated with the canonical basis of
R
d. Observe that ψ̃′(v) = 0 if and only if v ∈ w + LZd with w = (L/2, . . . , L/2).

Firstly, the reader should recall the definition of

K, Kα, K, Kβ, Kα,β, Tα, T ′
β, Tα,β, α ∈ Z

d, β ∈ {0, 1}d ,

from the proof of Proposition 3.2. For β ∈ {0, 1}d, we then define the following

function ψ̃β(v) = ψ̃ ◦ T ′
β(v), for v in the compact set K. This is a translated version

of the function ψ̃|Kβ
and also of ψ̃|Kα,β

for any α ∈ Z
d.

Secondly, we consider the elementary compact cell K. For any β ∈ {0, 1}d, the
only point in K where the gradient of ψ̃β vanishes is w = (L/2, . . . , L/2). Using

compactness, for 0 < ρ < r/2 and some w(i) ∈ BRd(w, δ), i ∈ I with #I < ∞, we
have

BRd(w, δ) ⊂
⋃

i∈I
BRd(w(i), ρ).(4.4)

Let i ∈ I. We pick a smooth path γ(i)(t), t ∈ [0, 1] such that γ(i)(0) = w(i) and

γ(i)(1) = w. The geometry we describe is illustrated in Figure 3. We also choose a

smooth vector field V (i) ∈ C∞
c (BRd(w, δ);Rd) such that V (i)(γ(i)(t)) =

(

γ(i)
)′
(t) for

t ∈ [0, 1] and we denote by χ(i)(t, v) the flow associated with the vector field V (i).

We then set φ(i)(v) = χ(i)(1, v) that is a smooth diffeomorphism of BRd(w, δ) onto

itself as it coincides with the identity outside the support of V (i). In particular it
leaves unchanged a neighborhood of ∂K. We have φ(i)(w(i)) = w. On the compact
set K we define

ψ
(i)
β = ψ̃β ◦ φ(i), v ∈ K, i ∈ I, β ∈ {0, 1}d,
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L

L

K
r

y

w(j)

O′
α,β

δ + ρ

Γ(j)

δ

wΓ(i)
ρ

w(i)

Figure 3. Local geometry for the construction of the weight function.

and we observe that the gradient of ψ
(i)
β only vanishes at w(i). As #I < ∞ there

exists C0 > 0 such that
∣

∣

(

ψ
(i)
β

)′
(v)

∣

∣ ≥ C0, v ∈ K \BRd(w(i), ρ) i ∈ I, β ∈ {0, 1}d.(4.5)

Thirdly, let α ∈ Z
d and β ∈ {0, 1}d. We consider the set Oα,β = Kα,β ∩ O and

O′
α,β = T −1

α,β (Oα,β) ⊂ K.

As O is an observability open set there exists y ∈ O′
α,β such that |y − w| ≤ δ

and BRd(y, r) ⊂ O′
α,β, using that 2(δ + r) < L and the fact that the property

of Definition 1.1 is translation invariant. There exists some j ∈ I such that y ∈
BRd(w(j), ρ) because of the finite covering of BRd(w, δ) introduced in (4.4). Then,
as ρ < r/2, we have BRd(w(j), ρ) ⊂ BRd(y, r) ⊂ O′

α,β; see Figure 3. We now define
the following function on the cell Kα,β

ψα,β(v) = ψ
(j)
β ◦ T −1

α,β (v), v ∈ Kα,β,

which is well defined as Tα,β mapsK ontoKα,β . We find that |ψ′
α,β | ≥ C0 onKα,β\O

by (4.5). Observe also that ψα,β coincides with ψ̃|Kα,β
in a neighborhood of ∂Kα,β .

Finally we define the following function ψ on R
d by

ψ(v) = ψα,β(v) if v ∈ Kα,β .

We have ψ ∈ C∞(Rd) and |ψ′| ≥ C0 in R
d \ O. �
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Proof of Proposition 4.2. Let u ∈ C 1([0, T ];S (Rd)) and set z = eτ̃ϕu and the con-
jugated operator Pϕ = eτ̃ϕPξe

−τ̃ϕ. We have

Pϕ = i(Dt + iτθ′ϕ) + (Dv + iτ̃ϕ′) · (Dv + iτ̃ϕ′)− iξ · v.
We define the following two symmetric differential operators

Q2 = (Pϕ + P ∗
ϕ)/2, Q1 = (Pϕ − P ∗

ϕ)/(2i),

which gives

Q2 = Dv ·Dv − |τ̃ϕ′|2 − τθ′ϕ, Q1 = Dt + τ̃(Dv · ϕ′ + ϕ′ ·Dv)− ξ · v,
and Pϕ = Q2 + iQ1. We denote by η and σ the Fourier variables associated with
v and t respectively. We set µ2 = τ̃2 + |η|2. Using µ as an order function in the
(cotangent) phase space associated with the variable v, thus giving the same strengh
to τ̃ and a differentiation w.r.t. v, the principal symbols2 of these operators are

q2 = |η|2 − |τ̃ϕ′|2 − τθ′ϕ, q1 = σ + 2τ̃ η · ϕ′ − ξ · v.
Note that the commutator i[Q2, Q1] is a differential operator that only acts in the
v variable. Its principal symbol of is given by the Poisson bracket {q2, q1}.

We pick three open sets ω
(0)
v , ω

(1)
v , and ω

(2)
v , all satisfying the properties of Defi-

nition 1.1 such that ω
(0)
v ⋐ ω

(1)
v ⋐ ω

(2)
v ⋐ ωv and such that

(4.6) dist(ω(j)
v , ∂ω(j+1)

v ) > 0, j = 0, 1, and dist(ω(2)
v , ∂ωv) > 0,

which can be done according to Lemma 4.3. We now build the weight function ϕ
using the following lemma whose proof is given below.

LEMMA 4.5. There exists a negative function ϕ ∈ C∞(Rd) such that for some

ν0 > 0, τ1, C > 0 such that ν0q
2
2 + τ̃{q2, q1} ≥ Cµ4, for v ∈ R

d \ ω(0)
v , η ∈ R

d, and

for τ ≥ τ1(T + T 2
√

|ξ|).

Using (4.6), we can build χ ∈ C∞(Rd) be such that 0 ≤ χ(v) ≤ 1, supp(χ) ⊂
R
d \ ω(1)

v , and χ ≡ 1 in R
d \ ω(2)

v and all its successives derivatives are bounded in
R
d (for instance adapt the proof of Theorem 1.4.1 in [13] to the non compact case

using (4.6)). We write, by integration by parts,

‖Pϕχz‖2L2(Q) = ‖Q2χz‖2L2(Q) + ‖Q1χz‖2L2(Q) + 2Re(Q2χz,Q1χz)L2(Q)(4.7)

≥ ‖ν1/20 τ̃−1/2Q2χz‖2L2(Q) + i([Q2, Q1]χz, χz)L2(Q)

2Here, to be precise we consider operators in a semi-classical setting. When considering the v
variable, using t only as a parameter, then the (pseudo-)differential calculus is understood with
the following metric in the (v, η) cotangent phase space R

d × R
d: g = |dv|2 + |dη|2/µ2. Observe

that the polynomial growth of q1 w.r.t. v has no impact on the calculus operations performed
in the remainder of the proof. For example, this polygonal growth is not present in the symbol
{q2, q1} computed in the proof of lemma 4.5. This behavior in the symbol q1 can thus be perfectly
admitted. Here, quantification of the time derivative in q1 is purely formal, as the dual variable
σ does not occur in the calculus estimations that are performed below. We could only consider a
symbol quantification in the v variable and preserve the Dt form. This, however, gives an awkward
presentation that we chose to avoid here following [17].
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=
(

(ν0τ̃
−1Q2

2 + i[Q2, Q1])χz, χz
)

L2(Q)
,

as z vanishes at t = 0+ and t = T− at all orders, because of the sign of the weight
function, and where ν0τ̃

−1 ≤ 1 by choosing τ/(ν0T
2) sufficiently large. We have

used that Q∗
j = Qj, j = 1, 2, and [τ̃ , Q2] = 0 as Q2 is a differential operator that

only acts in the v direction. The parameter ν0 is chosen as in Lemma 4.5 above.
The principal symbol of the operator ν0τ̃

−1Q2
2 + i[Q2, Q1], that is differential only

in the v variable, is given by ν0τ̃
−1q22 + {q2, q1}. Let χ̃ ∈ C∞(Rd) be such that

0 ≤ χ̃(v) ≤ 1, supp(χ̃) ⊂ R
d \ ω(0)

v , and χ̃ ≡ 1 in R
d \ ω(1)

v . In particular, χ̃ ≡ 1 in a
neighborhood of supp(χ). With the symbol ellipticity given in Lemma 4.5, we have

(

ν0q
2
2 + τ̃{q2, q1}

)

χ̃+ µ4(1− χ̃) & µ4, v ∈ R
d,

for τ ≥ τ1(T + T 2
√

|ξ|). Writting

(ν0τ̃
−1Q2

2 + i[Q2, Q1])χz =
(

(ν0τ̃
−1Q2

2 + i[Q2, Q1])χ̃+Op(τ̃−1µ4)(1 − χ̃)
)

χz,

the G̊arding inequality (in the v variable only with the time variable t regarded as
a parameter) yields

(

(ν0τ̃
−1Q2

2 + i[Q2, Q1])χz, χz
)

L2(Rd)
& τ̃−1‖Op(µ2)χz(t, .)‖2L2(Rd),

uniformly w.r.t. t ∈ [0, T ], for τ̃ chosen sufficiently large, by choosing τ/T 2 suf-

ficiently large. We thus choose τ ≥ τ2(T + T 2 +
√

|ξ|T 2) with τ2 large enough.
Integrating w.r.t. t, we then obtain, using (4.7),

‖Pϕχz‖L2(Q) & ‖τ̃−1/2 Op(µ2)χz‖L2(Q) & ‖τ̃1/2 Op(µ)χz‖L2(Q),

Adding the term ‖τ̃1/2 Op(µ)(1− χ)z‖L2(Q) on both sides, we obtain

‖Pϕχz‖L2(Q) + ‖τ̃1/2 Op(µ)(1− χ)z‖L2(Q) & ‖τ̃1/2 Op(µ)z‖L2(Q).

Next, writing Pϕχ = χPϕ + [Pϕ, χ], where the commutator is a first-order semiclas-
sical differential operator in the v variable, we find

‖Pϕz‖L2(Q) + ‖τ̃1/2 Op(µ)(1 − χ)z‖L2(Q)

+ ‖Op(µ)z‖L2(Q) & ‖τ̃1/2 Op(µ)z‖L2(Q).

Chosing τ̃ sufficiently large, we thus obtain

‖Pϕz‖L2(Q) + ‖τ̃1/2 Op(µ)(1 − χ)z‖L2(Q) & ‖τ̃1/2 Op(µ)z‖L2(Q),

which implies

‖Pϕz‖L2(Q) + ‖τ̃3/2z‖
L2((0,T )×ω(2)

v )
+ ‖τ̃1/2∇vz‖L2((0,T )×ω(2)

v )

& ‖τ̃3/2z‖L2(Q) + ‖τ̃1/2∇vz‖L2(Q).

Moving back to the unknown function u we obtain

‖eτ̃ϕPu‖L2(Q) + ‖τ̃3/2eτ̃ϕu‖
L2((0,T )×ω(2)

v )
+ ‖τ̃1/2eτ̃ϕ∇vu‖L2((0,T )×ω(2)

v )

& ‖τ̃3/2eτ̃ϕu‖L2(Q) + ‖τ̃1/2eτ̃ϕ∇vu‖L2(Q).
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We now remove the gradient term on the l.h.s. of this estimate. This is a fairly
classical argument, which we provide for completeness. We choose χ0 ∈ C∞(Rd)

such that 0 ≤ χ0(v) ≤ 1, supp(χ) ⊂ ωv and χ ≡ 1 in ω
(2)
v . Setting f = Pξu, after

multiplication by e2τ̃ϕτ̃χ0u, and integration over Q, we obtain

1

2

∫

Q

e2τ̃ϕτ̃χ0∂t|u|2 dt dv − Re(∆vu, e
2τ̃ϕτ̃χ0u)L2(Q)(4.8)

= Re(eτ̃ϕf, eτ̃ϕτ̃χ0u)L2(Q).

For the first term I1 an integration by parts in t yields

|I1| =
∣

∣

1

2

∫

Q

e2τ̃ϕτ̃χ0∂t|u|2 dt dv
∣

∣ =
∣

∣

1

2

∫

Q

∂tτ̃(1 + 2τ̃ϕ)e2τ̃ϕχ0|u|2 dt dv
∣

∣

. ‖τ̃3/2eτ̃ϕu‖2L2((0,T )×ωv)
,

since ∂tτ̃ = τθ′ and θ′ . Tθ2 and 1 . T 2θ yielding

|∂tτ̃ | . τTθ2 . τT 3θ3 . τ̃3, |∂tτ̃ |τ̃ . τTθ2τ̃ . τ̃3,

as τ & T + T 2. The third term can be estimated as

|I3| =
∣

∣Re(eτ̃ϕf, eτ̃ϕτ̃χ0u)L2(Q)

∣

∣ . ‖eτ̃ϕf‖2L2(Q) + ‖eτ̃ϕτ̃χ0u‖2L2(Q)

. ‖eτ̃ϕf‖2L2(Q) + ‖τ̃3/2eτ̃ϕu‖2L2((0,T )×ωv)
,

as 1 . T 2θ . τθ = τ̃ , since τ & T 2. For the second term, with integration by parts
in v, we have

I2 =

∫

Q

e2τ̃ϕτ̃χ0|∇vu|2 dt dv +Re

∫

Q

τ̃u∇v(e
2τ̃ϕχ0) · ∇vu dt dv

≥ ‖τ̃1/2eτ̃ϕ∇vu‖2
L2((0,T )×ω(2)

v )
− 1

2

∫

Q

τ̃∆v(e
2τ̃ϕχ0)|u|2 dt dv,

and
∣

∣

∫

Q

τ̃∆v(e
2τ̃ϕχ0)|u|2 dt dv

∣

∣ . ‖τ̃3/2eτ̃ϕu‖2L2((0,T )×ωv)
. The previous estimates

and (4.8) then yield

‖τ̃1/2eτ̃ϕ∇vu‖2
L2((0,T )×ω(2)

v )
. ‖eτ̃ϕPξu‖2L2(Q) + ‖τ̃3/2eτ̃ϕu‖2L2((0,T )×ωv)

.

The proof is complete. �

Proof of Lemma 4.5. The Poisson bracket of q2 and q1 reads:

{q2, q1} = ℓ+ 4τ̃ τθ′|ϕ′|2 + τθ′′ϕ− 2η · ξ.
with ℓ(v, t, η, τ) = 4τ̃

(

η · ϕ′′η + τ̃2ϕ′ · ϕ′′ϕ′).
According to Lemma 4.4 there exists a function ψ ∈ C∞(Rd;R) such that ψ and

ψ′ are bounded and moreover |ψ′(v)| ≥ C > 0 for v ∈ R
d \ω(0)

v , for some C > 0. For
λ ≥ 1 we set φ = exp(λψ) and ϕ = φ− exp(λM), with M > ‖ψ‖∞. We have ϕ < 0.



26 J. LE ROUSSEAU AND I. MOYANO

We set q̃2 = q2 + τθ′ϕ = |η|2 − |τ̃ϕ′|2 and we claim, as proven below, that we have
the following property

νq̃22 + τ̃ ℓ ≥ Cµ4, (t, v) ∈ [0, T ]× R
d \ ω(0)

v , η ∈ R
d, τ ≥ 1,(4.9)

for some C > 0, if λ and ν are chosen sufficiently large.
In fact, first observe that we have

∂vjϕ = ∂vjφ = λφ∂vjψ, ∂2vjvkϕ = λφ∂2vjvkψ + λ2φ∂vjψ∂vkψ,

yielding, with τ̂ = τ̃λφ > 0,

ℓ = 4(τ̃ λφ)3
(

ψ′ · ψ′′ψ′ + λ|ψ′|4
)

+ 4τ̃λφ
(

η · ψ′′η + λψ′ · η2
)

≥ 4τ̂3
(

ψ′ · ψ′′ψ′ + λ|ψ′|4
)

+ 4τ̂ η · ψ′′η.

Using that 0 < 1/C ≤ ψ′ ≤ C in R
d \ ω(0)

v , we obtain, for λ sufficiently large,

ℓ ≥ Cτ̂3λ− C ′τ̂ |η|2, for v ∈ R
d \ ω(0)

v .(4.10)

We have q̃2 = |η|2−|τ̂ψ′|2. We set µ̂ = τ̂2+|η|2 and we consider two cases: |q̃2| < εµ̂2

and |q̃2| ≥ εµ̂2, for ε > 0 to be set just below.

Case |q̃2| < εµ̂2.: Then, we have Cτ̂2 − εµ̂2 < |η|2 < C ′τ̂2 + εµ̂2 using that
0 < 1/C ≤ ψ′ ≤ C. For ε > 0 chosen sufficiently small and kept fixed, we
obtain τ̂ . |η| . τ̂ . Then, by (4.10), for λ chosen sufficiently large and kept

fixed, we have ℓ & τ̂3 for v ∈ R
d \ ω(0)

v . We thus have

ν|q̃2|2 + τ̃ ℓ ≥ τ̃ ℓ & τ̂4 & µ̂4 & µ4 for v ∈ R
d \ ω(0)

v .

Case |q̃2| ≥ εµ̂2.: Here the values of ε and λ are kept fixed with the values
chosen in the previous case. Observing that |ℓ| . µ̂3, we then have

ν|q̃2|2 + τ̃ ℓ ≥ νε2µ̂4 − Cτ̃µ̂3 ≥ µ̂4(νε2 − C ′).

Thus, for ν chosen sufficiently large we have ν|q̃2|2+τ̃ ℓ & µ4, for v ∈ R
d\ω(0)

v .

We have thus obtain the property claimed in (4.9).

We observe that we have

1 . T 2θ, |θ′| . Tθ2, |θ′′| . T 2θ3.

We thus find

|4τ̃ τθ′(ϕ′)2 + τθ′′ϕ− 2η · ξ| . τ̃3
(T

τ
+
T 2

τ2

)

+ |η|τ̃2 |ξ|T
4

τ2
.

Similarly we find

q22 ≥ 1

2
q̃22 − (τθ′ϕ)2 ≥ 1

2
q̃22 − Cτ̃4

T 2

τ2
.

From (4.9), for τ ≥ τ1(T+
√

|ξ|T 2), with τ1 chosen sufficiently large, we hence obtain

2νq22 + τ̃{q2, q1} & µ4, (t, v) ∈ [0, T ] × R
d \ ω(0)

v , η ∈ R
d.(4.11)

This concludes the proof of Lemma 4.5. �
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Now, we can prove Proposition 4.1.

Proof of Proposition 4.1. Let t1 = T/3 and t2 = 2T/3. For t ∈ [t1, t2], we have
C1/T

2 ≤ θ(t) ≤ C2/T
2, with C1 = 4 and C2 = 9/2 > C1. With τ̃ and ϕ as given

by Proposition 4.2 we then have, eC2τ minϕ/T 2 ≤ eτ̃ϕ ≤ eC1τ maxϕ/T 2
recalling that

ϕ < 0; thus we find

τ3/2

T 3
eC2

τ

T2 minϕ
. τ̃3/2eτ̃ϕ .

τ3/2

T 3
eC1

τ

T2 maxϕ, (t, v) ∈ [t1, t2]× R
d.(4.12)

With the parabolic decay of Proposition 2.3 and (4.12), we have

(t2 − t1)‖gξ |t=T ‖
2
L2(Rd) ≤ ‖gξ‖2L2((t1,t2)×Rd)

.
T 6

τ3
e−2C2

τ

T2 minϕ‖τ̃3/2eτ̃ϕgξ‖2L2((t1,t2)×Rd).

The Carleman estimate of Proposition 4.2 gives

‖τ̃3/2eτ̃ϕgξ‖2L2((t1,t2)×Rd) . ‖τ̃3/2eτ̃ϕgξ‖2L2((0,T )×ωv)

.
τ3

T 6
e2C1

τ

T2 maxϕ‖gξ‖2L2((0,T )×ωv)
,

for τ ≥ τ0(T + T 2 + T 2
√

|ξ|). we thus obtain

‖gξ |t=T ‖L2(Rd) .
1√
T
e

τ

T2 (C1 maxϕ−C2 minϕ)‖gξ‖L2((0,T )×ωv).

Setting τ = τ0(T + T 2 + T 2
√

|ξ|) the observability inequality (4.1) follows. �

4.2. Observability of Fourier packets. Here, we shall prove the following result
that makes precise the cost of the control of the Kolmogorov equation (1.1) when
one only aims to bring to zero a bounded part of the spectrum of the solution.

PROPOSITION 4.6. There exists Cobs > 0 such that for every T > 0, N ∈ N

and f0 ∈ L2(R2d) there exists a control u ∈ L2((0, T ) × R
2d) such that the solution

of Problem (1.1) satisfies

supp(f̂(T, ., .)) ⊂
(

R
d \BRd(0, N)

)

×R
d

and

(4.13) ‖u‖L2((0,T )×R2d) ≤ eCobs(1+
1
T
+N)‖f0‖L2(R2d).

By duality, this result is equivalent to the following observability inequality for
the adjoint problem (1.4), in the case of an initial data whose Fourier transform
is compactly-supported. This result is a consequence of the spectral inequality of
Theorem 3.1.

PROPOSITION 4.7. There exists Cobs > 0 such that, for T > 0, N ∈ N, and
g0 ∈ L2(R2d)with supp(ĝ0) ⊂ BRd(0, N) × R

d, the solution of (1.4) satisfies

(4.14) ‖g|t=T ‖L2(R2d) ≤ eCobs(1+
1
T
+N)‖g‖L2((0,T )×ω).

The constant Cobs is the same as in Proposition 4.6.
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Proof of Proposition 4.7. Because of the linearity we have supp(ĝ(t, ., .) ⊂ BRd(0, N)×
R
d for t ∈ [0, T ]. With the Plancherel equality, Proposition 4.1, and Theorem 3.1

we obtain

‖g|t=T ‖2L2(R2d) =
1

(2π)d

∫

B
Rd

(0,N)

∫

Rd

|ĝ(T, ξ, v)|2 dv dξ

.

∫

B
Rd

(0,N)

eC
(

1+ 1
T
+
√

|ξ|
)
∫ T

0

∫

ωv

|ĝ(t, ξ, v)|2 dv dt dξ

= eC
(

1+ 1
T
+
√
N
)
∫ T

0

∫

ωv

‖ĝ(t, ., v)‖2L2(B
Rd

(0,N)) dv dt

≤ eC
(

1+ 1
T
+
√
N
)
∫ T

0

∫

ωv

e2C
′(N+1)‖g(t, ., v)‖2L2(ωx)

dv dt.

This proves (4.14) with, for instance, Cobs = C +C ′. �

4.3. Construction of the control function. The aim of this section is to prove
Theorem 1.2. The type of control construction we use was originally performed in
[18]. Here we base our construction on the presentations given in [2, section 3.3], [5,
section 3], and [17, section 6.2].

Proof of Theorem 1.2. We consider, for any j ∈ N, the space

Ej :=
{

f ∈ L2(R2d) : supp
(

f̂
)

⊂ BRd(0, 2j)× R
d
}

,

where the Fourier transform is taken with respect to the variable x only, as in
(1.10). This space is closed in L2(R2d). Accordingly, let ΠEj

denote the projection

of L2(R2d) onto Ej .

Let ρ ∈ R be such that 0 < ρ < 1
3 and set Tj = K2−ρj , j ∈ N, with K = K(ρ)

such that
∑∞

j=0 Tj = T/2. We also define the time sequence (aj)j∈N by

a0 := 0, aj+1 := aj + 2Tj , j ∈ N.

We now define a control u for t ∈ (0, T ) as follows

u(t) =

{

ũj(t− aj), if t ∈ (aj , aj + Tj),

0, if t ∈ (aj + Tj , aj+1],

where ũj is the control given by Proposition 4.6 with

T = Tj , N = 2j , f0 = f(aj).(4.15)

Then, ΠEj
f(aj + Tj) ≡ 0 and

(4.16) ‖ũj‖L2((aj ,aj+Tj)×ω) ≤ e
Cobs

(

1+ 1
Tj

+2j
)

‖f(aj)‖L2(R2d).
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We have also that, by the Duhamel formula stated in Proposition 2.2,

‖f(aj + Tj)‖L2(R2d) ≤
(

1 +
√

Tje
C

(

1+ 1
Tj

+2j
)

)

‖f(aj)‖L2(R2d).

By Proposition 2.3 we deduce that

‖f(aj+1)‖L2(R2d) ≤ e−
22jT3

j

12 ‖f(aj + Tj)‖L2(R2d)

≤
(

1 +
√

Tje
C
(

1+ 1
Tj

+2j
)

)

e−
22jT3

j

12 ‖f(aj)‖L2(R2d).

Hence, iterating this inequality, we obtain, for j ≥ 1,

‖f(aj)‖L2(R2d) ≤ e−
∑j−1

k=0 αk‖f0‖L2(R2d),

with

αk =
22kT 3

k

12
− ln

(

1 +
√

Tke
C
(

1+ 1
Tk

+2k
)

)

≥ 22kT 3
k

12
− C ′(1 +

1

Tk
+ 2k

)

≥ 2k(2−3ρ)K
3

12
− C ′(1 +

2ρk

K
+ 2k

)

,

using the value given to Tk above. As 0 < ρ < 1/3, we see that we have

αk ≥ C ′′2k(2−3ρ),(4.17)

for C ′′ > 0 and k sufficiently large, and thus the series
∑

k αk diverges to +∞
yielding ‖f|t=T ‖L2(R2d) = 0, for f ∈ C 0([0, T ];L2(R2d)).

Furthermore, the control u built above belongs to L2((0, T ) × R
2d). In fact by

(4.16) we have

‖u‖2L2((0,T )×R2d) =
∞
∑

j=0

‖ũj‖2L2((aj ,aj+Tj)×R2d) ≤
∞
∑

j=0

e
C
(

1+ 1
Tj

+2j
)

‖f(aj)‖2L2(R2d).

We thus find

‖u‖2L2((0,T )×R2d) ≤
(

e
C
(

2+ 1
T0

)

+
∞
∑

j=1

e
C
(

1+ 1
Tj

+2j
)

−
∑j−1

k=0 αk
)

‖f0‖L2(R2d).

Using (4.17), we obtain

C
(

1 +
1

Tj
+ 2j

)

−
j−1
∑

k=0

αk ≤ C
(

1 +
1

Tj
+ 2j

)

− αj−1

≤ C
(

1 +
2ρj

K
+ 2j

)

− C ′′2(j−1)(2−3ρ)

≤ −C ′′′2j(2−3ρ)

for C ′′′ > 0 and for j sufficiently large, as 0 < ρ < 1/3. Hence we find that
‖u‖L2((0,T )×R2d) ≤ C‖f0‖L2(R2d), which conludes the proof. �
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Appendix A. Proofs of the semigroup and well-posedness properties

A.1. Proof of Proposition 2.1. We set L : L2(R2d) → L2(R2d), with domain

D(L) = {g ∈ L2(R2d); −ξ · ∇ηg(ξ, η) + |η|2g(ξ, η) ∈ L2(R2d)},
and defined by Lg = −ξ · ∇ηg + |η|2g.

We denote by F the Fourier transformation in the x, v variables. Observe that
FD(K) = D(L) and that L = FKF−1. If we prove the well-poseness property
of ∂t + L, we can thus deduce that of ∂t + K, because of the isometry property
of F on L2(R2d). In particular, below, we prove that L is the generator of a C0-
semigroup of contraction Σ(t) on L2(R2d). We thus deduce that K is the generator
of a C0-semigroup of contraction S(t) on L2(R2d), given by S(t) = F−1Σ(t)F .

Let g ∈ L2(R2d) and assume that G(t, ξ, η) is solution to

(∂t + L)G = 0, G|t=0 = g(ξ, η).

We first proceed heuristically. Introducing H(t, ξ, η) = G(t, ξ, η − tξ), we find

∂tH + |η − tξ|2H = 0, H|t=0 = g(ξ, η),

yielding H(t, ξ, η) = g(ξ, η) exp(−
∫ t
0 |η − sξ|2 ds). The form of G should thus be

G(t, ξ, η) = g(ξ, η + tξ)e−
∫ t

0
|η+(t−s)ξ|2 ds = g(ξ, η + tξ)e−

∫ t

0
|η+sξ|2 ds.(A.18)

We findG(t, ., .) ∈ L2(R2d). Thus, we set Σ(t) : L2(R2d) → L2(R2d) as (Σ(t)g)(ξ, η) =
G(t, ξ, η).

LEMMA A.1. The map Σ(t) is a C0-semigroup of contraction on L2(R2d).

Proof. Let g ∈ L2(R2d). Considering the formula (A.18) we have Σ(0)g = g, and we
write Σ(t)g − g = It + Jt, with

It(ξ, η) =
(

g(ξ, η + tξ)− g(ξ, η)
)

e−
∫ t

0 |η+sξ|2 ds,

Jt(ξ, η) = g(ξ, η)
(

e−
∫ t

0 |η+sξ|2 ds − 1
)

.

With the Parseval formula we have, with h(ξ, v) =
∫

Rd exp(−iv · η)g(ξ, η) dη,

‖It‖L2(R2d) ≤ ‖g(ξ, η + tξ)− g(ξ, η)‖L2(R2d) . ‖
(

eitξ·v − 1
)

h(ξ, v)‖L2(R2d),

and we find that ‖It‖L2(R2d) → 0 as t→ 0+ by the Lebesgue dominated convergence

theorem. We also directly see that ‖Jt‖L2(R2d) → 0 as t→ 0+ by the same theorem.

Let t, t′ ≥ 0. As we have (Σ(t′)g)(ξ, η) = g(ξ, η + t′ξ) exp(−
∫ t′

0 |η + sξ|2 ds), we
find

(Σ(t) ◦ Σ(t′)g)(ξ, η) = g(ξ, η + (t+ t′)ξ)e−
∫ t′

0 |η+(s+t)ξ|2 dse−
∫ t

0 |η+sξ|2 ds,

and, as
∫ t
0 |η + sξ|2 ds +

∫ t′

0 |η + (s + t)ξ|2 ds =
∫ t+t′

0 |η + sξ|2 ds, we conclude that
we have the semigroup property Σ(t) ◦ Σ(t′) = Σ(t + t′). Finally, the contraction
property on L2(R2d) is clear from (A.18). �
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We denote by A the generator of Σ(t) which is an unbounded operator on L2(R2d).
Here, we use the convention Σ(t) = e−tA.

LEMMA A.2. Let g ∈ L2(R2d). We have (Σ(t)g − g)/t → ξ · ∇ηg − |η|2g in

D ′(R2d), as t→ 0+.

Proof. The result follows from the convergence of (g(ξ, η + tξ) − g(ξ, η))/t to ξ ·
∇ηg(ξ, η) in D ′(R2d), as t→ 0+. This can be proven by writting,

〈g(ξ, η + tξ)− g(ξ, η), ϕ(ξ, η)〉 = 〈g(ξ, η), ϕ(ξ, η − tξ)− ϕ(ξ, η)〉
= −t〈g(ξ, η), ξ · ∇ηϕ(ξ, η)〉

+ t2
〈

g(ξ, η),

∫ 1

0
d2ηϕ(ξ, η − tσξ)(ξ, ξ) dσ

〉

,

for ϕ ∈ C∞
c (R2d). �

Consequently, if g ∈ D(A), that is, if g ∈ L2(R2d) and (Σ(t)g − g)/t converges
in L2(R2d) as t → 0+, then Ag = −ξ · ∇ηg + |η|2g ∈ L2(R2d). We thus have
D(A) ⊂ D(L), and the operators A and L coincide on D(A).

PROPOSITION A.3. We have D(A) = D(L) and thus L is the generator of the
C0-semigroup Σ(t).

Proof. Let g ∈ D(L). We prove that g ∈ D(A). By Lemma A.2 we have

(Σ(t)g − g)/t → ξ · ∇ηg − |η|2g in D
′(R2d).(A.19)

We claim that (Σ(t)g − g)/t is bounded in L2(R2d). With (A.19), this implies
that (Σ(t)g − g)/t converges weakly to ξ · ∇ηg − |η|2g = −Lg in L2(R2d). Then,
(Σ(t)g − g)/t converges to −Lg in L2(R2d), as its weak convergence is equivalent to
its strong convergence by Theorem 1.3 in [23, Section 2.1]. And thus g ∈ D(A).

We now prove the claim made above. First, we assume that g ∈ S (R2d) and
observe that M(t, ξ, η) = (Σ(t)g)(ξ, η) is smooth. As we have

∂tM(t, ξ, η) =
(

ξ · ∇ηg(ξ, η + tξ)− |η + tξ|2g(ξ, η + tξ)
)

e−
∫ t

0 |η+sξ|2 ds

= −Lg(ξ, η + tξ)e−
∫ t

0 |η+sξ|2 ds,

writing a first-order Taylor formula gives

(Σ(t)g − g)(ξ, η) =M(t, ξ, η) −M(0, ξ, η) = t

∫ 1

0
∂tM(σt, ξ, η) dσ

= −t
∫ 1

0
Lg(ξ, η + tσξ)e−

∫ σt

0 |η+sξ|2 ds dσ.

We then deduce

‖Σ(t)g − g‖L2(R2d) ≤ t

∫ 1

0
‖Lg(ξ, η + tσξ)‖L2(R2d) dσ = t‖Lg‖L2(R2d).

This gives the claim, as S (R2d) is dense in D(L), which can be seen by adapting
classical arguments (for instance, one can adapt the argument in Theorem 31.5 and
Lemma 31.1 in [24]). �
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We finally consider the non-differentiability property of the semigroup S(t). It is
equivalent to that of Σ(t). For g ∈ L2(R2d), we have

(

Σ(t)g
)

(ξ, η) = G(t, ξ, η), as
given in (A.18). If Σ(t) were to be differentiable for t > t0, then Σ(t)g would be in
the domain of the operator L, by Lemma 2.4.2 in [23]. In the sense of distributions,
we find

(

− ξ · ∇η + |η|2
)

G(t, ξ, η) = k(ξ, η + tξ)e−
∫ t

0 |η+sξ|2 ds,(A.20)

with k =
(

− ξ · ∇η + |η|2
)

g. In fact, we have

ξ · ∇ηG(t, ξ, η)

=
(

ξ · ∇ηg(ξ, η + tξ)− 2g(ξ, η + tξ)

∫ t

0
ξ · (η + sξ) ds

)

e−
∫ t

0
|η+sξ|2 ds

=
(

ξ · ∇ηg(ξ, η + tξ)−
(

t|ξ|2 + 2tξ · η
)

g(ξ, η + tξ)
)

e−
∫ t

0
|η+sξ|2 ds,

and thus
(

− ξ · ∇η + |η|2
)

G(t, ξ, η)

=
(

− ξ · ∇ηg(ξ, η + tξ) + |η + tξ|2g(ξ, η + tξ)
)

e−
∫ t

0 |η+sξ|2 ds,

which gives (A.20).
If we choose g ∈ L2(R2d) lacking smoothness be such that k /∈ L2

loc(R
2d), it leads

to
(

− ξ · ∇η + |η|2
)

G(t, ξ, η) /∈ L2(R2d), independently of the value of t > 0.

A.2. Proof of Proposition 2.2. The first case of the proof, as well as the Duhamel
form (2.1) of the solution in this case, follows for instance from [8, Lemma 4.1.1 and
Proposition 4.1.6].

We now consider the second case, that is f0 ∈ L2(R2d) and F ∈ L1(0, T ;L2(R2d)).
We set

f1(t) = S(t)f0, f2(t) =

∫ t

0
S(t− s)F (s) ds.

We have f1, f2 ∈ C 0([0, T ];L2(R2d)) with f1|t=0 = f0 and f2|t=0 = 0.
We start with the following result.

LEMMA A.4. Let χ ∈ C∞
c (0, T ). We have

∫∞
0 χ(t)fj(t) dt ∈ D(K), j = 1, 2,

and moreover

K

∫ T

0
χ(t)f1(t) dt =

∫ T

0
χ′(t)f1(t) dt,

K

∫ T

0
χ(t)f2(t) dt =

∫ T

0

(

χ′(t)f2(t) + χ(t)F (t)
)

dt.

Proof. For h > 0 we compute

Fh = h−1(S(h)− Id)

∫ T

0
χ(t)f1(t) dt = h−1

∫ T

0
χ(t)

(

S(t+ h)− S(t)
)

f0 dt.
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Observe that, for 0 < h < 1,
∫ T

0
χ(t)S(t+ h)f0 dt =

∫ T+h

h
χ(t− h)S(t)f0 dt =

∫ T+1

0
χ(t− h)S(t)f0 dt,

because of the support of χ. We thus obtain

Fh = h−1

∫ T+1

0

(

χ(t− h)− χ(t)
)

f1(t) dt.

With the continuity of t 7→ f1(t), in L
2(R2d), the Lebesgue dominated convergence

theorem yields,

lim
h→0+

Fh = −
∫ T+1

0
χ′(t)f1(t) dt = −

∫ T

0
χ′(t)f1(t) dt.

Consequently, by the very definition of the generator of a semigroup (see e.g. (1.2)

and (1.3) in [23, Chapter 1]3),
∫ T
0 χ(t)f1(t) dt ∈ D(K) and K

∫ T
0 χ(t)f1(t) dt =

∫ T
0 χ′(t)f1(t) dt.

We now turn to the term f2(t). Similarly, for h > 0, we set

Fh = h−1(S(h) − Id)

∫ T

0
χ(t)f2(t) dt

= h−1

∫ T

0
χ(t)

∫ t

0

(

S(t+ h− s)− S(t− s)
)

F (s) ds dt.

Writing
∫ T

0
χ(t)

∫ t

0
S(t+ h− s)F (s) ds dt =

∫ T+1

0
χ(t− h)

∫ t−h

0
S(t− s)F (s) ds dt,

we obtain

Fh = h−1

∫ T+1

0

(

χ(t− h)− χ(t)
)

f2(t) dt

− h−1

∫ T+1

0
χ(t− h)

∫ t

t−h
S(t− s)F (s) ds dt.

With the Lebesgue dominated convergence theorem we obtain

lim
h→0+

Fh = −
∫ T+1

0

(

χ′(t)f2(t) + χ(t)F (t)
)

dt

= −
∫ T

0

(

χ′(t)f2(t) + χ(t)F (t)
)

dt.

Consequently,
∫ T
0 χ(t)f2(t) dt ∈ D(K) and

K

∫ T

0
χ(t)f2(t) dt =

∫ T

0

(

χ′(t)f2(t) + χ(t)F (t)
)

dt,

which concludes the proof. �

3Observe here that we consider S(t) = e−tK whereas one has e+tK in [23].
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Let χ ∈ C∞
c (0, T ) and ϕ ∈ C∞

c (R2d). With Lemma A.4, we find

〈

K

∫ T

0
χ(t)f1(t) dt, ϕ

〉

D ′(R2d),C∞
c (R2d)

=
〈

∫ T

0
χ′(t)f1(t) dt, ϕ

〉

D ′(R2d),C ∞
c (R2d)

,

yielding
∫ T

0

〈

χ(t)f1(t),
tKϕ

〉

D ′(R2d),C∞
c (R2d)

dt =

∫ T

0

〈

χ′(t)f1(t), ϕ
〉

D ′(R2d),C ∞
c (R2d)

dt,

and thus
〈

f1,
tKχ(t)ϕ(x, v)

〉

D ′(Q),C ∞
c (Q)

=
〈

f1, χ
′(t)ϕ(x, v)

〉

D ′(Q),C ∞
c (Q)

,

with Q = (0, T ) × R
2d. This implies that f1 satisfies (∂t + v · ∇x − ∆v)f1 = 0 in

D ′(Q). Similarly we find
〈

f2,
tKχ(t)ϕ(x, v)

〉

D ′(Q),C∞
c (Q)

=
〈

f2, χ
′(t)ϕ(x, v)

〉

D ′(Q),C∞
c (Q)

+
〈

F, χ(t)ϕ(x, v)
〉

D ′(Q),C ∞
c (Q)

,

yielding (∂t + v · ∇x −∆v)f2 = F in D ′(Q). We have thus obtained the existence
part of the result with a solution given by the mild solution (2.1).

To prove uniqueness, as the equation is linear, it is sufficient to assume that
f ∈ C 0([0, T ];L2(R2d)) is such that

(∂t + v · ∇x −∆v)f = 0 in D
′((0, T ) × R

2d), f|t=0 = 0,

and to prove that f = 0. This function is only defined for 0 ≤ t ≤ T . We set

w(t) =











0 if t < 0,

f(t) if 0 ≤ t ≤ T,

S(t− T )f(T ) if T < t.

We have w ∈ C 0(R;L2(R2d)) and we have, using the above argument,

(∂t + v · ∇x −∆v)w = 0 in D
′(R× R

2d).

Next, we choose χ ∈ C∞
c (R) with supp(χ) ⊂ [−1, 1] and such that

∫

R
χ(t) dt = 1.

We set wε = w
t∗χε (convolution in time) with χε = ε−1χ(t/ε). We have

(∂t + v · ∇x −∆v)wε = 0 in D
′(R× R

2d),(A.21)

and supp(wε) ⊂ [−ε,+∞)×R
2d by the support theorem. We have wε ∈ C∞(R;L2(R2d))

and thus using (A.21) we find wε ∈ C∞(R;D(K)) and the Kolmogorov equation
(A.21) holds in the sense of functions. By the uniqueness part of the first item of
the proposition we find that wε vanishes. Since χε → δ as ε→ 0 we finally find that
w also vanishes indentically. This gives the uniqueness result for the second item of
the proposition.
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A.3. Proof of Proposition 2.3. We denote by F the Fourier transformation in
the x, v variables. We set g = Ff0 and G(t) = Ff = F (S(t)f0).

The proof of Proposition 2.1 gives by (A.18)

G(t, ξ, η) = g(ξ, η + tξ)e−
∫ t

0 |η+sξ|2 ds.

Observing that
∫ t
0 |η + sξ|2 ds = t

(

|η + tξ/2|2 + t2|ξ|2/12
)

we find

‖G(t, ξ, .)‖2L2(Rd) ≤ e−t
3|ξ|2/6

∫

Rd

|g(ξ, η + tξ)|2 dη = e−t
3|ξ|2/6‖g(ξ, .)‖2L2(Rd),

which yields the result by the Parseval formula.
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